
1. Introduction
The deformational properties of a terrestrial planetary mantle including mantle elastic moduli and viscosity 
determine planetary deformation in response to forcings. A forcing can have vastly different sets of time-scales 
ranging from seconds as in seismic wave propagation (e.g., Dziewonski & Anderson, 1981) to a day as for tides 
(e.g., Longman, 1966). In addition, there are even longer relevant time scales such as months or years as for 
post-seismic deformation (e.g., Nur & Mavko, 1974), tens of thousands of years as for glacial isostatic adjustment 
(GIA) (e.g., Peltier, 1976),millions of years as for long-term tectonic and mantle dynamic forcing of volcanic 
building (e.g., Watts, 2001) and mantle convection (e.g., Schubert et al., 2001), and possibly billions of years 
of tidal-rotational forcing due to planetary orbit changes (e.g., Qin et al., 2018). Depending on the time-scale 
of a forcing, the mantle may respond differently and display purely elastic, viscoelastic, and purely viscous 
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deformations for short, intermediate and long time-scales, respectively. The deformational responses to a forcing 
are determined by solving the equations of motion with relevant rheological properties of the mantle.

With the assumption of spherical symmetry in elasticity and viscosity structure (i.e., only 1-D or radial depend-
ence), the equations of motion can be solved analytically in spectral domains to determine the displacement, strain 
and stress of planetary mantles on different time scales (e.g., Dahlen & Tromp, 1998; Hager & O’Connell, 1981; 
Longman, 1966; Qin et al., 2018; Takeuchi, 1950; Wu & Peltier, 1982). For the mantle with fully 3-D elastic 
and viscosity structures, special solution techniques are required to solve the equations of motion. For example, 
perturbation methods have been used for seismic wave propagation (e.g., Dahlen & Tromp,  1998) and tidal 
deformation (e.g., Lau et al., 2017; Qin et al., 2014, 2016) problems for a planetary mantle with weak lateral 
variations in elastic properties. However, because mantle viscosity may vary by orders of magnitude due to its 
strong dependence on temperature, numerical methods are preferred for viscous flow (e.g., Zhong et al., 2007) 
and more specifically, for viscoelastic deformation, commonly used numerical methods include a spectral-finite 
element (e.g., Bagge et al., 2021; Klemann et al., 2008; Martinec, 2000), finite element (e.g., Hu & Wang, 2012; 
Zhong et al., 2003), finite volume (e.g., Latychev et al., 2005), and coupled spectral-finite element (Wu, 2004; 
van der Wal et al., 2013) methods.

The CitcomSVE package is a finite element modeling package for solving load-induced viscoelastic deformation 
problems in a 3-D spherical shell, a spherical wedge or Cartesian domain. CitcomSVE works for 3-D viscoelastic 
mantle structure with either linear or non-linear viscosity. It works efficiently on massively parallel computers 
(>6,000 CPU cores) with MPI for inter-CPU node communications. It has been developed over the last two 
decades to solve for dynamic deformation and response of a planetary mantle to three types of forcing or loads: (a) 
time-dependent loading on the surface of a viscoelastic mantle (e.g., GIA or volcanic loading) (Bellas et al., 2020; 
A et al., 2013; Paulson et al., 2005; Zhong & Watts, 2013; Zhong et al., 2003, 2012); (b) tidal forcing on a purely 
elastic mantle (e.g., tidal deformation) (Qin et al., 2014, 2016; Zhong et al., 2012); (c) long-term tidal-rotational 
forcing for a viscoelastic mantle (e.g., the planetary tidal-rotational bulge or figure) (Qin et al., 2018). CitcomSVE 
has been used for GIA studies for both the incompressible (Zhong et al., 2003) and compressible (A et al., 2013) 
mantle with temperature- (Paulson et al., 2005) and stress-dependent viscosity (Kang et al., 2022). CitcomSVE 
was built from mantle convection modeling package CitcomS (Zhong et al., 2000, 2008) by replacing viscous 
rheology and Eulerian formulation in CitcomS with viscoelastic rheology and Lagrangian formulation, respec-
tively (Zhong et al., 2003).

This paper describes the physical models, mathematical structure and computational methods for CitcomSVE, 
and presents benchmark and error analysis studies for three distinct problems solved by CitcomSVE: surface 
loading of different single harmonics, tidal loading, and the ICE-6G GIA model (Peltier et al., 2015). For simplic-
ity and benchmark purpose, this paper focuses on incompressible mantle models with an either homogeneous 
or 1-D (i.e., radially stratified) viscoelastic structure. For each type of the loading problems, example calcula-
tions using CitcomSVE will be presented and compared with semi-analytical solutions to verify the accuracy of 
CitcomSVE. Although our previous studies using CitcomSVE included some limited benchmark calculations 
(e.g., A et al., 2013; Paulson et al., 2005; Qin et al., 2014; Zhong et al., 2003), the current study differs from 
our previous studies in a number of important ways. First, the current study put together all the most relevant 
components of model formulations, numerical analysis and calculations of geophysical variables and process in 
CitcomSVE that were presented in different papers. Second, the current study introduces an updated and publicly 
available version of CitcomSVE that runs on thousands of CPU cores on massively parallel computers, while the 
earlier version of CitcomSVE used only 12 CPU cores. Third, this is a significantly more complete benchmark 
study with different spatial and temporal resolutions and detailed error analyses. Fourth, the current study reports 
not only accuracy but also computational speed and parallel computing efficiency for CitcomSVE. Although this 
study only considers CitcomSVE, it can be considered as continuation of GIA community’s benchmark effort 
(Spada et al., 2011; Martinec et al., 2018). The paper is organized as follows. Next section or Section 2 is for 
governing equations for dynamic loading problems and numerical methods. Section 3 presents example model 
calculations for those three different loading problems and corresponding benchmark results. Discussions and 
conclusions are given in the final section.
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2. Governing Equations and Numerical Methods
2.1. Governing Equations and Boundary Conditions

The governing equations for load-induced deformation are derived from the 
laws of conservation of mass and momentum and Newton’s law of gravi-
tation. A simplified formulation with the assumption that the mantle is an 
incompressible medium is given as (e.g., Martinec, 2000; Wu, 2004; Wu & 
Peltier, 1982; Zhong et al., 2003):

𝑢𝑢𝑖𝑖𝑖𝑖𝑖 = 0𝑖 (1)

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜌𝜌0𝜙𝜙𝑖𝑖𝑖 − (𝜌𝜌0𝑔𝑔𝑔𝑔𝑟𝑟)𝑖𝑖𝑖 − 𝜌𝜌
𝐸𝐸

1
𝑔𝑔𝑖𝑖 + 𝜌𝜌0𝑉𝑉𝑎𝑎𝑖𝑖𝑖 = 0𝑖 (2)

𝜙𝜙,𝑖𝑖𝑖𝑖 = −4𝜋𝜋𝜋𝜋𝜋𝜋
𝐸𝐸

1
, (3)

where ui represents the displacement vector with ur being in the radial direc-
tion, ϕ is the perturbation of gravitational potential due to deformation, Va is 
the applied potential (e.g., rotational and tidal potentials) when applicable, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 
is the stress tensor, ρ0 is the unperturbed mantle density, gi is the gravitational 
acceleration with 𝐴𝐴 𝐴𝐴 =

√

𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖, 𝜌𝜌
𝐸𝐸

1
= −𝑢𝑢𝑖𝑖𝜌𝜌0,𝑖𝑖 is the Eulerian density perturba-

tion, and G is the gravitational constant. The equations are written in a indi-
cial notation such that A,i represents the derivative of variable A with respect 
to coordinate xi, and repeated indices indicate summation. CitcomSVE 
package has implemented formulations for both incompressible (e.g., Zhong 
et al., 2003) and compressible (A et al., 2013) medium. Here we only discuss 
CitcomSVE model formulation for incompressible medium in this paper.

Surface traction boundary conditions with zero shear force are applied at the surface (at radius r  =  rs) and 
core-mantle boundary (CMB) (r = rb) such that both the surface and CMB can deform dynamically in both hori-
zontal and radial directions. The boundary conditions are

𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 = −𝜎𝜎𝑜𝑜𝑛𝑛𝑖𝑖, for 𝑟𝑟 = 𝑟𝑟𝑠𝑠, (4)

𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 = (−𝜌𝜌𝑐𝑐𝜙𝜙 + 𝜌𝜌𝑐𝑐𝑔𝑔𝑔𝑔𝑟𝑟) 𝑛𝑛𝑖𝑖, for 𝑟𝑟 = 𝑟𝑟𝑏𝑏, (5)

where σo represents the pressure loads at the surface (e.g., glacial loads) as a function of time and space, ρc is 
the density of the core, and ni represents the normal vector of the surface or CMB. The boundary conditions at 
the CMB consider the self-gravitational effect for a fluid core (e.g., Zhong et al., 2003). ρc, together with mantle 
density ρm, is given in Table 1. Our models assume a constant gravitational acceleration g throughout the mantle 
(Table 1). Other than this CMB boundary condition, the core is not considered explicitly in our numerical formu-
lation. Note that tidal or centrifugal forcing loads are applied via applied potential V (see Section 3.2.1), and 
surface loads 𝐴𝐴 𝐴𝐴𝑜𝑜(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) are zero.

The boundary conditions for Poisson’s equation (i.e., Equation 3) are given by

𝜙𝜙
(

𝑟𝑟
+
)

= 𝜙𝜙 (𝑟𝑟−) , for 𝑟𝑟 = 𝑟𝑟𝑠𝑠 and 𝑟𝑟 = 𝑟𝑟𝑏𝑏, (6)

𝑛𝑛𝑖𝑖𝜙𝜙,𝑖𝑖

(

𝑟𝑟
+
)

+ 4𝜋𝜋𝜋𝜋𝜋𝜋
(

𝑟𝑟
+
)

𝑛𝑛𝑖𝑖𝑢𝑢𝑖𝑖
(

𝑟𝑟
+
)

= 𝑛𝑛𝑖𝑖𝜙𝜙,𝑖𝑖 (𝑟𝑟
−) + 4𝜋𝜋𝜋𝜋𝜋𝜋 (𝑟𝑟−) 𝑛𝑛𝑖𝑖𝑢𝑢𝑖𝑖 (𝑟𝑟

−) , for 𝑟𝑟 = 𝑟𝑟𝑠𝑠 and 𝑟𝑟 = 𝑟𝑟𝑏𝑏, (7)

where 𝐴𝐴 𝐴𝐴 (𝑟𝑟+) = 0 at the surface.

2.2. Rheological Equations

We consider a planetary mantle as an incompressible viscoelastic Maxwell solid for which the total deformation 
is the sum of elastics and viscous deformation. Elastic and viscous deformation can each be related to the stress 
tensor by

Model parameters Value

Earth radius rs 6,370 km

CMB radius rb 3,503.5 km

Mantle density ρ0 4,604.4 kg/m 3

Density increase at CMB Δρ 5,401 kg/m 3

Water density ρw 1,000 kg/m 3

Ice density ρi 917.4 kg/m 3

Shear modulus μ 1.4305 × 10 11 Pa

Modified Fluid Love number k2f (1 + δ) 1.11664

Mantle reference viscosity η 10 21 Pa .s

Gravitational acceleration g 9.8 m  . s −2

VM5A viscosity model:

 The surface to 60 km depth 10 26 Pas

 60–100 km depth 10 22 Pas

 100–670 km depth 4.853 × 10 21 Pas

 670–1,170 km 1.5048 × 10 21 Pas

 1,170 km to CMB 3.095 × 10 21 Pas

Table 1 
Model Parameters for Example, Calculations
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𝜀𝜀
𝑒𝑒

𝑖𝑖𝑖𝑖
=

1

2𝜇𝜇
(𝜎𝜎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) , (8)

�̇�𝜀
𝑣𝑣

𝑖𝑖𝑖𝑖
=

1

2𝜂𝜂
(𝜎𝜎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖), (9)

where 𝐴𝐴 𝐴𝐴𝑒𝑒
𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴𝐴𝑣𝑣

𝑖𝑖𝑖𝑖
 are elastic strain tensor and viscous strain rate tensor, respectively, P is the dynamic pressure, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 

is the Kronecker delta function, and μ and η are the shear modulus and viscosity, respectively. The total strain 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 
is the sum of elastic and viscous strains and can be related to displacement by

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀
𝑒𝑒

𝑖𝑖𝑖𝑖
+ 𝜀𝜀

𝑣𝑣

𝑖𝑖𝑖𝑖
=

1

2

(

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

)

 (10)

Adding time derivative of Equations 8 and 9 leads to the following rheological equation,

𝜎𝜎𝑖𝑖𝑖𝑖 +
𝜂𝜂

𝜇𝜇
�̇�𝜎𝑖𝑖𝑖𝑖 = −

(

𝑃𝑃 +
𝜂𝜂

𝜇𝜇
�̇�𝑃

)

𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜂𝜂�̇�𝜂𝑖𝑖𝑖𝑖 , (11)

where the dot over a variable represents time-derivative.

Both shear modulus μ and viscosity η can be fully three-dimensional in CitcomSVE models to represent the 
effects of temperature and composition on mantle mechanical properties (e.g., A et al., 2013; Paulson et al., 2005; 
Zhong et al., 2003). Other rheological equations representing realistic deformation mechanisms including fric-
tional sliding, low-temperature plasticity and power-law creep have also been implemented in CitcomSVE (e.g., 
Bellas et al., 2020; Kang et al., 2022; Zhong & Watts, 2013). However, here for benchmark we will restrict our 
discussion to relatively simple rheological properties with uniform μ and either uniform or radially layered η.

It is important to point out that the Burgers model of viscoelasticity shows transient rheological effects (e.g., Lau 
& Faul, 2019) that are important for understanding short-term GIA (e.g., Ivins et al., 2022) and post-seismic 
deformation processes (e.g., Hetland & Hager, 2005; Hu & Wang, 2012). However, the Burgers rheology has not 
been used in numerical GIA models, although it has been implemented for post-seismic deformation (e.g., Hu & 
Wang, 2012).

2.3. Numerical Formulation and Analysis

A finite element method is used in CitcomSVE package to solve Equations 1 and 2 for load-induced displacement 
and stress under boundary conditions Equations 4 and 5 with a Maxwell rheological Equation 11. Equation 3 
for gravitational potential with boundary conditions Equations  6 and  7 is solved using a spherical harmonic 
spectral method. For full descriptions of finite element analysis and spectral method, see Zhong et al.  (2003) 
and A et al. (2013) for models of incompressible and compressible medium, respectively. Here we will present 
some key aspects of the numerical methods for incompressible medium. We will describe methods for modeling 
geophysical processes including polar wander and degree-1 displacement in CitcomSVE (A et al., 2013; Paulson 
et al., 2005).

2.3.1. Incremental Displacement Formulation and Discretized Rheological Equation

Although governing Equations 1–3 do not contain any time-dependent terms as they describe static equilibria, 
time-dependence occurs in Maxwell viscoelastic rheological Equation 11. We employ an incremental displace-
ment formulation for the time-dependent deformation problems (Zhong et al., 2003). Let 𝐴𝐴 𝐴𝐴𝑛𝑛

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴𝑛𝑛−1

𝑖𝑖
 be displace-

ments at times t and 𝐴𝐴 𝐴𝐴 − Δ𝐴𝐴 , respectively, where superscripts n and n − 1 represent time steps for corresponding 
times. Incremental displacement at time t is defined as 𝐴𝐴 𝐴𝐴𝑛𝑛

𝑖𝑖
= 𝑢𝑢𝑛𝑛

𝑖𝑖
− 𝑢𝑢𝑛𝑛−1

𝑖𝑖
 and it can be used to define incremental 

strain as

Δ𝜀𝜀𝑛𝑛
𝑖𝑖𝑖𝑖
=

1

2

(

𝜕𝜕𝜕𝜕𝑛𝑛
𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝜕𝜕𝜕𝜕𝑛𝑛

𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

)

. (12)
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Rheological Equation 11 is discretized in time by integrating it from time 𝐴𝐴 𝐴𝐴 − Δ𝐴𝐴 to t, and stress tensor at time t, 
𝐴𝐴 𝐴𝐴𝑛𝑛

𝑖𝑖𝑖𝑖
 , is recast in terms of incremental strain 𝐴𝐴 ∆𝜀𝜀𝑛𝑛

𝑖𝑖𝑖𝑖
 and pre-stress 𝐴𝐴 𝐴𝐴

pre

𝑖𝑖𝑖𝑖
 as (Zhong et al., 2003),

𝜎𝜎
𝑛𝑛

𝑖𝑖𝑖𝑖
= −𝑃𝑃 𝑛𝑛

𝛿𝛿𝑖𝑖𝑖𝑖 + 2�̃�𝜂∆𝜀𝜀𝑛𝑛
𝑖𝑖𝑖𝑖
+ 𝑓𝑓𝑓𝑓

pre

𝑖𝑖𝑖𝑖
, (13)

where 𝐴𝐴 𝐴𝐴𝐴 = 𝐴𝐴∕(𝛼𝛼 + ∆𝑡𝑡) , 𝐴𝐴 𝐴𝐴 = (𝛼𝛼 − ∆𝑡𝑡∕2)∕(𝛼𝛼 + ∆𝑡𝑡∕2) , 𝐴𝐴 𝐴𝐴
pre

𝑖𝑖𝑖𝑖
= 𝜎𝜎𝑛𝑛−1

𝑖𝑖𝑖𝑖
+ 𝑃𝑃 𝑛𝑛−1𝛿𝛿𝑖𝑖𝑖𝑖 , and 𝐴𝐴 𝐴𝐴 = 𝜂𝜂∕𝜇𝜇 (i.e., the Maxwell time). 

