Seismic Structure of the Uppermost Mantle Near the Kamchatka-Aleutian Junction

Vadim Levin,¹ Nikolai Shapiro,² Jeffrey Park³ and Michael Ritzwoller ²

¹ Yale University
² University of Colorado
³ Contact Information: vadim.levin@yale.edu or nshapiro@fignon.colorado.edu

SUMMARY OF FINDINGS

- Within the upper 200 km of the mantle there is no evidence of subducting slabs North of the Kamchatka-Aleutian junction.
- Subduction mantle beneath Kamchatka peninsula and the Sea of Okhotsk is very slow (Vs < 4.4 km/s).
- Shear velocity structure under the Sea of Okhotsk differs from that of the undisturbed continental lithosphere, as well as from that of the old oceanic lithosphere. Modeling of the thermal age (under half-space cooling assumption) implies a disturbance of the region ~30 My ago.
- Lithosphere of the Kamchatka-Bering sea is thinned relative to that of the adjacent Pacific plate. However, the thermal age is between 33 and 40 My, which makes it unlikely that significant amounts of new oceanic lithosphere have been created here during the last 20 Ma.

METHODOLOGY

Inversion of surface wave dispersion data for 3D seismic structure. More details this Friday, 1330h:

1. Receiver functions are incorporated in the a priori model, contributing to velocity field of the upper mantle is resolved with higher degree of confidence.

USE OF RECEIVER FUNCTIONS TO CONSTRAST SURFACE WAVELIMITS INVERSIONS

Comparison of different wave velocity models for the crust and uppermost mantle under the Kamchatka-Aleutian junction region. A detailed comparison of the crustal and upper mantle models with the new receiver function data is provided in Table 1. Inversion results are shown in Figure 3, which illustrates the mean model and standard deviation of the velocity structure.

READ MORE ABOUT THE AREA

Detailed information about the geology and tectonics of the Kamchatka-Aleutian junction region can be found in the following references:


CONTACT INFORMATION

For more information, please contact Jeffrey Park (jeffrey.park@yale.edu) for a preprint.

In FOREIGN LANGUAGE: 

Seismitz Struktur des Obersten Mantels nahe der Kamtschatka-Aleutischen Verbindung

Vadim Levin,¹ Nikolai Shapiro,² Jeffrey Park³ und Michael Ritzwoller ²

¹ Yale University
² University of Colorado
³ Kontaktinformation: vadim.levin@yale.edu oder nshapiro@fignon.colorado.edu

ZUSAMMENFASSUNG DER BÖTEN

- Innerhalb der oberen 200 km der Schicht gibt es keine Evidenz für subduzierte Platten nördlich der Kamtschatka-Aleutischen Verbindung.
- Subduktionsmantel unter der Kamtschatka-Halbinsel und der See von Okhotsk ist sehr langsam (Vs < 4.4 km/s).
- Die Scherbewegung unter dem See von Okhotsk weicht von der des ungestörten kontinentalen Lithosphere ab, wie auch von der des alten ozeanischen Lithosphere. Modellierung der thermischen Alters (unter halbseitlich verringertem Temperatur) impliziert eine Störung der Region ~30 Myr alt.
- Die Lithosphere des Kamtschatka-Beringmeeres ist dünner als der der angrenzenden Pazifischen Platte. Jedoch liegt der thermische Alters zwischen 33 und 40 Myr, was wahrscheinlich schließt, dass signifikante Mengen neuer ozeanischer Lithosphere hier während der letzten 20 Mio. Jahren erzeugt wurden.

METHODE

Inversion von Oberflächenwellen-Dispersion-Daten für 3D Seismische Struktur. Weitere Details dieser Freitag um 1330 Uhr.

1. Receiver-Funktionen werden in den a priori Modellen integriert, was zu einer höheren Genauigkeit der Seismischen Struktur des obersten Mantels beitraegt.

VERWENDUNG VON RECIEVERFUNKTIONEN ZUM CONNTRAST DERoberen MAntelsCHNITTEN INVERSIONS


WEITERE INFORMATIONEN

Für weitere Informationen, wenden Sie sich an Jeffrey Park (jeffrey.park@yale.edu) für ein Vorabdruck.