Problem Set 1. Due Thursday, February 9.

1. Suppose \(V(x, y, z) \) is a solution to Laplace’s equation in the half space \(z \geq 0 \). Suppose

\[
V(x, y, 0) = \begin{cases}
1 & \text{for } 0 \leq x \leq a \\
-1 & \text{for } -a \leq x < 0 \\
0 & \text{for } |x| > a
\end{cases}
\]

and that \(V(z = \infty) = 0 \). Find an expression for \(V(x, y, z) \) that is valid everywhere in the half space. Find (or look up) analytical expressions for all integrals. (You can use integral tables; for example, Gradshteyn and Ryzhik in the Engineering-Math-Physics Library)

2. Suppose the earth has a spherical surface with radius \(r = a \). Suppose \(\partial_r V = p + q\sin^2\theta \) at \(r = a \), where \(V \) is the earth’s gravitational potential and the constants \(p \) and \(q \) are known. Find \(V(r, \theta, \phi) \) for all \(r > a \).

3. It is likely that the boundary between the outer core and the mantle has topographic features. Suppose the typical wavelength of this topography is 1000 km, and the peak-to-trough amplitude is \(h \). Assume \(h \ll a \) (\(a \) is the earth’s radius). Estimate the amplitude of the gravity signal at the earth’s surface caused by this topography, as a function of \(h \). How large would \(h \) need to be to produce a 10 \(\mu \text{gal} \) effect on surface gravity? Assume the density of the outer core is 11 gm/cm\(^3\), the density of the lower mantle is 5 gm/cm\(^3\), and the average radius of the core-mantle boundary is 3480 km.