Note that the pre-stress is the deviatoric stress at timestep n−1, 𝐴𝐴 𝐴𝐴
pre

𝑖𝑖𝑖𝑖
= 𝐴𝐴𝑛𝑛−1

𝑖𝑖𝑖𝑖
 , given that the deviatoric stress is 

𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 . Equation 13, the discretized rheological equation, with the pre-stress term, is similar to that in 
Martinec (2000) who applied a finite difference scheme to the time derivative term in the rheological equation.

2.3.2. Solution of Poisson’s Equation for Gravitational Potential

Poisson’s equation for gravitational potential anomaly ϕ is solved in spherical harmonic domain (see the defi-
nition of spherical harmonics and harmonic expansion used in CitcomSVE in Section 2.4.5 and also in Zhong 
et al., 2003, 2008). All the relevant variables at time t are expressed in terms of spherical harmonic degree l and 
order m, for example, gravitational potential anomaly at radius r and time t as 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟) . Under the incompressi-
bility approximation, three sources of mass anomalies may contribute to 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟) : surface topography (i.e., radial 
displacement) 𝐴𝐴 𝐴𝐴𝑠𝑠

𝑙𝑙𝑙𝑙
(𝑡𝑡) , CMB topography 𝐴𝐴 𝐴𝐴𝑏𝑏

𝑙𝑙𝑙𝑙
(𝑡𝑡) , and the surface loads 𝐴𝐴 𝐴𝐴0_𝑙𝑙𝑙𝑙

(𝑡𝑡) .

𝜙𝜙𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟) =
4𝜋𝜋𝜋𝜋

2𝑙𝑙 + 1

{

𝑟𝑟𝑏𝑏

(

𝑟𝑟𝑏𝑏

𝑟𝑟

)𝑙𝑙+1

∆𝜌𝜌𝑏𝑏𝑢𝑢
𝑏𝑏

𝑙𝑙𝑙𝑙
(𝑟𝑟) + 𝑟𝑟𝑠𝑠

(

𝑟𝑟

𝑟𝑟𝑠𝑠

)𝑙𝑙 [

∆𝜌𝜌𝑠𝑠𝑢𝑢
𝑠𝑠

𝑙𝑙𝑙𝑙
(𝑟𝑟) +

𝜎𝜎0_𝑙𝑙𝑙𝑙(𝑟𝑟)

𝑔𝑔

]

}

𝑟 (14)

where 𝐴𝐴 ∆𝜌𝜌𝑏𝑏 and 𝐴𝐴 ∆𝜌𝜌𝑠𝑠 are density differences across the CMB and surface, respectively.

Using the incremental formulation, let 𝐴𝐴 𝐴𝐴𝑏𝑏
𝑙𝑙𝑙𝑙
(𝑡𝑡) = 𝑢𝑢𝑏𝑏

𝑙𝑙𝑙𝑙
(𝑡𝑡) − 𝑢𝑢𝑏𝑏

𝑙𝑙𝑙𝑙
(𝑡𝑡 − ∆𝑡𝑡), 𝐴𝐴𝑠𝑠

𝑙𝑙𝑙𝑙
(𝑡𝑡) = 𝑢𝑢𝑠𝑠

𝑙𝑙𝑙𝑙
(𝑡𝑡) − 𝑢𝑢𝑠𝑠

𝑙𝑙𝑙𝑙
(𝑡𝑡 − ∆𝑡𝑡) , and 

𝐴𝐴 ∆𝜎𝜎0_𝑙𝑙𝑙𝑙
(𝑡𝑡) = 𝜎𝜎0_𝑙𝑙𝑙𝑙

(𝑡𝑡) − 𝜎𝜎0_𝑙𝑙𝑙𝑙
(𝑡𝑡 − ∆𝑡𝑡) be the incremental radial CMB and surface displacements and incremental 

loads, respectively, and incremental potential 𝐴𝐴 ∆𝜙𝜙𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟) is given as

𝜙𝜙𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟) = 𝜙𝜙𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟 − ∆𝑟𝑟) + ∆𝜙𝜙𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟)𝑟 (15)

where 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟 − ∆𝑟𝑟) = Φ𝑙𝑙𝑙𝑙(𝑟𝑟) is the potential at the previous time step and can be viewed as a known quantity, and 
𝐴𝐴 ∆𝜙𝜙𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟) is related to the unknown incremental displacements 𝐴𝐴 𝐴𝐴𝑏𝑏

𝑙𝑙𝑙𝑙
(𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝑠𝑠

𝑙𝑙𝑙𝑙
(𝑡𝑡) as

∆𝜙𝜙𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟) =
4𝜋𝜋𝜋𝜋

2𝑙𝑙 + 1

{

𝑟𝑟𝑏𝑏

(

𝑟𝑟𝑏𝑏

𝑟𝑟

)𝑙𝑙+1

∆𝜌𝜌𝑏𝑏𝑣𝑣
𝑏𝑏

𝑙𝑙𝑙𝑙
(𝑟𝑟) + 𝑟𝑟𝑠𝑠

(

𝑟𝑟

𝑟𝑟𝑠𝑠

)𝑙𝑙 [

∆𝜌𝜌𝑠𝑠𝑣𝑣
𝑠𝑠

𝑙𝑙𝑙𝑙
(𝑟𝑟) +

∆𝜎𝜎0_𝑙𝑙𝑙𝑙(𝑟𝑟)

𝑔𝑔

]

}

. (16)

2.3.3. Finite Element Analysis and Solution Methods

Applying the weak form of finite element formulation to the equation of motion (i.e., Equation 2) (Hughes, 2000; 
Zhong et al., 2003) leads to

∫
Ω
𝑤𝑤𝑖𝑖𝑖𝑖𝑖

[

−𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 + �̃�𝜂 (𝑣𝑣𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖𝑖)
]

d𝑉𝑉 + ∫
𝑆𝑆
𝑤𝑤𝑖𝑖∆𝜌𝜌𝑠𝑠𝑔𝑔𝑣𝑣𝑟𝑟𝑃𝑃𝑖𝑖𝑟𝑟d𝑆𝑆 + ∫

𝐵𝐵
𝑤𝑤𝑖𝑖∆𝜌𝜌𝑏𝑏𝑔𝑔𝑣𝑣𝑟𝑟𝑃𝑃𝑖𝑖𝑟𝑟d𝑆𝑆

= − ∫
Ω
𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓

pre

𝑖𝑖𝑖𝑖
d𝑉𝑉 + ∫

𝑆𝑆
𝑤𝑤𝑖𝑖 (𝜌𝜌0𝑉𝑉𝑎𝑎 + 𝜌𝜌0Φ − ∆𝜌𝜌𝑠𝑠𝑔𝑔𝑔𝑔𝑟𝑟𝑠𝑠 − 𝜎𝜎0) 𝑃𝑃𝑖𝑖𝑟𝑟d𝑆𝑆

+∫
𝐵𝐵

𝑤𝑤𝑖𝑖∆𝜌𝜌𝑏𝑏 (Φ + 𝑉𝑉𝑎𝑎 − 𝑔𝑔𝑔𝑔𝑟𝑟𝑏𝑏) 𝑃𝑃𝑖𝑖𝑟𝑟d𝑆𝑆 + ∫
𝑆𝑆

𝑤𝑤𝑖𝑖𝜌𝜌0∆𝜙𝜙𝑃𝑃𝑖𝑖𝑟𝑟d𝑆𝑆 + ∫
𝐵𝐵

𝑤𝑤𝑖𝑖∆𝜌𝜌𝑏𝑏∆𝜙𝜙𝑃𝑃𝑖𝑖𝑟𝑟d𝑆𝑆𝑖

 (17)

where integration domain Ω, S, and B are for the volume, the surface and CMB boundaries, respectively, wi is 
the displacement weighting function, 𝐴𝐴 𝑃𝑃 = 𝑃𝑃 − 𝜌𝜌0𝜙𝜙 + 𝜌𝜌0𝑔𝑔𝑔𝑔𝑟𝑟 is the effective pressure, and Φ, 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟 and 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟 are the 
potential, surface and CMB radial displacements at previous time step, respectively.

Equation  17 and the conservation equation of the mass (i.e., Equation  1) are discretized onto a set of finite 
element grid to form a system of matrix equations with unknown vectors of the effective pressure {P} and incre-
mental displacement {V}.

[

𝐴𝐴
𝑇𝑇
]

{𝑉𝑉 } = {0} , (18)

([𝐾𝐾] + [𝐵𝐵]) {𝑉𝑉 } + [𝐴𝐴] {𝑃𝑃 } = {𝐹𝐹0} + {𝐹𝐹 } , (19)
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where [A] is the gradient matrix, 𝐴𝐴
[

𝐴𝐴𝑇𝑇
]

 is the transpose of [A], [K] is the stiffness matrix, [B] is a boundary matrix 
that is derived from the second and third integrals on the left hand side of Equation 17, 𝐴𝐴 {𝐹𝐹0} is the force vector 
representing contributions from the previous time step (i.e., the first three integrals of the right hand side of Equa-
tion 17), and 𝐴𝐴 {𝐹𝐹 } represents contributions from the current time step (i.e., the last two terms of the right hand side 
of Equation 17). Note that 𝐴𝐴 {𝐹𝐹 } depends on unknown displacements at the surface and CMB.

CitcomSVE code has been developed out of 3-D finite element code CitcomS for mantle convection in a spher-
ical shell, and they share many common features. The spherical shell of the mantle is divided into 12 caps of 
similar size, and each cap is further divided into a grid of cells (i.e., elements) of similar size (Figures 1a and 1b) 
(Zhong et al., 2000, 2008). Following Citcom (Moresi & Solomatov, 1995; Moresi et al., 1996), CitcomSVE 
uses brick elements with eight displacement nodes and one central pressure node per element (Figure 1c). This 
design of finite element grid is suited for parallel computing, as discussed in Zhong et al. (2008). Another impor-
tant feature of this grid is its approximately uniform resolution from the polar to equatorial regions (Zhong 
et al., 2000, 2003). This is different from the spectral finite element code by Martinec and his colleagues (Bagge 
et al., 2021; Klemann et al., 2008; Martinec, 2000) that uses spherical harmonic representation for azimuthal 
variations and the coupled-spectral finite element code by Wu and his colleagues (Li et al., 2020; van der Wal 
et al., 2013; Wu, 2004) with a grid of constant increment in longitude and latitude directions (e.g., 1° × 1°), both 
of which may lead to excessively high resolution in the polar region than that in equatorial region.

Matrix Equations 18 and 19 are solved with the Uzawa algorithm coupled with the full multigrid method (Moresi 
& Solomatov, 1995; Zhong et al., 2000, 2008). The general solution strategy in CitcomSVE follows an iterative 
scheme that can be summarized by (Zhong et al., 2003):

1.  At a given time 𝐴𝐴 𝐴𝐴𝐴 {𝐹𝐹0} is first evaluated using deviatoric stress 𝐴𝐴 𝐴𝐴
pre

𝑖𝑖𝑖𝑖
 , gravitational potential Φ, and radial 

displacements at the surface and CMB, 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟 and 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟 , at the previous time step, 𝐴𝐴 𝐴𝐴 − Δ𝐴𝐴 , and set 𝐴𝐴 {𝐹𝐹 } = {0} .
2.  Solve Equations 18 and 19 for incremental displacements 𝐴𝐴 {𝑉𝑉 } and effective pressure 𝐴𝐴 {𝑃𝑃 } , using 𝐴𝐴 {𝐹𝐹0} and 𝐴𝐴 {𝐹𝐹 } .
3.  Compute incremental potential 𝐴𝐴 ∆𝜙𝜙𝑙𝑙𝑙𝑙(𝑟𝑟𝑟 𝑟𝑟) using Equation 16 with the incremental radial displacements at the 

surface and CMB from step 2, and then re-evaluate 𝐴𝐴 {𝐹𝐹 } . Go back to step 2 to solve for 𝐴𝐴 {𝑉𝑉 } and 𝐴𝐴 {𝑃𝑃 } again.
4.  Repeat steps 2 and 3, until 𝐴𝐴 {𝑉𝑉 } and 𝐴𝐴 {𝑃𝑃 } converge to a given threshold error tolerance. Then go back to step 1 

to march forward in time.

It is helpful to point out that in step 3 the potential is computed in the spherical harmonic domain for each 
harmonics l and m, but the displacement 𝐴𝐴 {𝑉𝑉 } that is needed for computing the potential is solved on the finite 
element grid of CitcomSVE. Therefore, the radial displacements at the surface and CMB must be transformed 
from the grid to the spherical harmonic domain via the spherical harmonic expansion in order to compute the 

Figure 1. A 3-D view (a) and mapview (b) of the finite element grid with 12 spherical caps covering a spherical shell, and 
an eight-node trilinear element (c) used in CitcomSVE. Each of the 12 caps in Figures 1a and 1b includes a certain number 
of finite elements in the radial direction and two azimuthal directions, and each cap can also be further divided into smaller 
blocks for a parallel computing purpose. The thick red lines in Figure 1b mark the shared boundaries of the 12 caps. In 
Figure 1a, the caps are separated for a better view. The numbers in Figures 1a and 1b show the ordering of the 12 caps. 
The numbers in Figure 1c show the ordering of local nodes of the element. Figures 1a and 1b are modified from Zhong 
et al. (2000).
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potential using Equation 16 (Zhong et al., 2003). In computing 𝐴𝐴 {𝐹𝐹 } using the potential, the potential needs to be 
recast to the grid from the spherical harmonic domain. These forward and inverse spherical harmonic expansion 
operations can be computationally expensive, if a large number of harmonics are involved, partly because the 
finite element grid (Figures 1a and 1b) is a non-Gauss-Legendre grid.

2.4. Calculations of Geophysical Processes and Variables in CitcomSVE

Loading on planetary surface may lead to certain geophysical processes including polar wander, apparent motion 
of the center of mass (i.e., degree-1 deformation), net rotation of the mantle, sea-level change (when mass 
exchange between continental ice mass and oceans is present). Here we discuss calculations of these geophysical 
processes and quantities in CitcomSVE.

2.4.1. Degree-1 Deformation–Apparent Motion of Center of Mass

The center of mass here refers to the center of the Earth-load system. In the absence of external force, the center of 
mass is fixed (excluding the Earth’s orbital motion and its associated forces) and should be used as the reference 
frame with which the displacement is measured (e.g., via satellites). In the loading formulation presented here, 
surface loads such as those associated with glacial and melt-water mass are considered as external to the solid 
Earth. The load distribution can have a hemispherically asymmetric structure (i.e., spherical harmonic degree 
1), thus causing degree-1 displacement for the solid Earth. The degree-1 displacement can also occur when the 
mantle has lateral variations in elastic or/and viscosity structures. However, the loading formulation computes 
displacements in the model frame (i.e., relative to the coordinates of the numerical model) and does not guarantee 
that the degree-1 displacement is relative to the center of mass. Therefore, it is necessary to process the model 
results such that they are relative to the center of mass, as done in Paulson et al. (2005) and A et al. (2013) for 
CitcomSVE for incompressible and compressible models, respectively.

The calculation of degree-1 displacement consists of the following steps (Paulson et al., 2005; A et al., 2013). (a) 
Calculate the center of mass of the Earth-load system relative to the model frame, 𝐴𝐴 𝒓𝒓cm , at the beginning of each 
time step using the incremental loads (e.g., ice and water distribution) for this time step and solid Earth’s incre-
mental displacements at density interfaces (e.g., the surface and CMB) from the previous time step. (b) Shift the 
incremental displacements by 𝐴𝐴 𝒓𝒓cm for a translation to the center of mass frame. This corresponds to modifying the 
loads by adding −∆���cm ��� � to the loads for each density interface such that they are relative to the center of 
mass frame, where 𝐴𝐴 ∆𝜌𝜌 is the density difference across the density interface and 𝐴𝐴 𝐴𝐴 is the angle between 𝐴𝐴 𝒓𝒓cm and the 
position vector at a point on the density boundary. This step causes the degree-1 gravitational potential to vanish. 
(c) Solve the governing equations for the incremental displacement using the updated loads for the current time 
step. The new incremental displacements at density boundaries will in general cause the center of mass motion 
to shift its position. We repeat step a) to determine 𝐴𝐴 𝒓𝒓cm and perform a translation to the new center of mass frame, 
leading to updated incremental displacements for the current time step.

Three remarks are warranted here. (a) The translation operation between the model frame and the center of 
mass frame does not affect stress calculations which can be conveniently done in the model frame. (b) Since the 
iterative solution method is used to solve Equations 18 and 19 for incremental displacements for each time step 
(see Section 2.3.3), the translation operation between these two frames is done for each iteration such that Equa-
tions 18 and 19 are always solved in the center of mass frame. (c) Step a) in determining 𝐴𝐴 𝒓𝒓cm can also be done by 
computing degree-1 gravitational potential first and then solving 𝐴𝐴 𝒓𝒓cm such that the degree-1 gravitational potential 
vanishes. We found that both methods for determining 𝐴𝐴 𝒓𝒓cm are equivalent.

2.4.2. Removal of Mantle Pure Rotation

The loading that is considered in this study is either in the radial direction along the force of gravity (e.g., glacial 
loads) or symmetric (e.g., tidal or rotational forcing), suggesting that the loading does not induce pure rotation 
motion for the planet. However, numerical solutions of the conservation equation of momentum (i.e., Equation 2) 
may contain spurious pure rotation motion of the whole planet, because the pure rotation motion is unconstrained 
by the conservation equations (i.e., adding an arbitrary pure rotation motion does not affect the governing equa-
tions). While such pure rotation motion does not affect the dynamics or radial displacement, it is important to 
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remove this rotation motion such that displacements are in no rotation mantle frame. Here we describe a scheme 
to remove pure rotation motion in CitcomSVE that has been used in our previous studies (A et al., 2013; Qin 
et al., 2016).

For the spherical shell of the mantle with inner radius 𝐴𝐴 𝐴𝐴𝑏𝑏 and outer radius 𝐴𝐴 𝐴𝐴𝑠𝑠 and a uniform density ρ0 (i.e., for an 
incompressible medium), define v as incremental displacement vector, 𝐴𝐴 𝒓𝒓 as position vector, and 𝐴𝐴 𝜶𝜶 as the incre-
mental angular displacement vector of the pure rotation of the whole mantle, then considering the definition of 
the angular momentum of the mantle and the moment of inertia of the mantle 𝐴𝐴 𝐴𝐴 = 8𝜋𝜋𝜋𝜋0

(

𝑟𝑟5𝑠𝑠 − 𝑟𝑟5
𝑏𝑏

)

∕15, the follow-
ing equation must hold (Zhong et al., 2008),

𝜶𝜶 =
15

8𝜋𝜋
(

𝑟𝑟5𝑠𝑠 − 𝑟𝑟5
𝑏𝑏

) ∫
𝒓𝒓 × 𝒗𝒗d𝑉𝑉 𝑉 (20)

where the integration is for the whole mantle. Removing the displacement associated with this pure rotational 
motion of the mantle from the original displacement 𝒗 leads to the revised displacement 𝐴𝐴 �̃�𝒗 in the no rotation frame 
of the mantle:

�̃�𝒗 = 𝒗𝒗 − (𝒓𝒓 × 𝜶𝜶). (21)

It should be pointed out that a similar scheme is used in mantle convection code CitcomS to remove the pure rota-
tion of the mantle (Zhong, 2001; Zhong et al., 2008), which is important for mantle dynamics (e.g., Becker, 2006). 
Although the scheme presented here is for an incompressible medium, extending it for a compressible mantle 
with a depth-dependent density structure is straightforward (see Section 2.6) (A et al., 2013; Tan et al., 2011).

2.4.3. Sea Level Change and Sea Level Equation

One of the applications of the CitcomSVE package has been on modeling the GIA process (e.g., A et al., 2013; 
Paulson et al., 2005, 2007; Zhong et al., 2003). For GIA problems, it is essential to consider mass exchange and 
redistribution between ice on continents and water in oceans. As the ice melts, the water goes to oceans, causing 
sea level rise globally. Because sea level follows an equipotential surface or the geoid which is affected by mass 
anomalies associated with variations of ocean water and ice and with incremental radial displacements at the 
surface and CMB (or any other density interfaces in the mantle), it is important to couple these processes together 
to determine how the melt water is distributed into oceans. Here we summarize how the sea level equation (Farrell 
& Clark, 1976) is implemented in CitcomSVE to determine melt water mass distribution and sea level change (A 
et al., 2013; Paulson et al., 2005).

The change in height of ocean load, L0, since the onset of glaciation is determined by the sea level equation 
(Farrell & Clark, 1976)

𝐿𝐿0(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃) = [𝑁𝑁(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃) − 𝑈𝑈 (𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃) + 𝑐𝑐(𝜃𝜃)]𝑂𝑂(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃)𝜃 (22)

where N and U are the GIA-related geoid anomalies (i.e., equipotential surface variation) and radial displace-
ments at the surface, O is the ocean function (1 for ocean and 0 elsewhere), and c is the barystatic sea level as

𝑐𝑐(𝑡𝑡) =
1

𝐴𝐴0

[

−
𝑀𝑀ice(𝑡𝑡)

𝜌𝜌𝑤𝑤
−
∫

(𝑁𝑁 − 𝑈𝑈 )𝑂𝑂d𝑆𝑆

]

, (23)

where A0 is the area of the oceans, 𝐴𝐴 𝐴𝐴𝑤𝑤 is the density of water, 𝐴𝐴 𝐴𝐴ice(𝑡𝑡) is the ice mass, and the integral is for the 
surface of the Earth. 𝐴𝐴 𝐴𝐴ice(𝑡𝑡) is calculated for a given ice history model, for example, ICE-6G (Peltier et al., 2015). 
Ocean function O which is time-dependent can be constructed from present-day ocean-continent distribution and 
ice history model.

The ocean load (i.e., the change of ocean height) depends on incremental displacement and geoid (Equation 22), 
and also affects them via the equation of motion and Poisson’s equation for gravitational potential. The itera-
tive solution method as discussed in Section 2.3.3 solves for displacements, and gravitational potential and sea 
level height changes self-consistently. Due to improved computational efficiency in CitcomSVE, the iterative 
scheme is applied for every timestep, different from an earlier version of CitcomSVE where the iterations were 
only applied for the first few timesteps and were subsequently replaced by extrapolations (Paulson et al., 2005; 
Zhong et  al.,  2003). As discussed in A et  al.  (2013), our sea level calculations consider the dynamic effects 
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of Earth’s geoid, rotational potential and radial displacement, and the calculations also consider a prescribed, 
time-dependent ocean-continent function that includes the effect of ice melting that turns the land to ocean 
regions (e.g., the Hudson Bay). However, our sea level calculations ignore the effects of moving shorelines for a 
given time step and sloping bathymetry (e.g., Kendall et al., 2005; Milne, 1998).

2.4.4. Polar Wander

Any mass change at the surface and in the interiors of a planet may cause planetary moment of inertia to change, 
thus perturbing planetary rotation vector and causing polar motion. This phenomenon happens on geological 
time scales of hundreds of millions of years (i.e., true polar wander) and also on relatively short time scales for 
processes like GIA. For the GIA process, polar wander induces perturbation to Earth’s centrifugal potential that 
in turn affects the deformation of the Earth’s mantle (e.g., Mitrovica et al., 2005). The effect of polar wander in 
the GIA process has been incorporated in CitcomSVE models (A et al., 2013; Paulson et al., 2005). Here we 
summarize key concept of polar wander calculations and its implementation in CitcomSVE.

Define the Earth’s rotational angular velocity 𝐴𝐴 𝝎𝝎 = Ω (𝑚𝑚𝑥𝑥, 𝑚𝑚𝑦𝑦, 1 + 𝑚𝑚𝑧𝑧) , where Ω is the unperturbed rotational rate, 
and mx, my and mz represent the perturbations in each of three directions. Using complex number notation, define 

𝐴𝐴 𝐴𝐴± = 𝐴𝐴𝑥𝑥 ± 𝑖𝑖𝐴𝐴𝑦𝑦 , and 𝐴𝐴 𝐴𝐴± = 𝐴𝐴𝑥𝑥𝑥𝑥 ± 𝑖𝑖𝐴𝐴𝑦𝑦𝑥𝑥 , where 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑦𝑦𝑦𝑦 are the perturbed moment of inertia due to GIA process. 
Then for periods longer than the Chandler wobble, these perturbed quantities can be related to each other by 
(Lambeck, 1980; Paulson et al., 2005),

𝑚𝑚± =
𝐼𝐼±

(𝐶𝐶 − 𝐴𝐴)hyd(1 + 𝛿𝛿)
 (24)

where C and A are the unperturbed principal polar and equatorial moments of inertia, δ describes the long-term 
non-hydrostatic oblateness (i.e., δ ∼ 0.8% (Mitrovica et al., 2005; Paulson et al., 2005)), and (C−A)hyd represents 
purely hydrostatic oblateness in response to rotation (e.g., Mitrovica et al., 2005):

(𝐶𝐶 − 𝐴𝐴)hyd =
𝑟𝑟5𝑜𝑜Ω

2𝑘𝑘2𝑓𝑓

3𝐺𝐺
, (25)

where 𝐴𝐴 𝐴𝐴2𝑓𝑓 is the fluid Love number at degree 2. In this study, 𝐴𝐴 𝐴𝐴2𝑓𝑓 (1 + 𝛿𝛿) is set to be 1.11664.

A consequence of polar wander is to introduce perturbations to centrifugal potential at spherical harmonic degree 
l = 2 and order 𝐴𝐴 𝐴𝐴 = ±1 as (Lambeck, 1980; Paulson et al., 2005)

Δ𝜙𝜙𝑐𝑐 =

√

2𝜋𝜋

15
Ω2

𝑟𝑟
2
(

𝑚𝑚−𝑌𝑌
1

2
(𝜃𝜃𝜃 𝜃𝜃) − 𝑚𝑚+𝑌𝑌

−1

2
(𝜃𝜃𝜃 𝜃𝜃)

)

𝜃 (26)

where 𝐴𝐴 𝐴𝐴 1

2
 and 𝐴𝐴 𝐴𝐴 −1

2
 are the spherical harmonic functions at l = 2 and 𝐴𝐴 𝐴𝐴 = ±1 in a complex form (e.g., Dahlen & 

Tromp, 1998) that are used here only for analysis purpose. Substituting Equation 24 to Equation 26 leads to

∆𝜙𝜙𝑐𝑐 = −
Ω2𝑟𝑟2

(𝐶𝐶 − 𝐴𝐴)hyd(1 + 𝛿𝛿)
sin 𝜃𝜃 cos 𝜃𝜃 (𝐼𝐼𝑥𝑥𝑥𝑥 cos𝜑𝜑 + 𝐼𝐼𝑦𝑦𝑥𝑥 sin𝜑𝜑) , (27)

which is a real function and is used in CitcomSVE calculations.

In CitcomSVE, at the beginning of each time step, mass anomalies due to loads at the surface (e.g., ice, melt 
water, and surface radial displacements) and in the mantle interiors (e.g., displacements at the CMB) are used to 
compute 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥 , 𝐴𝐴 𝐴𝐴𝑦𝑦𝑦𝑦 , and the perturbed potential 𝐴𝐴 ∆𝜙𝜙𝑐𝑐 from Equation 27. 𝐴𝐴 ∆𝜙𝜙𝑐𝑐 is added to the gravitational potential 
anomalies in Equation 16 before the total potential is used in Equations 18 and 19 to solve for displacements. 
Since the displacements affect mass anomalies and hence 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥 , 𝐴𝐴 𝐴𝐴𝑦𝑦𝑦𝑦 , and 𝐴𝐴 ∆𝜙𝜙𝑐𝑐 , iterations are required to assure 
self-consistency. CitcomSVE uses the same iterative scheme and calculations as those for the calculations of the 
center of mass motion and sea level change for the polar wander calculations.

2.4.5. Calculations of Other Geophysical Variables

Stress tensor 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 at any given time step n can be computed in principle from Equation 13 after incremental displace-
ment 𝐴𝐴 {𝑉𝑉 } and effective pressure 𝐴𝐴 {𝑃𝑃 } are solved from matrix Equations 18 and 19. However, it is troublesome to 
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calculate dynamic pressure P from the effective pressure {P}. Fortunately, in most cases only the deviatoric stress 
𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is needed, and can be computed by re-arranging Equation 13 into

𝜏𝜏
𝑛𝑛

𝑖𝑖𝑖𝑖
= 𝜎𝜎

𝑛𝑛

𝑖𝑖𝑖𝑖
+ 𝑃𝑃

𝑛𝑛
𝛿𝛿𝑖𝑖𝑖𝑖 = 2�̃�𝜂∆𝜀𝜀𝑛𝑛

𝑖𝑖𝑖𝑖
+ 𝑓𝑓𝜏𝜏

pre

𝑖𝑖𝑖𝑖
. (28)

The deviatoric stress 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is used as the pre-stress for calculations for the next time step. 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is also used for other 
geophysical applications including stress-dependent viscosity modeling (Bellas & Zhong, 2021; Kang et al., 2022; 
Zhong & Watts, 2013) and GIA induced seismicity (e.g., Rollins et al., 2021). In fact, the total stress 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is never 
computed in CitcomSVE.

As discussed at the end of Section 2.3.3, forward and inverse spherical harmonic expansion calculations are done 
frequently in solving the gravitational potential and incremental displacements between the finite element grid 
and the spherical harmonic domain. Following CitcomS, CitcomSVE uses a normalized associated Legendre 
polynomial ��� as the basis function for spherical harmonic expansion (see Zhong et al., 2008). The normalized 
associated Legendre polynomial ��� is related to the associated Legendre polynomial 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙 as:

𝑝𝑝𝑙𝑙𝑙𝑙(𝜃𝜃) =

√

(2𝑙𝑙 + 1)(𝑙𝑙 − 𝑙𝑙)!

2𝜋𝜋 (1 + 𝛿𝛿𝑙𝑙0) (𝑙𝑙 + 𝑙𝑙)!
𝑃𝑃𝑙𝑙𝑙𝑙(𝜃𝜃). (29)

The spherical harmonic expansion of a scalar field, for example, radial displacement at the surface, 𝐴𝐴 𝐴𝐴𝑠𝑠(𝜃𝜃𝜃 𝜃𝜃) is

𝑣𝑣
𝑠𝑠
(𝜃𝜃𝜃 𝜃𝜃) =

𝐿𝐿
∑

𝑙𝑙=1

𝑙𝑙
∑

𝑚𝑚=0

[

𝑣𝑣
𝑠𝑠_𝑐𝑐

𝑙𝑙𝑚𝑚
cos(𝑚𝑚𝜃𝜃) + 𝑣𝑣

𝑠𝑠_𝑠𝑠

𝑙𝑙𝑚𝑚
sin(𝑚𝑚𝜃𝜃)

]

𝑝𝑝𝑙𝑙𝑚𝑚(𝜃𝜃)𝜃 (30)

where 𝐴𝐴 𝐴𝐴
𝑠𝑠_𝑐𝑐

𝑙𝑙𝑙𝑙
 and 𝐴𝐴 𝐴𝐴

𝑠𝑠_𝑠𝑠

𝑙𝑙𝑙𝑙
 are the cosine and sine coefficients of the expansion that are used in Equation 16 for computing 

corresponding gravitational potential 𝐴𝐴 ∆𝜙𝜙𝑙𝑙𝑙𝑙 . Note that CitcomS/CitcomSVE uses real form spherical harmonic 
functions as in Equation 30 for computations (e.g., for gravitational potential or spherical harmonic expansion). 
Spherical harmonic expansion coefficients (e.g., in Equation 30) are computed in CitcomSVE by directly evalu-
ating the relevant surface integrals on the finite element grid (Figure 1b).

2.5. Normalization in CitcomSVE

The calculations in CitcomSVE including output are done on non-dimensional variables. CitcomSVE uses the 
following normalization scheme. The coordinates xi and displacements ui and vi are all normalized by radius of a 
planet, rs, such that the normalized outer radius of the planet is 1. The time is normalized by the reference mantle 
Maxwell time 𝐴𝐴 𝐴𝐴 = 𝜂𝜂𝑟𝑟∕𝜇𝜇𝑟𝑟 , where ηr and μr are the reference mantle viscosity and shear modulus, respectively. 

𝐴𝐴 𝐴𝐴𝑟𝑟and𝜇𝜇𝑟𝑟 are also used to normalize mantle viscosity and shear modulus, respectively, while the density is normal-
ized by reference density ρ0. The choice of these reference values is arbitrary, but they are typically those for the 
lower mantle. The stress tensor and pressure are normalized by reference shear modulus μr. Gravitational poten-
tial and centrifugal potential are normalized by 𝐴𝐴 4𝜋𝜋𝜋𝜋𝜋𝜋0𝑟𝑟

2
𝑠𝑠 , and the geoid anomalies are normalized by 𝐴𝐴 4𝜋𝜋𝜋𝜋𝜋𝜋0𝑟𝑟

2
𝑠𝑠∕𝑔𝑔 . 

Any other variables can be normalized by a combination of the above-mentioned scales.

2.6. Incompressible and Compressible Models in CitcomSVE

A et al. (2013) incorporated mantle compressibility into an early version of CitcomSVE that works for 12 CPU 
cores, and our near-term goal is to port the relevant codes for mantle compressibility that A et al. (2013) devel-
oped to the newly upgraded CitcomSVE that works on massively parallel computers. Based on our experience 
with its development and benchmark, we expect that CitcomSVE with mantle compressibility will have similar 
performance in both accuracy and computational efficiency, compared to the current code for an incompressible 
mantle. Mantle compressibility introduces two key differences. First, the mantle density is no longer homo-
geneous and is depth-dependent with jumps and continuous increase with depth, as in PREM (Dziewonski & 
Anderson, 1981). Second, the pressure term in the rheological Equation 11 will be replaced with bulk modulus, 
while the conservative equation of mass, that is, Equation 1, is no longer needed.
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The depth-dependent density structure makes calculations more expensive relative to the incompressible model, 
although calculation procedures (i.e., the codes) remain similar. For example, in the calculations of gravitational 
potential, Equation 14 will need to include contributions from all the depths throughout the mantle, and so do 
the calculations of polar wander (i.e., for 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑦𝑦𝑦𝑦 ), CM’s apparent motion, and removal of pure rotational 
motion (A et al., 2013). The eliminations of the mass conservation equation and the pressure cause Equation 18 
and the pressure term in Equation 19 to disappear, leading to a simpler matrix equation that can be solved with 
the full multi-grid solver directly for displacement vector 𝐴𝐴 {𝑉𝑉 } without the need for the Uzawa algorithm (A 
et al., 2013). In short, we expect that CitcomSVE for compressible mantle will have similar performance to the 
current CitcomSVE for incompressible mantle.

3. Example Calculations and Benchmark Results
Three example problems that are solved using CitcomSVE are presented here. They are: (a) loading in a single 
spherical harmonic in space and step-function (i.e., Heaviside function) in time; (b) degree-2 tidal loading; and 
(c) GIA using ICE-6G ice history model. For each of the example problems, the elastic and viscosity structures 
are chosen to be simple: either homogeneous or only dependent on radius (i.e., 1-D), so that CitcomSVE solutions 
can be benchmarked against semi-analytical solutions.

3.1. Surface Loading in a Single Spherical Harmonic in Space and Step-Function in Time

3.1.1. Definition of the Surface Loading Problem

For the first example problem, we consider a surface load σ0 (see Equation 4) corresponding to amplitude of topo-
graphic variation d with mantle material of density ρ0 at a single harmonic function in space and step-function 
in time:

𝜎𝜎0(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) = 𝜌𝜌0𝑔𝑔𝑔𝑔 cos(𝑚𝑚𝑡𝑡)𝑝𝑝𝑙𝑙𝑚𝑚(𝑡𝑡)𝐻𝐻(𝑡𝑡) = 𝜌𝜌0𝑔𝑔𝑔𝑔𝑃𝑃 𝑙𝑙𝑚𝑚(𝑡𝑡𝑡 𝑡𝑡)𝐻𝐻(𝑡𝑡)𝑡 (31)

where H(t) is the Heaviside function (i.e., H(t) = 1 for t ≥ 0; H(t) = 0 otherwise) and 𝐴𝐴 𝑃𝑃 𝑙𝑙𝑙𝑙(𝜃𝜃𝜃 𝜃𝜃) = cos(𝑙𝑙𝜃𝜃)𝑝𝑝𝑙𝑙𝑙𝑙(𝜃𝜃) 
is the cosine part of spherical harmonic function in the real form. Note that for simplicity, only the cosine term 
of longitudinal dependence is considered. Normalizing the load by 𝐴𝐴 𝐴𝐴0𝑔𝑔𝑔𝑔𝑠𝑠 leads to a dimensionless load with 
dimensionless amplitude of the load height 𝐴𝐴 𝐴𝐴 = 𝑑𝑑∕𝑟𝑟𝑠𝑠 . δ is set to be small (10 −6) to avoid too large deformation of 
the grid. For this example, we assume an ocean-free Earth and ignore any sea-level related calculations. Model 
parameters used for incompressible Earth’s mantle in our calculation are given in Table 1. This example prob-
lem has been used to benchmark the original version of CitcomSVE in Zhong et al. (2003) and A et al. (2013) 
for incompressible and compressible mantle, respectively. Here we compute time-dependent 3-D displacements 
in the mantle and gravitational potential anomalies in response to the applied load (i.e., Equation 31) using the 
newly updated CitcomSVE and compare the numerical model results with those from semi-analytical solutions 
(A et al., 2013; Han & Wahr, 1995; Paulson et al., 2005).

Compared with our previous benchmark calculations (e.g., A et al., 2013; Paulson et al., 2005; Zhong et al., 2003), 
this study includes three new features. First, the results are presented in terms of load Love numbers hl, kl, and ll 
at harmonic degree l for radial displacement, gravitational potential, and horizontal displacement, respectively. 
Second, horizontal displacement is systematically investigated. Third, results of different numerical resolutions 
are used to determine the order of accuracy of CitcomSVE.

3.1.2. Calculations of Load Love Numbers From Numerical Models

Love numbers are generally defined as planetary responses in surface displacements and gravitational potential 
anomaly to an applied potential (e.g., tidal potential) (e.g., Lambeck, 1980; Spada et al., 2011). For example, for 
an applied potential 𝐴𝐴 𝐴𝐴0_𝑙𝑙(𝜃𝜃𝜃 𝜃𝜃) at spherical harmonic degree l where subscribe 0 indicates a given or applied poten-
tial, Love numbers hl, kl, and ll are generally defined through the following equations for radial and horizontal 
displacements, ur, uθ, and uφ, and gravitational potential ϕ:

𝑢𝑢𝑟𝑟 = ℎ𝑙𝑙

𝑉𝑉0_𝑙𝑙

𝑔𝑔
, (32)
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𝜙𝜙 = 𝑘𝑘𝑙𝑙𝑉𝑉0_𝑙𝑙 , (33)

𝑢𝑢𝜃𝜃 =
𝑙𝑙𝑙𝑙

𝑔𝑔

𝜕𝜕𝜕𝜕0_𝑙𝑙

𝜕𝜕𝜃𝜃
, 𝑢𝑢𝜑𝜑 =

𝑙𝑙𝑙𝑙

𝑔𝑔sin𝜃𝜃

𝜕𝜕𝜕𝜕0_𝑙𝑙

𝜕𝜕𝜑𝜑
. (34)

If the applied potential is tidal potential, then such defined Love numbers are tidal Love numbers. For a planet 
with spherically symmetric structure (i.e., the structure only depends on radial coordinate r), the Love numbers 
are only dependent on l but not m and can be determined analytically using various techniques (e.g., Han & 
Wahr, 1995; Lambeck, 1980; Wu & Peltier, 1982; Zhong & Zuber, 2000).

The load Love numbers can be defined similarly by converting an applied surface load σ0 to an equivalent gravi-
tational potential that can then be treated as an applied potential. Using Equation 14, the applied surface load σ0 
(i.e., at r = rs) in Equation 31 leads to gravitational potential at the surface for t ≥ 0,

𝑉𝑉0_𝑙𝑙𝑙𝑙(𝜃𝜃𝜃 𝜃𝜃) =
4𝜋𝜋𝜋𝜋

2𝑙𝑙 + 1
𝜌𝜌0𝑑𝑑𝑑𝑑𝑠𝑠𝑃𝑃 𝑙𝑙𝑙𝑙(𝜃𝜃𝜃 𝜃𝜃). (35)

The radial displacement at the surface in response to the load can be written as

𝑢𝑢𝑟𝑟(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) = ℎ𝑙𝑙(𝑡𝑡)
𝑉𝑉0_𝑙𝑙𝑙𝑙(𝑡𝑡𝑡 𝑡𝑡)

𝑔𝑔
= ℎ𝑙𝑙(𝑡𝑡)

4𝜋𝜋𝜋𝜋

(2𝑙𝑙 + 1)𝑔𝑔
𝜌𝜌0d𝑟𝑟𝑠𝑠𝑃𝑃 𝑙𝑙𝑙𝑙(𝑡𝑡𝑡 𝑡𝑡). (36)

The time-dependence in 𝐴𝐴 𝐴𝐴𝑟𝑟(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) arises from mantle viscoelastic relaxation, and radial displacement load Love 
number 𝐴𝐴 𝐴𝑙𝑙(𝑡𝑡) is necessarily also time-dependent. Applying spherical harmonic expansion to 𝐴𝐴 𝐴𝐴𝑟𝑟(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) (e.g., Equa-
tion 30) and considering 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) as the expansion coefficient for (l, m) (i.e., at the same harmonic as the load), 
Equation 36 leads to

ℎ𝑙𝑙(𝑡𝑡) =
(2𝑙𝑙 + 1)𝑔𝑔

4𝜋𝜋𝜋𝜋𝜋𝜋0𝑟𝑟𝑠𝑠

𝑢𝑢𝑟𝑟𝑙𝑙𝑟𝑟(𝑡𝑡)

𝑑𝑑
=

(2𝑙𝑙 + 1)𝑔𝑔

4𝜋𝜋𝜋𝜋𝜋𝜋0𝑟𝑟𝑠𝑠

𝑢𝑢′
𝑟𝑟𝑙𝑙𝑟𝑟

(𝑡𝑡)

𝛿𝛿
, (37)

where 𝐴𝐴 𝐴𝐴′
𝑟𝑟𝑟𝑟𝑟𝑟

(𝑡𝑡) and δ are dimensionless radial displacement at harmonics (l, m) and amplitude of the load height, 
respectively; both are scaled by planetary radius rs.

Similarly, surface gravitational load Love number 𝐴𝐴 𝐴𝐴𝑙𝑙(𝑡𝑡) can be derived as

𝑘𝑘𝑙𝑙(𝑡𝑡) = (2𝑙𝑙 + 1)
𝜙𝜙′

𝑙𝑙𝑙𝑙
(𝑡𝑡)

𝛿𝛿
− 1, (38)

where 𝐴𝐴 𝐴𝐴′

𝑙𝑙𝑙𝑙
(𝑡𝑡) represents the expansion coefficient of dimensionless surface gravitational potential at harmonics 

(l, m) that includes contributions from both the applied load σ0 and radial displacements of the mantle (i.e., at the 
surface and CMB for incompressible mantle).

It is worthwhile to point out that 𝐴𝐴 𝐴𝐴𝑟𝑟(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) and 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) are calculated at the surface on the CitcomSVE grid 
in numerical modeling. To compute the Love numbers 𝐴𝐴 𝐴𝑙𝑙(𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝑙𝑙(𝑡𝑡) using 𝐴𝐴 𝐴𝐴′

𝑟𝑟𝑟𝑟𝑟𝑟
(𝑡𝑡) and 𝐴𝐴 𝐴𝐴′

𝑙𝑙𝑙𝑙
(𝑡𝑡) in Equations 37 

and 38, the grid-based solutions at different times need to be expanded in spherical harmonic domain using 
Equation 30. For loading at a single harmonic (l, m) (i.e., Equation 31) on a planet with spherically symmetric 
mantle structure, the responses in radial displacement 𝐴𝐴 𝐴𝐴𝑟𝑟(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) and gravitational potential 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) occur at the 
same forcing harmonic (l, m). In numerical solutions such as those from CitcomSVE, non-zero responses occur 
at non-forcing harmonics, and they are referred to as dispersion errors of the numerical solutions (e.g., Zhong 
et al., 2003). It should be pointed out that when lateral variation in either elastic moduli or viscosity is present in 
the mantle, mode-coupling will lead to responses at non-forcing harmonics in addition to forcing harmonic (e.g., 
Qin et al., 2014).

Calculations of surface horizontal displacement load Love number 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) in numerical modeling are more compli-
cated. Given the applied potential in Equation  35, dimensionless surface horizontal displacements scaled by 
planetary radius rs can be written as

𝑢𝑢
′

𝜃𝜃
(𝑡𝑡𝑡 𝜃𝜃𝑡 𝑡𝑡) =

𝑙𝑙𝑙𝑙(𝑡𝑡)

𝑔𝑔

4𝜋𝜋𝜋𝜋𝜋𝜋0𝑟𝑟𝑠𝑠𝛿𝛿

(2𝑙𝑙 + 1)

𝜕𝜕𝑃𝑃 𝑙𝑙𝑙𝑙(𝜃𝜃𝑡 𝑡𝑡)

𝜕𝜕𝜃𝜃
𝑡 𝑢𝑢

′
𝑡𝑡(𝑡𝑡𝑡 𝜃𝜃𝑡 𝑡𝑡) =

𝑙𝑙𝑙𝑙(𝑡𝑡)

𝑔𝑔

4𝜋𝜋𝜋𝜋𝜋𝜋0𝑟𝑟𝑠𝑠𝛿𝛿

(2𝑙𝑙 + 1)sin 𝜃𝜃

𝜕𝜕𝑃𝑃 𝑙𝑙𝑙𝑙(𝜃𝜃𝑡 𝑡𝑡)

𝜕𝜕𝑡𝑡
. (39)
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Considering the integral relationship (e.g., Dahlen & Tromp, 1998),

1

𝑙𝑙(𝑙𝑙 + 1) ∮

⎧

⎪

⎨

⎪

⎩

[

𝜕𝜕𝑃𝑃 𝑙𝑙𝑙𝑙(𝜃𝜃𝜃 𝜃𝜃)

𝜕𝜕𝜃𝜃

]2

+

[

1

sin 𝜃𝜃

𝜕𝜕𝑃𝑃 𝑙𝑙𝑙𝑙(𝜃𝜃𝜃 𝜃𝜃)

𝜕𝜕𝜃𝜃

]2⎫

⎪

⎬

⎪

⎭

sin 𝜃𝜃d𝜃𝜃d𝜃𝜃 = 1𝜃 (40)

where the integration is for the whole spherical surface, we may determine 𝐴𝐴 𝐴𝐴2
𝐴𝐴
(𝑡𝑡) as

𝑙𝑙
2

𝑙𝑙
(𝑡𝑡) =

[

(2𝑙𝑙 + 1)𝑔𝑔

4𝜋𝜋𝜋𝜋𝜋𝜋0𝑟𝑟𝑠𝑠𝛿𝛿

]2
1

𝑙𝑙(𝑙𝑙 + 1) ∮

{

[

𝑢𝑢
′

𝜃𝜃
(𝑡𝑡𝑡 𝜃𝜃𝑡 𝑡𝑡)

]2
+
[

𝑢𝑢
′
𝑡𝑡(𝑡𝑡𝑡 𝜃𝜃𝑡 𝑡𝑡)

]2
sin 𝜃𝜃d𝜃𝜃d𝑡𝑡

}

. (41)

Note that this only computes the square of Love number 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) from numerical models. Similar techniques were 
used in evaluating characteristic horizontal flow velocity in Stokes’ flow calculations (Zhong et al., 2008).

3.1.3. Benchmark Results

We have computed a total of 84 different model cases using CitcomSVE for six different sets of numerical resolu-
tions, seven different loading harmonics, and two different viscosity structure (Table 2). Six different numerical 
resolutions of R1-R6 are for 12 × (32 × 32 × 32), 12 × (48 × 48 × 48), 12 × (64 × 64 × 64), 12 × (96 × 96 × 96), 
12 × (64 × 96 × 96) and 12 × (64 × 128 × 128), respectively, where the first number, 12, indicates the number 
of spherical caps that the spherical surface is divided into, and the subsequent numbers indicate the number of 
elements in each cap in the radial and two horizontal directions (Figures 1a and 1b) (Zhong et al., 2000, 2008). 
Seven different loading harmonics are for (1, 0), (2, 0), (2, 1), (3, 1), (4, 0), (8, 0), and (16, 0) where the first and 
second numbers in a parenthesis (l, m) indicate spherical harmonic degree l and order m, respectively. Viscosity 
model V1 is for uniform mantle viscosity and V2 is for a 100 km thick high viscosity lithosphere (10 26 Pas) 
overlying a uniform mantle viscosity of 10 21 Pas, respectively. Each case can be named by its viscosity structure, 
loading harmonic and numerical resolution, for example, case V1_l2m0_R1 corresponds to a case where viscos-
ity V1, loading harmonic at (2, 0) and resolution R1 are used.

For each case, CitcomSVE is used to compute time-dependent solutions of 3-D displacement field of the mantle 
and gravitational potential at the surface, in response to a single harmonic surface loading (i.e., Equation 31). 

Case a hl(0) b kl(0) 𝐴𝐴 |𝑙𝑙l(0)| hl(40) kl(40) |ll(40)|

V1_l1m0 −1.0160 (−1.0158) −1.0000 (−1.0000) 7.6021e−2 (7.5790e−2) −1.1885 (1.1882) −1.0000 (−1.0000) 0.89380 (0.89330)

V1_l2m0 −0.58407 (−0.58415) −0.32130 (−0.32144) 0.14519 (0.14519) −1.9602 (−1.9524) −0.98723 (−0.98272) 0.86683 (0.86634)

V1_l2m1 0.10913 (0.10940) 1.0196 (1.0197) 3.9738e−3 (4.0324e−3) 0.38790 (0.39038) 1.3670 (1.3692) 5.2093e−2 (5.1003e−2)

V1_l3m1 −0.61582 (−0.61573) −0.23106 (−0.23097) 0.061337 (0.061328) −2.7502 (−2.7498) −0.98794 (−0.98786) 0.50350 (0.50341)

V1_l4m0 −0.60058 (−0.60060) −0.17103 (−0.17082) 0.036882 (0.036874) −3.5422 (−3.5418) −0.98902 (−0.98883) 0.33600 (0.33593)

V1_l8m0 −0.62946 (−0.62980) −0.094564 (−0.093227) 0.013617 (0.013603) −6.6122 (−6.6165) −0.97722 (−0.97721) 0.14607 (0.14609)

V1_l16m0 −0.69976 (−0.70201) −0.059430 (−0.053586) 3.9928e−3 (3.9887e−3) −11.640 (−11.675) −0.88891 (−0.88824) 6.6421e−2 (6.6335e−2)

V2_l1m0 −1.0160 (−1.0158) −1.0000 (−1.0000) 7.6021e−2 (7.5790e−2) −1.1656 (−1.1654) −1.0000 (−1.0000) 0.55725 (0.55700)

V2_l2m0 −0.58407 (−0.58415) −0.32130 (−0.32144) 0.14519 (0.14519) −1.8643 (−1.8666) −0.94348 (−0.94490) 0.59453 (0.59579)

V2_l2m1 0.10913 (0.10940) 1.0196 (1.0197) 3.9738e−3 (4.0324e−3) 0.32095 (0.32229) 1.2952 (1.2963) 4.9591e−2 (5.0316e−2)

V2_l3m1 −0.61582 (−0.61573) −0.23106 (−0.23097) 6.1337e−2 (6.1328e−2) −2.6524 (−2.6524) −0.95402 (−0.95406) 0.35805 (0.35810)

V2_l4m0 −0.60058 (−0.60060) −0.17103 (−0.17082) 3.6882e−2 (3.6874e−2) −3.4335 (−3.4333) −0.95898 (−0.95886) 0.25148 (0.25157)

V2_l8m0 −0.62946 (−0.62980) −0.094564 (−0.093228) 1.3617e−2 (1.3603e−2) −6.4253 (−6.4305) −0.94966 (−0.94973) 8.7371e−2 (9.7414e−2)

V2_l16m0 −0.69976 (−0.70201) −0.059430 (−0.053586) 3.9928e−3 (3.9887e−3) −10.953 (−11.001) −0.83686 (−0.83699) 2.2064e−2 (2.1998e−2)

 aCase number follows the following notation: V1 for constant mantle viscosity of 10 21 Pas, and V2 for including 100 km thick lithosphere of 10 26 Pas; l3m1 stands 
for loading harmonic at l = 3 and m = 1.  bLoad Love numbers are given at times 0 and 40 Maxwell time. Each entry has semi-analytical and CitcomSVE solutions in 
and out of the parentheses, respectively. For CitcomSVE solutions, only results from resolution R6 (i.e., 12 × 64 × 128 × 128) are given here, and for results of other 
resolutions, see Table S1. Also see Figures 2–4.

Table 2 
Comparison of Load Love Numbers hl, kl, and ll Between CitcomSVE and Semi-Analytical Solutions
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Each case is computed for 40 Maxwell times (i.e., 40α or non-dimensional time of 40), using non-dimensional 
time increment of 0.2. Time-dependent Love numbers hl(t), kl(t), and 𝐴𝐴 𝐴𝐴2

𝐴𝐴
(𝑡𝑡) are computed, using Equations 37, 

38 and  41, respectively. Figures  2–4 show hl(t), kl(t), and 𝐴𝐴 𝐴𝐴2
𝐴𝐴
(𝑡𝑡) , respectively, for cases with different loading 

harmonics and different numerical resolutions, together with semi-analytical solutions (A et al., 2013; Han & 
Wahr, 1995). Table 2 shows both numerical and analytical results of these Love numbers at t = 0 and 40 for a 
selected set of cases (Table S1 for all the cases). Note that solutions at t = 0 represent the elastic responses of the 
mantle, and the responses generally increase with time due to viscous relaxation (Figures 2–4).

The numerical solutions generally agree well with semi-analytical solutions for nearly all the cases. For 
long-wavelength loading (e.g., 𝐴𝐴 l1m0 , 𝐴𝐴 l2m0 , 𝐴𝐴 l3m1 , and 𝐴𝐴 l4m0 ), numerical solutions with three different resolutions 
R1, R3, and R6 nearly overlap with semi-analytical solutions (Figures 2–4). Note that l1m0 loading requires calcu-
lations of degree-1 motion in the center of mass reference frame (see Section 2.4.1). However, for relatively short 
wavelengths (e.g., l8m0 and l16m0), numerical results for resolution R1 show clear deviation from semi-analytical 

Figure 2. Radial displacement load Love numbers hl as a function of time from semi-analytical solutions and CitcomSVE 
solutions with resolutions R1, R3, and R6 for loading harmonics (l, m) = (1, 0), (2, 0), and (3, 1) (a), (2, 1) (b), and (8, 0) 
and (16, 0) (c) for viscosity model V1 (i.e., constant mantle viscosity). Panels (d–f) are the same as (a–c) but for viscosity 
model V2 (i.e., with a 100 km thick lithosphere). R1, R3, and R6 are for grids 12 × (32 × 32 × 32), 12 × (64 × 64 × 64), and 
12 × (64 × 128 × 128), respectively. Note that the semi-analytical solutions and numerical solutions from R1, R3, and R6 for 
calculations with (1,0), (2,0), and (3,1) are nearly identical in (a, d).
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solutions, but the agreement improves significantly as numerical resolution increases (Figures 2–4). In particular, 
for l2m1 cases with polar wander, calculations with resolutions R1 and R3 have significant numerical errors, but 
calculation with R6 resolution still delivers remarkable fit to the semi-analytical solution, suggesting that polar 
wander is more challenging to compute in numerical models (e.g., Paulson et al., 2005; A et al., 2013). In all these 
calculations, while the high viscosity lithosphere in V2 cases reduces the response relative to the uniform viscos-
ity V1 cases, it does not appear to deteriorate the accuracy of numerical solutions. Note that the load Love number 
for horizontal displacement is presented as 𝐴𝐴 |𝑙𝑙𝑙𝑙(𝑡𝑡)| , because CitcomSVE only determines 𝐴𝐴 𝐴𝐴2

𝐴𝐴
(𝑡𝑡) (see Equation 41).

We have formally determined numerical errors by computing amplitude and dispersion errors (e.g., A et al., 2013; 
Zhong et al., 2003). Amplitude error εa and dispersion error εd are computed using the following equations:

𝜀𝜀𝑎𝑎 =
∫

𝑇𝑇

0
|𝑆𝑆𝑛𝑛 (𝑙𝑙0, 𝑚𝑚0, 𝑡𝑡) − 𝑆𝑆𝑠𝑠𝑎𝑎 (𝑙𝑙0, 𝑚𝑚0, 𝑡𝑡) |d𝑡𝑡

∫
𝑇𝑇

0
|𝑆𝑆𝑠𝑠𝑎𝑎 (𝑙𝑙0, 𝑚𝑚0, 𝑡𝑡) |d𝑡𝑡

, (42)

𝜀𝜀𝑑𝑑 =

∫
𝑇𝑇

0
max

[

|𝑆𝑆𝑛𝑛(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)|

]

d𝑙𝑙

∫
𝑇𝑇

0
|𝑆𝑆𝑠𝑠𝑠𝑠 (𝑙𝑙0𝑙 𝑙𝑙0𝑙 𝑙𝑙) |d𝑙𝑙

𝑙 (43)

Figure 3. The same as Figure 2 except for gravitational load Love numbers kl.
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where l0 and m0 represent the loading harmonic degree and order, Sn and Ssa are solutions of load Love numbers 
from CitcomSVE and semi-analytical methods, respectively, T is the total model time (i.e., 40), and in Equa-
tion 43 for the dispersion error, max represents finding the maximum value for all the non-loading harmonic 
degree l and order m. For the spherically symmetric mantle structure that is considered here, the response should 
only occur at the loading harmonic. Therefore, amplitude error εa measures the accuracy at the loading harmonic, 
where dispersion error εd measures the accuracy at other harmonics. Note that the errors as defined in Equa-
tions 42 and 43 are similar to norm-1 errors.

The errors are computed for each case with different resolutions and are listed in Table S1. The amplitude errors 
of three load Love numbers are presented in Figure 5 as a function of numerical resolution (i.e., the horizontal 
grid size ranging from ∼200 to ∼50 km at the surface for resolutions R1–R6) for all calculations with different 
loading harmonics and viscosity structures V1 and V2. For most of the cases at different loading harmonics, the 
amplitude errors decrease with decreasing horizontal grid size with a slope of ∼2 in the log-log plot of Figure 5, 
suggesting that the errors scale with the square of grid size, indicating a second order of accuracy as expected for 
trilinear elements in CitcomS (e.g., Zhong et al., 2008). However, as exceptions, l2m0 calculations do not show 
any significant dependence on grid size, and similar behaviors can also be seen for hl(t) for l1m0 calculations and 
for other long-wavelength loading cases with small grid size (Figure 5). We think that this behavior for errors 

Figure 4. The same as Figure 2 except for horizontal load Love numbers 𝐴𝐴 |𝑙𝑙𝑙𝑙| .
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arises because the error-limiting factor at these long wavelengths is not grid size but convergence tolerance of the 
iterative solution of the equations of the motion, which is set to 10 −3 for all the calculations here. These calcula-
tions show that <1% of amplitude errors are readily achieved with modest resolution of ∼60 km grid size except 
for horizontal displacement Love number ll(t) for l2m1 (i.e., polar wonder) (Figures 5c and 5f). It should be noted 
that the dispersion errors are generally significantly smaller than amplitude errors (Table S1).

For case V1_l2m0_R1, we performed two additional calculations with different non-dimensional time increment 
Δt of 0.1 and 0.4, and we found that the errors are insensitive to Δt ranging from 0.1 to 0.4 (Table S1). We think 
that the error insensitivity to Δt for case V1_l2m0_R1 arises because the error-limiting factor for this case may 
be the convergence tolerance level and not time resolution Δt, similar to how the errors for long-wavelength load-
ing are insensitive to spatial resolution (Figure 5). We also performed calculations that demonstrate that the net 
rotation removal (see Section 2.4.2) is essential for producing accurate horizontal displacement, although it has 
no effect on radial displacement and gravitational potential calculations.

Figure 5. Relative errors of load Love numbers hl (a), kl (b), and 𝐴𝐴 |𝑙𝑙𝑙𝑙| (c) as a function of numerical resolutions (i.e., for R1–R6 
or horizontal grid resolution of approximately 200–50 km) for 7 different loading harmonics for viscosity model V1. Panels 
(d–f) are the same as (a–c) but for viscosity model V2. Note that resolutions R4 and R5 have the same horizontal resolution 
but different radial resolution.
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3.2. Tidal Loading at Degree Two

3.2.1. Definition of the Tidal Loading Problem

In the second example problem, a degree-2 potential Va (e.g., a tidal potential, see Equation 2) is applied to the 
mantle (see Equation 4) as a step-function in time, in a dimensionless form:

𝑉𝑉𝑎𝑎(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) = 𝑉𝑉0𝑡𝑡
2
𝑝𝑝20(𝑡𝑡)𝐻𝐻(𝑡𝑡)𝑡 (44)

where Vo = 10 −6 is the dimensionless amplitude of the applied potential (see Section 2.4.6 for the normaliza-
tion), p20(θ) is the modified Legendre polynomial as defined in Equation 29, and H(t) is the Heaviside function. 
For simplicity, only the degree-2 and order-0 tidal potential is considered, because of its dominance over other 
higher order tidal potentials (e.g., Wahr et al., 2009). Although the potential is applied at all the radius r, for 
incompressible medium as in our example here, the potential only needs to be applied at the surface and CMB 
where there is a density change. It should be noted that CitcomSVE has been used to compute tidal response for 
the Moon with 3-D mantle structure (Zhong et al., 2012), and in particular, the tidal response solutions for 3-D 
mantle structure from CitcomSVE are in excellent agreement with those from a perturbation solution method 
(Qin et al., 2014, 2016).

The benchmark results are presented in terms of tidal Love numbers 𝐴𝐴 𝐴′

2
(𝑡𝑡) , 𝐴𝐴 𝐴𝐴′

2
(𝑡𝑡) , and 𝐴𝐴 𝐴𝐴′

2
(𝑡𝑡) at degree 2 for radial 

displacement, gravitational potential, and horizontal displacement, respectively. The tidal Love numbers are 
defined similarly to those for load Love numbers in Equations 37, 38 and 41 except for (2l + 1) factor.

ℎ
′

2
(𝑡𝑡) =

𝑔𝑔

4𝜋𝜋𝜋𝜋𝜋𝜋0𝑟𝑟𝑠𝑠

𝑢𝑢′
𝑟𝑟20
(𝑡𝑡)

𝑉𝑉0

 (45)

𝑘𝑘
′

2
(𝑡𝑡) =

𝜙𝜙′

20
(𝑡𝑡)

𝑉𝑉0

− 1, (46)

𝑙𝑙
′2

2
(𝑡𝑡) =

[

𝑔𝑔

4𝜋𝜋𝜋𝜋𝜋𝜋0𝑟𝑟𝑠𝑠𝑉𝑉0

]2
1

6 ∮

{

[

𝑢𝑢
′

𝜃𝜃
(𝑡𝑡𝑡 𝜃𝜃𝑡 𝑡𝑡)

]2
+
[

𝑢𝑢
′
𝑡𝑡(𝑡𝑡𝑡 𝜃𝜃𝑡 𝑡𝑡)

]2
}

sin 𝜃𝜃d𝜃𝜃d𝑡𝑡𝑡 (47)

where all the variables were defined following Equations 37, 38 and 41. For example, 𝐴𝐴 𝐴𝐴′
𝑟𝑟20
(𝑡𝑡) and 𝐴𝐴 𝐴𝐴′

20
(𝑡𝑡) are the 

expansion coefficients of dimensionless surface radial displacement and gravitational potential for harmonics 
(2, 0), respectively. 𝐴𝐴 𝐴𝐴′

20
(𝑡𝑡) includes contributions from both the applied potential and radial displacements of the 

mantle (i.e., at the surface and CMB for incompressible mantle). Note that all these dimensionless quantities are 
directly output from CitcomSVE. Model parameters used for these tidal Love number calculations are the same 
as those for the first example problem of surface loading (Table 1).

3.2.2. Benchmark Results

We have computed a total of 8 different model cases using CitcomSVE for 4 different sets of numerical resolutions 
(i.e., R2, R3, R5, and R6; see Section 3.1.3) and two different viscosity structures V1 and V2 (Table 3). For each 
case, CitcomSVE is used to compute the time-dependent solutions of the 3-D displacement field of the mantle 
and the gravitational potential at the surface for 400 Maxwell times using dimensionless time increment Δt of 
0.5. Time-dependent Love numbers 𝐴𝐴 𝐴′

2
(𝑡𝑡) , 𝐴𝐴 𝐴𝐴′

2
(𝑡𝑡) , and 𝐴𝐴 𝐴𝐴′2

2
(𝑡𝑡) are then computed, using Equations 45–47, respectively. 

Figures 6a–6c show 𝐴𝐴 𝐴′

2
(𝑡𝑡) , 𝐴𝐴 𝐴𝐴′

2
(𝑡𝑡) , and 𝐴𝐴 |𝑙𝑙′

2
(𝑡𝑡)| , respectively, for V1 cases (i.e., homogeneous mantle viscosity) with 

different numerical resolutions R3 and R6, together with semi-analytical solutions (Qin et al., 2014). Table 3 
shows both numerical and semi-analytical results of these Love numbers at t = 0 and 400. Degree-2 tidal Love 
numbers from CitcomSVE are nearly identical (i.e., overlapping) to the semi-analytical solutions (Figures 6a–6c), 
similar to that in the (2,0) load Love number calculations. Elastic tidal responses or Love numbers (i.e., at t = 0) 
are generally small, but the responses increase with time to steady state values after ∼50 Maxwell times. Model 
results for V2 cases (i.e., with 100 km thick high viscosity lithosphere) are similar to those for V1 cases, but the 
amplitudes of the response are reduced slightly (see Table 3).

Since either elastic tidal response (i.e., at t = 0) or its fluid limit (i.e., fluid Love numbers), is mostly interested 
in tidal response modeling, we only calculate relative numerical errors for elastic tidal Love numbers (i.e., at 
t = 0) and for fluid Love numbers (i.e., at t = 400) for both V1 and V2 cases. Relative errors for all three degree-2 
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elastic and fluid tidal Love numbers are generally smaller than 3 × 10 −3, even for relatively coarse resolution R2 
(∼140 km horizontal grid size) (Table 3), and the errors decrease with increasing resolution with a slope of ∼2 
in the log-log plots of errors versus grid size (Figures 6d–6f), indicating that CitcomSVE performs well for tidal 
response calculations. Note that the elastic Love numbers for viscosity structure V1 are the same as those for 
viscosity structure V2, because elastic Love numbers do not depend on viscosity structure.

3.3. Glacial Isostatic Adjustment Using ICE-6G and VM5a

3.3.1. Definition of the GIA Problem

The third example problem uses the deglaciation history model ICE-6G for the last 26 ky (i.e., thousand years) 
as the surface loads, together with viscosity model VM5a (Peltier et  al.,  2015), and considers the effects of 
polar wander, apparent center of mass motion and sea-level equation (see Section 2.4). The current version of 
CitcomSVE was used for this benchmark problem in Kang et al.  (2022), and here we will present additional 
calculations with different temporal and spatial resolutions, and also compute radial displacement rate and hori-
zontal displacements and rates. The model parameters except for VM5a viscosity are the same as in previous two 
example problems (Table 1).

A glaciation period of 96 ky is added before the ICE-6G deglaciation history, so that the GIA model calculation 
is for a total of 122 ky time duration. The glaciation history has two stages. In the first stage from 122 kybp (kybp 
stands for thousand years before the present) to 104 kybp, the ice increases linearly with time from zero every-
where to that of the present-day ice distribution. In the second stage from 104 kybp to 26 kybp, the ice continues 
to grow linearly with time to the last glacial maximum (i.e., LGM) with the ice that grows primarily in North 
America and Fennoscandia. Mantle viscosity model VM5a has five viscosity layers from the surface to CMB: 
a 60 km thick elastic lithosphere with very high viscosity (10 26 Pas), and 10 22, 4.853 × 10 20, 1.5048 × 10 21, and 
3.095 × 10 21 Pas for depth ranges of 60–100 km, 100–670 km, 670–1,170 km, and 1,170 km-CMB, respectively 
(Table 1) (Peltier et al., 2015).

Five GIA cases (i.e., GIA_R1, GIA_R2, GIA_R3, GIA_R2_LT and GIA_R2_HT, see Table 4) are computed 
using CitcomSVE with three different spatial (i.e., 12 × 48 × 48 × 48, 12 × 48 × 80 × 80, and 12 × 64 × 128 × 128 
for cases GIA_R1, GIA_R2, and GIA_R3, respectively) and three different temporal resolutions (i.e., Δt of 50, 
100, and 250 years for GIA_R2_HT, GIA_R2, and GIA_R2_LT, respectively). Note that HT and LT stand for 
high and low resolution in time, respectively. Also note that the 12 × 48 × 80 × 80 grid (i.e., GIA_R2) as in 
Kang et al. (2022) leads to horizontal resolution of ∼81 km at the surface and ∼45 km at the CMB, and radial 

Case a 𝐴𝐴 𝐴′

2
(0)  b 𝐴𝐴 𝐴𝐴′

2
 (0) |𝐴𝐴 𝐴𝐴′

2
 (0)| 𝐴𝐴 𝐴′

2
 (400) 𝐴𝐴 𝐴𝐴′

2
 (400) |𝐴𝐴 𝐴𝐴′

2
 (400)|

V1_SA 0.72664 0.40541 0.15634 2.1078 1.1078 0.73864

V1_R6 0.72652 (1.6e−4, 3.5e−5) 0.40526 (3.8e−4, 7.2e−5) 0.15633 (5.4e−5, –) 2.1075 (1.3e−4, 1.2e−4) 1.1075 (2.4e−4, 1.2e−4) 0.73853 (1.4e−4, –)

V1_R5 0.72651 (1.7e−4, 6.1e−5) 0.40519 (5.5e−4, 1.3e−4) 0.15632 (5.1e−4, –) 2.1073 (2.3e−4, 2.1e−4) 1.1073 (4.3e−4, 2.1e−4) 0.73844 (2.7e−4, –)

V1_R3 0.72623 (5.6e−4, 1.4e−4) 0.40484 (1.4e−3, 2.9e−4) 0.15626 (5.1e−4, –) 2.1067 (5.1e−4, 4.7e−4) 1.1067 (9.8e−4, 4.7e−4) 0.73821 (5.8e−4, –)

V1_R2 0.72590 (1.0e−3, 2.4e−4) 0.40439 (2.5e−3, 5.1e−4) 0.15621 (8.3e−4, –) 2.1059 (9.1e−4, 8.4e−4) 1.1059 (1.7e−3, 8.4e−4) 0.73789 (1.0e−3, –)

V2_SA 0.72664 0.40541 0.15634 2.0359 1.0708 0.54673

V2_R6 0.72652 (1.6e−4, 3.5e−5) 0.40526 (3.8e−4, 7.2e−5) 0.15633 (5.4e−5, –) 2.0359 (1.8e−5, 1.2e−4) 1.0707 (1.0e−4, 1.2e−4) 0.54677 (7.0e−5, –)

V2_R5 0.72651 (1.7e−4, 6.1e−5) 0.40519 (5.5e−4, 1.3e−4) 0.15632 (5.1e−4, –) 2.0357 (8.1e−5, 2.1e−4) 1.0705 (2.9e−4, 2.1e−4) 0.54671 (3.3e−5, –)

V2_R3 0.72623 (5.6e−4, 1.4e−4) 0.40484 (1.4e−3, 2.9e−4) 0.15626 (5.1e−4, –) 2.0351 (3.6e−4, 4.6e−4) 1.0699 (8.4e−4, 4.6e−4) 0.54658 (2.8e−4, –)

V2_R2 0.72590 (1.0e−3, 2.4e−4) 0.40439 (2.5e−3, 5.1e−4) 0.15621 (8.3e−4, –) 2.0343 (7.6e−4, 8.2e−4) 1.0691 (1.6e−3, 8.2e−4) 0.54642 (5.6e−4, –)

 aCase number follows the following notation: V1 for constant mantle viscosity of 10 21 Pas, and V2 for including 100 km thick lithosphere of 10 26 Pas; SA stands for 
semi-analytical solutions; R2, R3, R5 and R6 are for grids 12 × 48 × 48 × 48, 12 × 64 × 64 × 64, 12 × 64 × 96 × 96, and 12 × 64 × 128 × 128, respectively.  bTidal Love 
numbers are given at time 0 for the elastic Love number and at time 400 Maxwell time for the fluid Love number. For each numerical calculation, the number outside 
of the parentheses is the Love number, while the two numbers inside the parentheses are for amplitude and dispersion errors, respectively. Note that the elastic solutions 
(i.e., at t = 0) are independent of viscosity structure, so V1 and V2 calculations produce the same elastic solutions for a given resolution. Also, dispersion errors cannot 
be computed for l Love numbers. Also see Figure 6.

Table 3 
Comparison of Degree-2 Tidal Love Numbers 𝐴𝐴 𝐴′

2
 , 𝐴𝐴 𝐴𝐴′

2
 and 𝐴𝐴 𝐴𝐴′

2
 Between CitcomSVE and Semi-Analytical Solutions
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resolution of ∼60 km, but grid refinement is employed such that the radial resolution is 20 km for the 100 km 
thick lithosphere and is ∼40 km for the upper mantle. Case GIA_R3 has ∼51 km (or ∼0.5°) and ∼28 km horizon-
tal resolution at the surface and CMB, respectively.

As discussed in Section  2.3, the gravitational potential is computed in the spherical harmonic domain in 
CitcomSVE calculations and is then projected back to the grid in solving for displacement field. This process 
can be computationally expensive. In our calculations here, the gravitational potential is only computed for up to 
degrees and orders 32 for all three spatial resolutions. On the other hand, semi-analytical solutions are obtained 
using spherical harmonic degrees and orders up to 100.

3.3.2. Benchmark Results

We compute the 3-component surface cumulative displacement and displacement rate at three different times (i.e., 
the present-day, 15, and 26 kybp) from CitcomSVE and the semi-analytical method and determine the difference 

Figure 6. (2,0) tidal Love numbers 𝐴𝐴 𝐴′

𝑙𝑙
 (a), 𝐴𝐴 𝐴𝐴′

𝑙𝑙
 (b) and 𝐴𝐴 |𝑙𝑙′

𝑙𝑙
| (c) as a function of time from semi-analytical solutions and 

CitcomSVE solutions with resolutions R3 and R6 for viscosity model V1 (i.e., constant mantle viscosity). Relative errors of 
tidal Love numbers 𝐴𝐴 𝐴′

𝑙𝑙
 (d), 𝐴𝐴 𝐴𝐴′

𝑙𝑙
 (e), and 𝐴𝐴 |𝑙𝑙′

𝑙𝑙
| (f) as a function of numerical resolutions (i.e., for R2, R3, R5, and R6) at t = 0 (i.e., 

elastic tidal Love numbers) and t = 400 (i.e., fluid tidal Love numbers) for viscosity models V1 and V2. Note that the elastic 
Love numbers are the same for models V1 and V2 and that the semi-analytical solutions and numerical solutions from R3 and 
R6 for the Love numbers are overlapped in (a–c).
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between these two solution methods. Figures 7 and 8 show the present-day’s 
north-south, east-west, and radial components of the cumulative displace-
ment and displacement rate, respectively, from CitcomSVE for Case GIA_
R2. Since the model is assumed to have zero topography and zero ice at 122 
kybp (i.e., at the beginning of the model), the cumulative radial displacement 
(Figure 7c) at the present-day is predominated by large negative (i.e., depres-
sion) values in Greenland and East Antarctica, as expected. However, in 
reality, Greenland and Antarctica may have maintained significant ice sheets 
for a long geological time, and the ice-induced depression in Greenland and 
Antarctica may have occurred long before the last glacial cycle. About 100 m 
depression is also seen at the center of the former North American ice sheet, 
suggesting that the region still has significant surface topography to be recov-
ered. Cumulative displacements in horizontal directions mainly occur in the 
polar regions but with much smaller amplitude than the radial displacement 
(Figures 7a and 7b). Large positive radial displacement rates (i.e., uplift) at 
the present-day occur in North America, Fennoscandia and West Antarctica 
(Figure 8c), suggesting active uplift following more recent deglaciation in 
these regions. The horizontal displacement rates are much smaller than the 
radial, and they are most significant in North America (Figures 8a and 8b). 
The directions of the horizontal displacements are consistent with the uplift 
motion at the center of North American ice sheet.

The differences (i.e., errors) in cumulative displacements and displacement 
rates between CitcomSVE and semi-analytical solutions are much smaller 
than the solutions themselves and the errors occur mostly where the responses 
are large (Figures 7d–7f, and 8d–8f). The relative RMS difference or error 
in the spatial domain between CitcomSVE and semi-analytical solutions is 
defined as:

𝜀𝜀(𝑡𝑡) =

√

∑

[𝑓𝑓𝐹𝐹𝐹𝐹(𝜃𝜃𝜃 𝜃𝜃𝜃 𝑡𝑡) − 𝑓𝑓𝑆𝑆 (𝜃𝜃𝜃 𝜃𝜃𝜃 𝑡𝑡)]
2

∑

[𝑓𝑓𝑆𝑆 (𝜃𝜃𝜃 𝜃𝜃𝜃 𝑡𝑡)]
2

𝜃 (48)

where 𝐴𝐴 𝐴𝐴𝐹𝐹𝐹𝐹(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃) and 𝐴𝐴 𝐴𝐴𝑆𝑆 (𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃) denote the field of interest at a given time 
t from CitcomSVE and semi-analytical solutions, respectively, and the 

summation is for all the finite element grid points. Note that the analytical solutions are computed at each of 
the finite element grid points. Since the horizontal size of each CitcomSVE element is similar from the polar to 
equatorial regions, each node carries similar weight, justifying a simple summation for all the nodes for comput-
ing the errors. Errors for radial component and horizontal components are computed for three different times: 
the present-day, 15 and 26 kybp. For computing the horizontal error, we square the difference for each horizontal 
component before adding them for each node.

Table 4 lists the errors for cumulative displacements and displacement rates at these three times for radial and 
horizontal components for the five GIA cases, together with total CPU time for each case that was computed 
using 96 cores on NCAR supercomputer Cheyenne. For the present-day surface cumulative displacements and 
displacement rates of Case GIA_R2 shown in Figures 7 and 8, the displacement errors are ∼2% for both horizon-
tal and radial components, while the corresponding errors for the rates are ∼6% (Table 4). As will be clarified 
later, the errors are largely from relatively short wavelengths with spherical harmonic degrees larger than 15. For 
this case, the errors for 15 and 26 kybp are comparable with those at the present-day. The errors are smaller for 
cases with higher spatial resolution (e.g., GIA_R1 and GIA_R3 in Table 4), as expected. In general, the errors 
for the cumulative displacements and rates are slightly larger for the present-day than for 15 and 26 kybp. For 
spatial resolutions comparable with GIA_R2 or higher, the errors for cumulative displacements are at ∼2% or 
less for both radial and horizontal components, but the errors for the rates are at ∼5% or less. However, the 
errors can exceed 10% for a lower spatial resolution (e.g., GIA_R1) for the horizontal components and rates at 
the present-day (Table 4). The errors for both cumulative displacements and rates appear to be insensitive to 
time resolutions, which is surprising. In fact, under most circumstances, Case GIA_R2_HT with Δt = 50 years 

GIA_R1 GIA_R2 GIA_R3
GIA_R2_

HT
GIA_

R2_LT

𝐴𝐴 Δ𝑡𝑡 (years) 100 100 100 50 250

Grid resolution a R1 R2 R3 R2 R2

Time steps 1,220 1,220 1,220 2,440 488

CPU time (hour) b 0.345 1.23 4.58 2.13 0.643

𝐴𝐴 𝐴𝐴𝑑𝑑_𝑟𝑟 (0) (%) c 4.13 2.05 1.24 2.05 2.05

𝐴𝐴 𝐴𝐴𝑑𝑑_ℎ (0) (%) 10.8 1.49 0.70 5.82 0.88

𝐴𝐴 𝐴𝐴𝑟𝑟_𝑟𝑟 (0) (%) 11.1 5.88 4.06 5.84 6.36

𝐴𝐴 𝐴𝐴𝑟𝑟_ℎ (0) (%) 27.9 6.65 5.73 17.6 6.60

𝐴𝐴 𝐴𝐴𝑑𝑑_𝑟𝑟 (15 kybp) (%) 3.94 2.00 1.26 2.00 2.01

𝐴𝐴 𝐴𝐴𝑑𝑑_ℎ (15 kybp) (%) 7.40 1.30 0.70 3.89 1.01

𝐴𝐴 𝐴𝐴𝑟𝑟_𝑟𝑟 (15 kybp) (%) 6.95 4.69 4.09 4.03 7.59

𝐴𝐴 𝐴𝐴𝑟𝑟_ℎ (15 kybp) (%) 2.32 1.79 1.46 1.57 3.16

𝐴𝐴 𝐴𝐴𝑑𝑑_𝑟𝑟 (26 kybp) (%) 3.80 1.93 1.23 1.93 1.93

𝐴𝐴 𝐴𝐴𝑑𝑑_ℎ (26 kybp) (%) 5.02 1.00 0.58 2.61 0.84

𝐴𝐴 𝐴𝐴𝑟𝑟_𝑟𝑟 (26 kybp) (%) 4.31 2.21 1.37 2.20 2.20

𝐴𝐴 𝐴𝐴𝑟𝑟_ℎ (26 kybp) (%) 5.39 1.20 0.90 3.15 1.03

 aGrid resolution R1, R2, and R3 correspond to grids 12 × 48 × 48 × 48, 
12 × 48 × 80 × 80, and 12 × 64 × 128 × 128, respectively.  bAll the cases 
are computed using 96 cores on NCAR supercomputer Cheyenne. CPU time 
reported here includes all the calculation time for each case.  cErrors 𝐴𝐴 𝐴𝐴𝑑𝑑_𝑟𝑟 and 

𝐴𝐴 𝐴𝐴𝑑𝑑_ℎ are the RMS percentage errors for surface cumulative displacement 
in radial and horizontal directions, respectively. Errors 𝐴𝐴 𝐴𝐴𝑟𝑟_𝑟𝑟 and 𝐴𝐴 𝐴𝐴𝑟𝑟_ℎ are the 
RMS percentage errors for surface displacement rate in radial and horizontal 
directions, respectively. The errors are given at present-day (time 0), 15 kybp, 
and 26 kybp.

Table 4 
Relative RMS Errors for GIA Surface 3-Component Displacement and Rate
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produces larger errors, especially for horizontal motions, than Cases GIA_R2_LT with Δt  =  250  years and 
GIA_R2 with Δt = 100 years (Table 4). It appears that Δt from 100 to 250 years is most efficient in computational 
accuracy and speed.

We also compute and compare cumulative surface radial displacements of different spherical harmonic degrees 
from CitcomSVE and the semi-analytical solutions, following our previous work (A et al., 2013; Kang et al., 2022; 
Paulson et  al.,  2005). The surface displacement field from CitcomSVE is expanded into a set of spherical 
harmonic coefficients (see Equations 29 and 30 for the spherical harmonic expansion used in CitcomSVE). The 
degree amplitude for each l is calculated by

𝑎𝑎𝑙𝑙(𝑡𝑡) =

√

√

√

√
1

𝑙𝑙 + 1

𝑙𝑙
∑

𝑚𝑚=0

[

𝐶𝐶𝑙𝑙𝑚𝑚(𝑡𝑡)
2
+ 𝑆𝑆𝑙𝑙𝑚𝑚(𝑡𝑡)

2
]

, (49)

where Clm and Slm denote the cosine and sine coefficients for the radial displacements at time t. Figures 9a and 9b 
show the time variations in degree amplitude of surface radial displacement at selected spherical harmonics 
degrees (l = 1, 2, 5, 9, 16 and 23) for the five CitcomSVE cases and also the semi-analytical solutions. For rela-
tively long wavelengths (l = 1, 2, 5, and 9), the five CitcomSVE cases are nearly identical to each other and to 
the semi-analytical solution (Figure 9a), but for shorter wavelengths (l = 16 and 23), the results from CitcomSVE 
cases differ noticeably from each other and from the semi-analytical solutions, especially for relatively low spatial 

Figure 7. Cumulative surface displacements at the present-day for Case GIA-R2 in north-south (a), east-west (b), and radial 
(c) directions, and the corresponding difference between Case GIA_R2 and semi-analytical solutions in north-south (d), 
east-west (e), and radial (f) directions. Note that the south, east and up directions are positive.
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resolution cases (Figure 9b). CitcomSVE results for harmonic at l = 2 and m = 1 that corresponds to the polar 
wander also show relatively large differences from each other (Figure 9c), compared with other long-wavelength 
radial displacements (Figure 9a), although the amplitudes for the polar wander mode are also much smaller. 
Similar to what we observe for errors in the spatial domain (Table 4), a case with a higher spatial resolution (e.g., 
Case GIA_R3) is in a better agreement with the semi-analytical solution with a smaller error, but the solutions 
are insensitive to time resolution Δt (Figures 9b and 9c). To quantify the differences or errors between solutions 
from those two methods, the time-integrated relative error of degree amplitude for a given degree l is defined by 
averaged root mean square (RMS) values over the calculation period,

𝜀𝜀𝑙𝑙 =

√

√

√

√

√

∫
𝑇𝑇

0

[

𝑎𝑎𝑙𝑙𝐹𝐹𝐹𝐹
(𝑡𝑡) − 𝑎𝑎𝑙𝑙𝑆𝑆 (𝑡𝑡)

]2
d𝑡𝑡

∫
𝑇𝑇

0
𝑎𝑎𝑙𝑙𝑆𝑆 (𝑡𝑡)

2
d𝑡𝑡

, (50)

where 𝐴𝐴 𝐴𝐴𝑙𝑙𝐹𝐹𝐹𝐹
 and 𝐴𝐴 𝐴𝐴𝑙𝑙𝑆𝑆 represent the degree amplitude at time t from the CitcomSVE and semi-analytic method, 

respectively, and T is the entire calculation period.

The time-integrated errors confirm that a higher spatial resolution leads to smaller errors but the errors are 
insensitive to temporal resolution (i.e., for Δt from 50 to 250 years) (Table 5). Specifically, for Case GIA_R3 
with the highest spatial resolution, the error is <0.2% for l < 10, ∼0.7% for l = 16, and ∼2% for l = 23. For Case 
GIA_R1 with the lowest spatial resolution, the error is <1% for l < 10, but can reach to 4% for l = 16% and 8% for 

Figure 8. Surface displacement rates at the present-day for Case GIA-R2 in north-south (a), east-west (b), and radial 
(c) directions, and the corresponding difference between Case GIA_R2 and semi-analytical solutions in north-south (d), 
east-west (e), and radial (f) directions. Note that the south, east and up directions are positive.
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l = 23 (Table 5). The errors for the polar wander mode with l = 2 and m = 1 
are larger; the errors are ∼0.6% and ∼5% for Cases GIA_R3 and GIA_R1, 
respectively.

Figure 10 show relative sea-level (RSL) changes for the last 20,000 years 
at four sites (two in North America and two in Fennoscandia, see Peltier 
et al. (2015) for locations of these four sites) from the five CitcomSVE cases 
and the semi-analytical solutions, together with the observations. While all 
the CitcomSVE cases reproduce the RSL from the semi-analytical solutions 
reasonably well, it is evident that higher spatial resolution models (e.g., 
GIA_R3) are in a better agreement with the semi-analytical solutions and 
that temporal resolution does not affect the results in any significant way. 
This is again consistent with what have been observed for errors in spatial 
and spherical harmonic domains (Tables 4 and 5).

3.4. Efficiency of Parallel Computation of CitcomSVE

Zhong et al. (2008) reported that CitcomS achieves 71% and 57% efficiency 
in parallel computation for using 1,536 cores and 3,072 cores, respectively, 
for a convection problem with a fixed grid size per core (i.e., 32 3 elements 
per core) on Parallel Supercomputer Ranger at the University of Texas’ 
Supercomputer Center. Here, we will perform a similar parallel efficiency 
benchmark on Parallel Supercomputer Cheyenne at National Center for 
Atmospheric Research (NCAR). First, we report CPU times used to compute 
those GIA example problems in last section. As discussed in Section  3.3, 
Cases GIA_R1, GIA_R2, and GIA_R3 employ grids 12 × (48 × 48 × 48), 
12 × (48 × 80 × 80), and 12 × (64 × 128 × 128), respectively, correspond-
ing to surface horizontal grid resolution of 136, 81, and 51 km, respectively. 
These three cases are computed for 1,220 time-steps with time increment 
Δt of 100 years per time-step to cover 122 ky glaciation/deglaciation cycle 
at a convergence tolerance of 3  ×  10 −3 for iteration solution of the equa-
tion of motion. These three cases, all using 96 cores for parallel computing, 
are computed for 0.345, 1.23, and 4.58 hr, respectively, to their completion 
(Table 4). These CPU times are approximately proportional to the number 
of elements for these three cases, suggesting efficient parallel computing in 
CitcomSVE. Note that if Δt = 250 years is used (producing similarly accurate 
solutions) we expect that the CPU times will be halved.

To determine parallel efficiency, we compute the same GIA problem as in last 
section using a different number of CPU cores from 12 to 6,144 (Table 6). For 
each test calculation, the number of elements per core is fixed at 32 3, similar 
to that in Zhong et al. (2008). Therefore, as the number of cores increases, 
the total number of elements also increases (Table 6). The calculation with 
6,144 cores uses a total of 200 million elements with a horizontal resolution 
of 25  km and a radial resolution of 11  km. For each test calculation, we 
only compute for the first time step (i.e., the elastic solution) and record the 
number of iterations for gravitational, pressure and velocity iterations and 
the CPU time used for this time step (Table 6). Note that the total number of 
iterations and total CPU time for each calculation are not very meaningful, 
because they depend on geometrical configuration of an element or grid and 
other factors. As in Zhong et al. (2008), we compute CPU time per velocity 
iteration for each calculation and use it to determine the parallel efficiency. 
These test calculations indicate that CitcomSVE’s parallel computing effi-
ciency is quite high, mostly above 75% even for using 6,144 cores, except for 
3,072 cores case that yields 66% efficiency.

Figure 9. Degree amplitudes of cumulative radial surface displacement 
at different spherical harmonic degree l as a function of time for the 
semi-analytical solutions (semi-ana) and five CitcomSVE models: Cases GIA_
R1, GIA_R2, GIA_R3, GIA_R2_HT, and GIA_R2_LT: for l = 1, 2, 5, and 9 
(a), l = 16 and 23 (b), and polar wander mode with l = 2 and m = 1 (c).
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4. Conclusion and Discussion
This study presents an updated finite element package CitcomSVE for mode-
ling deformational response of a planetary mantle with viscoelastic rheol-
ogy to surface and tidal loading, together with a complete description of the 
finite element formulation for load-induced dynamic deformation and of 
computations of the relevant geophysical processes and outputs including the 
sea-level change, polar wander, apparent center of mass motion, and removal 
of mantle net rotation. Compared with the earlier version, the updated 
CitcomSVE can run efficiently on a massively parallel computer with thou-
sands of CPU cores. Extensive benchmark calculations are performed using 
CitcomSVE and the solutions are compared with semi-analytical solutions 
to validate the CitcomSVE package. Three benchmark problems are solved 
with different numerical resolutions: (a) surface loading of different single 
harmonics, (b) tidal loading at degree 2, and (c) GIA model with ICE 6G and 
VM5A. Different from our previous benchmark effort (e.g., A et al., 2013; 

Kang et al., 2022; Paulson et al., 2005; Zhong et al., 2003) that have focused mostly on radial displacement and 
its associated geophysical quantities (e.g., gravity anomalies and RSL), the current benchmark study considers 
additionally calculations and comparison of horizontal displacements and displacement rates.

The benchmark calculations demonstrate that CitcomSVE is effective and accurate for solving GIA and tidal 
loading problems. For example, for a typical GIA calculation with ICE-6G ice model for 122 ky glaciation and 

(%) GIA_R1 GIA_R2 GIA_R3 GIA_R2_HT GIA_R2_LT

ε1 0.0128 0.0758 0.0974 0.0615 0.0480

ε2 0.259 0.247 0.198 0.111 0.0689

ε2_1
 a 5.49 1.91 0.64 1.44 1.46

ε5 0.257 0.107 0.103 0.155 0.123

ε9 0.893 0.394 0.187 0.764 0.723

ε16 3.88 1.31 0.692 1.56 1.53

ε23 8.44 4.07 2.14 4.27 4.25

 a𝐴𝐴 𝐴𝐴2_1 is the time-integrated error in percentage for l = 2 and m = 1.

Table 5 
Relative Errors for GIA Surface Radial Displacements at Different 
Harmonics

Figure 10. Relative sea level change for the last 20 ky at four different sites from semi-analytical solutions (semi-ana) and five CitcomSVE models: Cases GIA_R1, 
GIA_R2, GIA_R3, GIA_R2_HT, and GIA_R2_LT. The Sites are F6 (a) and F10 (b) for Fennoscandia and N5 (c) and N18 (d). The symbols represent the observed 
RSL changes. The sites and the observed RLS are from Peltier et al. (2015).
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deglaciation history, time increment of 100 years (i.e., 1,220 time steps), ∼50 km (or ∼0.5°) horizontal resolu-
tion (i.e., 12 million elements or 39 million degrees of freedom) at the surface, it takes approximately 4.5 hr on 
96 cores to complete. The global spatial errors are about 1% and 5% for present-day cumulative displacements 
and displacement rates, respectively, and the errors for horizontal and radial components are comparable. The 
errors are smaller for earlier times (e.g., at ∼15 and 26 kybp) and for long-wavelengths (e.g., <1% for spherical 
harmonic degree l < ∼20). Because gravitational potential calculations are computationally expensive at short 
wavelengths, for GIA calculations in CitcomSVE, the potential is only computed up to degrees and orders 32. 
This may have contributed to some of the errors, given that the semi-analytical solutions are computed up to 
degrees and orders 100. Wang and Li (2021) used a direct integration method to compute the potential, and future 
studies may explore the efficacy of this method in CitcomSVE for GIA modeling.

Error analyses for calculations with different spatial and temporal resolutions demonstrate that CitcomSVE 
achieves a second order accuracy with respect to spatial resolution, as expected for the trilinear elements used in 
CitcomSVE, with exception for very long-wavelengths at l = 1 and 2 for which the errors are insensitive to grid 
resolution and are likely controlled by convergence criteria. The second order accuracy for spatial resolution indi-
cates that the Uzawa algorithm and full multi-grid solvers in CitcomSVE are stable and efficient. The results show 
that shorter wavelength deformation requires more spatial resolution to be computed accurately, as expected. It 
is also found that calculations of deformation associated with the polar wander (i.e., at l = 2 and m = 1) are less 
accurate, especially for horizontal displacements. The errors for the polar wander mode, although with l = 2 it is 
a long-wavelength feature, are comparable with those at l ∼ 16. However, moderately high horizontal resolution 
(∼50 km) is sufficient to cut the errors down to ∼1%. The benchmark calculation on the polar wander is generally 
consistent with our previous work using CitcomSVE (e.g., Paulson et al., 2005; A et al., 2013).

Our calculations also demonstrate that the errors for both cumulative displacements and displacement rates are 
insensitive to temporal resolution or time increment Δt, which is surprising. More specifically, our GIA calcula-
tions with Δt = 250 years have similar errors to those with Δt = 50 and 100 years, and horizontal displacement 
errors with Δt = 50 years are even larger than those with Δt = 250 years. Zhong et al. (2003) reported for the early 
version of CitcomSVE that the errors for radial displacements and rates are smaller for smaller time increment 
Δt. The difference may be caused by how the gravitational potential is calculated between these two different 
versions of the code. In the early version, to reduce computational cost, the gravitational potential, except for the 
first few time steps, is considered as the same from the previous time step with no iteration to feedback to the 
displacement solutions (Zhong et al., 2003). However, this cost-saving approximation is removed in the current 
version such that the gravitational potential is always self-consistently calculated with the displacement via 

Nc
 a Grid per cap (12x) CPU time b (sec) Iterations c (g/p/v)

CPU time per v-iteration d 
(sec)

Efficiency 
(%)

12 (1 × 1 × 1) 32 × 32 × 32 6.45 7/32/56 0.115 100

24 (2 × 1 × 1) 64 × 32 × 32 10.4 8/36/89 0.117 98.3

48 (1 × 2 × 2) 32 × 64 × 64 6.00 7/31/44 0.136 84.6

96 (2 × 2 × 2) 64 × 64 × 64 7.90 7/34/57 0.138 83.3

192 (1 × 4 × 4) 32 × 128 × 128 8.01 7/33/57 0.141 81.6

384 (2 × 4 × 4) 64 × 128 × 128 6.67 8/33/44 0.152 75.7

768 (4 × 4 × 4) 128 × 128 × 128 7.93 8/35/54 0.147 78.2

1,536 (2 × 8 × 8) 64 × 256 × 256 8.87 8/34/61 0.145 79.3

3,072 (4 × 8 × 8) 128 × 256 × 256 20.4 9/74/118 0.173 66.5

6,144 (8 × 8 × 8) 256 × 256 × 256 13.6 12/51/94 0.145 79.3

 aNc stands for the number of cores. The numbers in the parentheses represent the domain decomposition in each of 12 
spherical caps for CitcomSVE. For example, 2 × 2 × 2 indicates that each cap is further divided into two in each of the three 
directions with the first number for the radial direction.  bCPU time in second for the zeroth time step of the calculation.  cThe 
number of iterations for gravitational (g), pressure (p) and velocity (v) iteration levels.  dCPU time divided by number of 
v-iterations, which is used to compute the efficiency.

Table 6 
CPU Time With Different Number of Cores
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iteration. Our results suggest that for GIA modeling using ICE-6G ice model in CitcomSVE, tune increment Δt 
ranging from 100 to 250 years is optimal and gives similar errors. Given that each deglaciation stage in ICE-6G 
has a time interval of 500 years, we did not test Δt > 250 years. Clearly, when Δt is sufficiently large, the errors 
would become larger for larger Δt, especially for the displacement rates. The error insensitivity to time increment 
Δt suggests that the error for these calculations is likely limited by other factors (e.g., the convergence tolerance 
level) and not Δt. This is similar to how the errors are insensitive to spatial resolution for long-wavelength loading 
as discussed earlier (e.g., Figure 5). This issue deserves further studies with different ice models and different 
viscosity structures, both of which likely affect the choice of Δt.

Our test calculations show that the parallel computation efficiency of CitcomSVE is generally >75% for using up 
to 6,144 CPU cores with a grid of 200 million elements. Although the current study only considers 3-D spheri-
cal models with an incompressible mantle, CitcomSVE package has the capability for modeling a compressible 
mantle in 3-D spherical geometry (A et al., 2013) and in 3-D regional spherical and Cartesian models (Bellas 
et al., 2020; Zhong & Watts, 2013), with similar accuracy and efficiency. With its accuracy, fast computational 
speed, parallel efficiency, and its open-source public availability, CitcomSVE provides a powerful computational 
tool for modeling viscoelastic deformation of a planetary mantle in response to surface and tidal loading includ-
ing GIA.

Data Availability Statement
The CitcomSVE package and input files including ICE-6G for this study can be accessible at https://zenodo.org/
record/6579345#.Yo3ZXmBBw6E. The updated CitcomSVE package can be downloaded from https://github.
com/shjzhong/CitcomSVE. The original ICE-6G ice history model is from https://www.atmosp.physics.utoronto.
ca/~peltier/data.php. Other model input parameters are given in Tables 1–4.
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Supplementary Table S1: Comparison of load Love numbers h, k and l between CitcomSVE and semi-analytical solutions

Casea Resolutionb h l (0)c k l (0) |l l (0)| h l (40) k l (40) |l l (40)| h a_error
d h d_error k a_error k d_error l a_error

V1_l1m0 Semi-ana -1.01582E+00 -1.00000E+00 7.57900E-02 -1.18820E+00 -1.00000E+00 8.93290E-01
R1 -1.01604E+00 -9.99635E-01 7.64858E-02 -1.18839E+00 -9.99636E-01 8.95460E-01 1.53969E-04 7.48577E-05 3.64359E-04 7.48574E-06 2.55758E-03
R2 -1.01602E+00 -9.99838E-01 7.59770E-02 -1.18842E+00 -9.99838E-01 8.92903E-01 1.76377E-04 3.22310E-05 1.62378E-04 3.60097E-06 4.26595E-04
R3 -1.01603E+00 -9.99909E-01 7.60051E-02 -1.18844E+00 -9.99909E-01 8.93250E-01 1.87579E-04 1.82707E-05 9.13143E-05 1.98226E-06 1.05294E-04
R4 -1.01603E+00 -9.99959E-01 7.60293E-02 -1.18845E+00 -9.99959E-01 8.93600E-01 1.94996E-04 8.35221E-06 4.05908E-05 8.29619E-07 3.90932E-04
R5 -1.01603E+00 -9.99959E-01 7.60185E-02 -1.18845E+00 -9.99959E-01 8.93661E-01 1.95111E-04 8.67527E-06 4.05908E-05 7.81627E-07 4.56850E-04
R6 -1.01603E+00 -9.99977E-01 7.60210E-02 -1.18845E+00 -9.99977E-01 8.93798E-01 1.97465E-04 4.95407E-06 2.28286E-05 4.27313E-07 6.07324E-04

V1_l2m0 Semi-ana -5.84152E-01 -3.21444E-01 1.45187E-01 -1.95238E+00 -9.82716E-01 8.66340E-01
R1 -5.83681E-01 -3.22600E-01 1.45082E-01 -1.95844E+00 -9.87267E-01 8.66115E-01 2.89667E-03 7.36401E-04 3.56633E-03 1.38891E-04 6.81917E-04

R1Ae -5.83681E-01 -3.22600E-01 1.45082E-01 -1.95844E+00 -9.87267E-01 8.66101E-01 2.89399E-03 7.36538E-04 3.59231E-03 1.39300E-04 6.78426E-04
R1Be -5.83681E-01 -3.22600E-01 1.45082E-01 -1.95845E+00 -9.87269E-01 8.66109E-01 2.89743E-03 7.36178E-04 3.56095E-03 1.38709E-04 6.79577E-04
R2 -5.83876E-01 -3.21808E-01 1.45143E-01 -1.95948E+00 -9.87243E-01 8.66500E-01 3.02467E-03 3.28831E-04 3.49892E-03 6.19876E-05 8.15676E-04
R3 -5.83985E-01 -3.21559E-01 1.45156E-01 -1.95984E+00 -9.87236E-01 8.66632E-01 3.07857E-03 1.85109E-04 3.49631E-03 3.49757E-05 8.73809E-04
R4 -5.84073E-01 -3.21384E-01 1.45184E-01 -1.96010E+00 -9.87229E-01 8.66762E-01 3.12164E-03 8.25892E-05 3.49831E-03 1.55473E-05 9.45050E-04
R5 -5.84106E-01 -3.21402E-01 1.45190E-01 -1.96009E+00 -9.87227E-01 8.66801E-01 3.12134E-03 8.21603E-05 3.49809E-03 1.56333E-05 9.68218E-04
R6 -5.84074E-01 -3.21305E-01 1.45187E-01 -1.96018E+00 -9.87226E-01 8.66830E-01 3.13805E-03 4.62580E-05 3.50268E-03 8.79274E-06 9.82663E-04

V1_l2m1 Semi-ana 1.09397E-01 1.01969E+00 4.03240E-03 3.90378E-01 1.36924E+00 5.10026E-02
R1 1.07010E-01 1.01363E+00 3.55093E-03 3.35787E-01 1.31037E+00 6.87240E-02 7.27019E-02 1.18080E-03 2.57826E-02 1.23039E-03 4.87835E-01
R2 1.08253E-01 1.01713E+00 3.80015E-03 3.66481E-01 1.34372E+00 5.89253E-02 3.27597E-02 5.39616E-04 1.14633E-02 5.53028E-04 2.26628E-01
R3 1.08701E-01 1.01837E+00 3.88667E-03 3.77343E-01 1.35552E+00 5.54585E-02 1.86725E-02 3.06642E-04 6.41343E-03 3.12314E-04 1.28868E-01
R4 1.09026E-01 1.01926E+00 3.95410E-03 3.85149E-01 1.36400E+00 5.29644E-02 8.55287E-03 1.37140E-04 2.78734E-03 1.39217E-04 5.84778E-02
R5 1.09032E-01 1.01926E+00 3.95494E-03 3.85167E-01 1.36402E+00 5.29654E-02 8.51994E-03 1.37089E-04 2.77739E-03 1.39210E-04 5.85189E-02
R6 1.09126E-01 1.01955E+00 3.97379E-03 3.87905E-01 1.36699E+00 5.20926E-02 4.98729E-03 7.72475E-05 1.51077E-03 7.83852E-05 3.39994E-02

V1_l3m1 Semi-ana -6.15726E-01 -2.30967E-01 6.13281E-02 -2.74985E+00 -9.87861E-01 5.03409E-01
R1 -6.14686E-01 -2.34380E-01 6.12342E-02 -2.74444E+00 -9.88028E-01 5.02517E-01 1.78660E-03 7.41420E-04 9.15591E-04 1.73072E-04 1.62972E-03
R2 -6.15330E-01 -2.32405E-01 6.12825E-02 -2.74783E+00 -9.87975E-01 5.03067E-01 6.48418E-04 3.32081E-04 4.25291E-04 7.71880E-05 6.38798E-04
R3 -6.15654E-01 -2.31747E-01 6.13524E-02 -2.74901E+00 -9.87954E-01 5.03334E-01 2.59399E-04 1.86966E-04 2.44536E-04 4.36501E-05 1.44785E-04
R4 -6.15861E-01 -2.31271E-01 6.13577E-02 -2.74986E+00 -9.87941E-01 5.03471E-01 5.27172E-05 8.32000E-05 1.23493E-04 1.96714E-05 1.17041E-04
R5 -6.15810E-01 -2.31251E-01 6.13362E-02 -2.74986E+00 -9.87941E-01 5.03454E-01 5.30228E-05 8.26039E-05 1.24502E-04 1.98590E-05 7.34039E-05
R6 -6.15822E-01 -2.31062E-01 6.13368E-02 -2.75016E+00 -9.87936E-01 5.03495E-01 1.29370E-04 4.63189E-05 8.26752E-05 1.12816E-05 1.46919E-04

V1_l4m0 Semi-ana -6.00602E-01 -1.70818E-01 3.68735E-02 -3.54175E+00 -9.88832E-01 3.35931E-01
R1 -5.98622E-01 -1.76707E-01 3.67843E-02 -3.53029E+00 -9.89146E-01 3.34746E-01 3.12951E-03 1.31356E-03 1.55406E-03 3.81304E-04 3.37022E-03
R2 -5.99810E-01 -1.73358E-01 3.68330E-02 -3.53734E+00 -9.89070E-01 3.35470E-01 1.24427E-03 5.85652E-04 7.13482E-04 1.71400E-04 1.33400E-03
R3 -6.00325E-01 -1.72211E-01 3.68343E-02 -3.53981E+00 -9.89043E-01 3.35722E-01 5.80937E-04 3.29076E-04 4.20815E-04 9.71712E-05 6.21454E-04
R4 -6.00558E-01 -1.71352E-01 3.68760E-02 -3.54158E+00 -9.89024E-01 3.35868E-01 1.10523E-04 1.46025E-04 2.25319E-04 4.34866E-05 2.36178E-04
R5 -6.00549E-01 -1.71348E-01 3.68656E-02 -3.54157E+00 -9.89021E-01 3.35923E-01 1.14786E-04 1.47512E-04 2.16721E-04 4.27073E-05 8.08597E-05
R6 -6.00582E-01 -1.71033E-01 3.68820E-02 -3.54219E+00 -9.89016E-01 3.36002E-01 1.03570E-04 8.39745E-05 1.56763E-04 2.35304E-05 1.69386E-04

V1_l8m0 Semi-ana -6.29798E-01 -9.32278E-02 1.36031E-02 -6.61649E+00 -9.77211E-01 1.46093E-01
R1 -6.21690E-01 -1.16978E-01 1.34984E-02 -6.53044E+00 -9.77876E-01 1.44737E-01 1.27428E-02 2.92213E-03 8.58586E-03 1.54265E-03 8.82463E-03
R2 -6.26315E-01 -1.03775E-01 1.35715E-02 -6.57874E+00 -9.77489E-01 1.45508E-01 5.54930E-03 1.31363E-03 3.84526E-03 7.02295E-04 3.75312E-03
R3 -6.27742E-01 -9.90733E-02 1.35973E-02 -6.59574E+00 -9.77353E-01 1.45785E-01 3.02267E-03 7.41524E-04 2.16246E-03 3.98615E-04 1.91359E-03
R4 -6.29012E-01 -9.57349E-02 1.35900E-02 -6.60791E+00 -9.77254E-01 1.45964E-01 1.20649E-03 3.30518E-04 9.61397E-04 1.78221E-04 7.67489E-04
R5 -6.28997E-01 -9.57327E-02 1.35952E-02 -6.60789E+00 -9.77251E-01 1.46077E-01 1.24170E-03 3.31198E-04 9.26184E-04 1.77772E-04 5.84851E-05
R6 -6.29462E-01 -9.45639E-02 1.36172E-02 -6.61217E+00 -9.77219E-01 1.46070E-01 5.81698E-04 1.85848E-04 5.27976E-04 1.00952E-04 7.34737E-05

V1_l16m0 Semi-ana -7.02009E-01 -5.35857E-02 3.98867E-03 -1.16747E+01 -8.88242E-01 6.63352E-02
R1 -6.65241E-01 -1.44992E-01 3.95223E-03 -1.10913E+01 -8.98714E-01 6.57856E-02 5.03146E-02 8.58741E-03 6.14378E-02 8.71629E-03 8.61793E-03
R2 -6.85567E-01 -9.53602E-02 3.96959E-03 -1.14131E+01 -8.93048E-01 6.60710E-02 2.25491E-02 3.96408E-03 2.81155E-02 4.16501E-03 4.11952E-03



R3 -6.92849E-01 -7.72637E-02 3.97976E-03 -1.15281E+01 -8.90982E-01 6.61963E-02 1.26303E-02 2.25768E-03 1.59663E-02 2.40449E-03 2.14802E-03
R4 -6.98085E-01 -6.40982E-02 3.98447E-03 -1.16110E+01 -8.89482E-01 6.62801E-02 5.47561E-03 1.01313E-03 7.13371E-03 1.08807E-03 8.30654E-04
R5 -6.98010E-01 -6.40925E-02 3.98935E-03 -1.16107E+01 -8.89456E-01 6.63660E-02 5.53605E-03 1.01208E-03 7.07359E-03 1.08896E-03 4.66312E-04
R6 -6.99765E-01 -5.94303E-02 3.99277E-03 -1.16397E+01 -8.88912E-01 6.64214E-02 3.03795E-03 5.70699E-04 3.93141E-03 6.16837E-04 1.26008E-03

V2_l1m0 Semi-ana -1.01582E+00 -1.00000E+00 7.57900E-02 -1.16539E+00 -1.00000E+00 5.57000E-01
R1 -1.01604E+00 -9.99635E-01 7.64858E-02 -1.16555E+00 -9.99635E-01 5.57596E-01 1.65832E-04 7.76042E-05 3.64572E-04 6.90228E-06 1.97267E-03
R3 -1.01603E+00 -9.99909E-01 7.60051E-02 -1.16558E+00 -9.99909E-01 5.56536E-01 1.90859E-04 1.89737E-05 9.13158E-05 1.79120E-06 4.45447E-04
R5 -1.01603E+00 -9.99959E-01 7.60185E-02 -1.16559E+00 -9.99959E-01 5.57034E-01 1.96971E-04 8.70395E-06 4.05908E-05 7.64511E-07 2.98356E-04
R6 -1.01603E+00 -9.99977E-01 7.60210E-02 -1.16559E+00 -9.99977E-01 5.57245E-01 1.98557E-04 5.18618E-06 2.28286E-05 4.28835E-07 5.82023E-04

V2_l2m0 Semi-ana -5.84152E-01 -3.21444E-01 1.45187E-01 -1.86664E+00 -9.44904E-01 5.95787E-01
R1 -5.83681E-01 -3.22600E-01 1.45082E-01 -1.86272E+00 -9.43643E-01 5.94082E-01 8.76936E-04 7.44973E-04 1.03542E-03 1.79392E-04 1.19269E-03
R2 -5.83876E-01 -3.21808E-01 1.45143E-01 -1.86364E+00 -9.43549E-01 5.94327E-01 8.36938E-04 3.32616E-04 9.09958E-04 8.01139E-05 1.20482E-03
R3 -5.83985E-01 -3.21559E-01 1.45156E-01 -1.86396E+00 -9.43516E-01 5.94407E-01 8.33885E-04 1.87349E-04 8.83677E-04 4.51392E-05 1.23410E-03
R4 -5.84073E-01 -3.21384E-01 1.45184E-01 -1.86419E+00 -9.43490E-01 5.94483E-01 8.40776E-04 8.37043E-05 8.74105E-04 2.00610E-05 1.26162E-03
R5 -5.84106E-01 -3.21402E-01 1.45190E-01 -1.86418E+00 -9.43489E-01 5.94507E-01 8.39787E-04 8.31844E-05 8.73777E-04 2.01720E-05 1.26813E-03
R6 -5.84074E-01 -3.21305E-01 1.45187E-01 -1.86426E+00 -9.43480E-01 5.94531E-01 8.43285E-04 4.68207E-05 8.72504E-04 1.13420E-05 1.28002E-03

V2_l2m1 Semi-ana 1.09397E-01 1.01969E+00 4.03240E-03 3.22290E-01 1.29626E+00 5.03164E-02
R1 1.07010E-01 1.01363E+00 3.55093E-03 2.81020E-01 1.25094E+00 3.79698E-02 6.89770E-02 1.22351E-03 2.29252E-02 1.25351E-03 1.72621E-01
R2 1.08253E-01 1.01713E+00 3.80015E-03 3.04541E-01 1.27703E+00 4.48154E-02 3.10934E-02 5.57738E-04 1.01680E-02 5.62856E-04 7.76617E-02
R3 1.08701E-01 1.01837E+00 3.88667E-03 3.12859E-01 1.28626E+00 4.72400E-02 1.77522E-02 3.16532E-04 5.67537E-03 3.17832E-04 4.41326E-02
R4 1.09026E-01 1.01926E+00 3.95410E-03 3.18847E-01 1.29290E+00 4.89818E-02 8.13460E-03 1.41400E-04 2.44010E-03 1.41666E-04 2.00126E-02
R5 1.09032E-01 1.01926E+00 3.95494E-03 3.18849E-01 1.29290E+00 4.89825E-02 8.14701E-03 1.41296E-04 2.44396E-03 1.41650E-04 2.00272E-02
R6 1.09126E-01 1.01955E+00 3.97379E-03 3.20946E-01 1.29522E+00 4.95907E-02 4.79367E-03 7.95465E-05 1.31510E-03 7.97563E-05 1.16551E-02

V2_l3m1 Semi-ana -6.15726E-01 -2.30967E-01 6.13281E-02 -2.65240E+00 -9.54055E-01 3.58101E-01
R1 -6.14686E-01 -2.34380E-01 6.12342E-02 -2.64687E+00 -9.54239E-01 3.57513E-01 1.83444E-03 7.63202E-04 1.00492E-03 1.98770E-04 1.23538E-03
R2 -6.15330E-01 -2.32405E-01 6.12825E-02 -2.65017E+00 -9.54116E-01 3.57786E-01 6.77601E-04 3.41102E-04 4.56793E-04 8.89045E-05 5.11732E-04
R3 -6.15654E-01 -2.31747E-01 6.13524E-02 -2.65131E+00 -9.54068E-01 3.57931E-01 2.82507E-04 1.92409E-04 2.54563E-04 5.01216E-05 1.85562E-04
R4 -6.15861E-01 -2.31271E-01 6.13577E-02 -2.65213E+00 -9.54034E-01 3.58020E-01 5.38479E-05 8.56516E-05 1.20824E-04 2.26532E-05 2.04163E-04
R5 -6.15810E-01 -2.31251E-01 6.13362E-02 -2.65213E+00 -9.54033E-01 3.58040E-01 5.24516E-05 8.47315E-05 1.18006E-04 2.29559E-05 2.29885E-04
R6 -6.15822E-01 -2.31062E-01 6.13368E-02 -2.65242E+00 -9.54024E-01 3.58046E-01 1.03809E-04 4.75720E-05 7.74586E-05 1.29658E-05 2.42670E-04

V2_l4m0 Semi-ana -6.00602E-01 -1.70818E-01 3.68735E-02 -3.43330E+00 -9.58862E-01 2.51571E-01
R1 -5.98622E-01 -1.76707E-01 3.67843E-02 -3.42145E+00 -9.59167E-01 2.50833E-01 3.29022E-03 1.39368E-03 1.60824E-03 4.00687E-04 2.47835E-03
R2 -5.99810E-01 -1.73358E-01 3.68330E-02 -3.42859E+00 -9.59057E-01 2.51216E-01 1.32545E-03 6.21817E-04 7.29228E-04 1.79757E-04 9.50801E-04
R3 -6.00325E-01 -1.72211E-01 3.68343E-02 -3.43110E+00 -9.59021E-01 2.51335E-01 6.31231E-04 3.49936E-04 4.26514E-04 1.01613E-04 4.95097E-04
R4 -6.00558E-01 -1.71352E-01 3.68760E-02 -3.43288E+00 -9.58991E-01 2.51455E-01 1.44995E-04 1.56816E-04 2.00848E-04 4.46561E-05 2.35585E-04
R5 -6.00549E-01 -1.71348E-01 3.68656E-02 -3.43289E+00 -9.58992E-01 2.51457E-01 1.43133E-04 1.56298E-04 2.03081E-04 4.49317E-05 2.36931E-04
R6 -6.00582E-01 -1.71033E-01 3.68820E-02 -3.43352E+00 -9.58984E-01 2.51484E-01 7.12700E-05 8.88077E-05 1.35244E-04 2.48373E-05 2.52678E-04

V2_l8m0 Semi-ana -6.29798E-01 -9.32278E-02 1.36031E-02 -6.43054E+00 -9.49734E-01 8.74141E-02
R1 -6.21690E-01 -1.16978E-01 1.34984E-02 -6.33123E+00 -9.48856E-01 8.61754E-02 1.45482E-02 3.58253E-03 7.85630E-03 1.47548E-03 1.26767E-02
R2 -6.26315E-01 -1.03775E-01 1.35715E-02 -6.38660E+00 -9.49288E-01 8.68837E-02 6.37159E-03 1.61216E-03 3.52268E-03 6.69990E-04 5.40986E-03
R3 -6.27742E-01 -9.90733E-02 1.35973E-02 -6.40623E+00 -9.49465E-01 8.71311E-02 3.48252E-03 9.09800E-04 1.98898E-03 3.80115E-04 2.82135E-03
R4 -6.29012E-01 -9.57349E-02 1.35900E-02 -6.42026E+00 -9.49589E-01 8.73029E-02 1.40792E-03 4.05878E-04 8.95599E-04 1.69857E-04 1.10264E-03
R5 -6.28997E-01 -9.57327E-02 1.35952E-02 -6.42040E+00 -9.49609E-01 8.72942E-02 1.39887E-03 4.05574E-04 8.93549E-04 1.69845E-04 1.13954E-03
R6 -6.29462E-01 -9.45639E-02 1.36172E-02 -6.42534E+00 -9.49657E-01 8.73714E-02 6.72870E-04 2.30039E-04 5.07209E-04 9.51531E-05 3.40385E-04

V2_l16m0 Semi-ana -7.02009E-01 -5.35857E-02 3.98867E-03 -1.10011E+01 -8.36986E-01 2.19982E-02
R1 -6.65241E-01 -1.44992E-01 3.95223E-03 -1.01686E+01 -8.32098E-01 2.29072E-02 6.85564E-02 1.34121E-02 5.28956E-02 8.63424E-03 6.05711E-02
R2 -6.85567E-01 -9.53602E-02 3.96959E-03 -1.06230E+01 -8.34315E-01 2.24013E-02 3.10102E-02 6.25224E-03 2.40265E-02 4.06856E-03 2.66483E-02
R3 -6.92849E-01 -7.72637E-02 3.97976E-03 -1.07891E+01 -8.35487E-01 2.22341E-02 1.73678E-02 3.57619E-03 1.36518E-02 2.33605E-03 1.53012E-02
R4 -6.98085E-01 -6.40982E-02 3.98447E-03 -1.09085E+01 -8.36352E-01 2.21108E-02 7.55625E-03 1.60881E-03 6.10350E-03 1.05324E-03 7.13019E-03



R5 -6.98010E-01 -6.40925E-02 3.98935E-03 -1.09108E+01 -8.36523E-01 2.21492E-02 7.45332E-03 1.60224E-03 6.14019E-03 1.05465E-03 7.94697E-03
R6 -6.99765E-01 -5.94303E-02 3.99277E-03 -1.09531E+01 -8.36855E-01 2.20640E-02 3.99130E-03 9.10432E-04 3.48960E-03 5.95027E-04 3.66048E-03

a: Case number follows the following notation: V1 for constant mantle viscosity of 1021 Pas, and V2 for including 100 km thick lithosphere of 1026 Pas; l3m1 stands for loading harmonic at l=3 and m=1.
b: Resolutions R1, R2, R3, R4, R5, and R6 are for grids 12x(32x32x32), 12x(48x48x48), 12x(64x64x64), 12x(96x96x96), 12x(64x96x96), and 12x(64x128x128), respectively. Semi-ana stands for semi-analytical solutoins.
c: Load Love number results of h, k and l are listed at t=0 and t=40 Maxwell time.
d: Relative amplitude and disperson errors are computed for h and k. Amplitude errors are also computed for l. Amplitude and dispersion errors are represented with subscripts a_error and d_error, respetively. 
e: These two calculations R1A and R1B use time increments of 0.4 and 0.1, respectively.  All the other calculations use time increment of 0.2. 
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