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ABSTRACT

Accurate determination of surface normal stresses from numerical modeling of mantle convection is crucial in determin-
ing surface topography, geoid and gravity anomalies. With the finite element method, we have developed a consistent
boundary flux (CBF) method for computing the surface stress by solving the momentum equation directly. The method has a
much higher accuracy for determining surface stresses than the standard pressure smoothing method, and for typical
convection problems, the CBF is about one order of magnitude more accurate than pressure smoothing. The CBF can be
easily applied to a variety of types of elements and to compute a range of physical quantities including heat flow on
boundaries. CBF, moreover, is a post-processing operation and is computationally inexpensive.

l

Introduction

Topography, geoid and gravity are among the
most important observations constraining thermal
convection within the Earth’s mantle. Numerical
modeling of thermal convection reveals the fun-
damental relationship between the surface ob-
servables and internal dynamics. As the geoid
and gravity both directly depend on surface de-
formation (dynamic topography) induced by ther-
mal convection, accurate computation of dynamic
topography is essential for determining all three
observables. Dynamic topography can be deter-
mined from normal stresses acting on surfaces,
assuming that the normal stresses are compen-
sated through surface deformation on free sur-
faces.

With the Boussinesq approximation, the
Earth’s mantle can be regarded as an incompress-
ible viscous fluid. Viscous flow can be solved
using the finite element method (FEM) for com-
plicated geometries and rheologies. To solve for
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an incompressible viscous flow, the standard FEM
uses a penalty function formulation with velocity
as a primary variable (Hughes, 1987). Because of
the simplicity of this formulation, it has been
used widely in mantle convection studies (Schu-
bert and Anderson, 1985; King et al., 1990). Also,
it allows geodynamicists to study many important
aspects in mantle convection, including the ef-
fects of faults (Zhong and Gurnis, 1992). The
standard method to compute the surface stress in
the FEM is pressure smoothing (Hughes, 1987,
pp. 226-231). The pressure smoothing method
computes the averaged stress for each element
with a constitutive equation, and then projects
this averaged stress onto adjacent nodes. For
boundary nodes, a linear extrapolation is used to
adjust the stress. Although the pressure smooth-
ing method works very well for interior nodes
(indeed, the pressure smoothing is a least-square
approximation of stresses for interior nodes)
(Hughes, 1987, pp. 297-303), its accuracy degen-
erates on boundaries (King, 1991). The loss of
accuracy for boundary stresses becomes more se-
rious when a heterogeneous rheology is present,
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such as a temperature-dependent viscosity which
may be fundamentally important for the mantle.

Here we introduce a new method, consistent
boundary flux calculation (CBF), originally pro-
posed by Mizukami (1986) and Hughes (1987), to
compute boundary stresses. With the CBF,
boundary stresses are computed by solving the
momentum equation within boundary row ele-
ments, and thus a higher accuracy is achieved
compared with the pressure smoothing, where
stresses are calculated with a constitutive equa-
tion. The CBF does not require any modification
in solving the flow field and thus can be carried
out during post processing. Without increasing
computational complexity, we can determine the
stress on boundaries where velocities are pre-
scribed as boundary conditions with much higher
accuracy than pressure smoothing. The finite ele-
ment code, ConMan (King et al., 1990), which
employs bilinear quadrilateral elements, is used
to solve the velocity field. We will first review
how the CBF works, and then show several exam-
ples. We will compare dynamic topography and
geoid from the CBF and the pressure smoothing
with both analytic solutions and a recent convec-
tion benchmark (Blankenbach et al., 1989). Al-
though bilinear elements are used, the CBF can
be applied to various types of elements. The CBF
can also be applied to computing surface heat
flow (Nusselt number) of convection with a higher
accuracy than pressure smoothing (e.g. Ho-Liu et
al., 1987).

2. Method

Surface stresses are determined by the mo-
mentum and continuity equations, which, for an
incompressible viscous fluid with no inertial
forces, are

O'ij,j+fi=0 ) (1)
and
u;; =0 (2)

where f; is the body force, g;; is the stress tensor,
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and u; is the flow velocity. Throughout the paper,
repeated indices denote summation.

The boundary conditions are in general a com-
bination of prescribed stress and velocity and can
be expressed as

u;=g;on T, 3
and
o;n;=h; on Fh,- )

where Fg.« is the boundary over which the flow
velocity is prescribed and L, is the boundary on
which traction is given. We assume a linear con-
stitutive equation

0;;= —pO;; + m(u; ; +tu;;) (5)

where §;; is the Kronecker delta, p is the pres-
sure and w is the dynamic viscosity.

Equations (1)-(4) can be solved for an irregu-
lar geometry and a spatially variable rheology
with a penalty function formulation (Hughes,
1987). The Galerkin weak formulation can be
stated as: find u, =v; +g; and v; € U", where U*
is a set of functions in which each function, w;, is
equal to zero on I, such that for all w,e U h

Nsa
W, iUy A= [ w,f, A2 + wh; dT’
fﬂ i, jCijkIYk '[Q f igl ‘/;‘h‘,

- fﬂwi,jcijklgk,l dQ (6)

where ng is the number of space dimensions and
c;jx; are the coefficients of the constitutive equa-
tion. The pressure smoothing method, using the
velocity solved from (6) and the constitutive equa-
tion, Eq. (5), computes the element average Oy
and then projects the average o;; onto boundary
nodes.

With the CBF method, a function, w; € U*, is
not assumed to be zero on Fg,-; hence the equiva-
lent form of (6) is

Ngd

fnwl.,jc,.jk,uk,, do = fﬂw,- £ dQ+ El [r hiw,.h,- dr

Rsd
+ % [ wis; dT (7
i=1"T,,
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Fig. 1. In a coordinate system, X;0X,, a free slip boundary
condition on the surface is u, = 012 =0, and for a quadrilat-
eral element e, this leads to I‘e = The numbers are the
local node numbers.

where s; are the unknown tractions on I', and
can be expressed as

si(x;) = Y. N(x,)5, (8)

aEng

where §, is the unknown traction at boundary
node a. As N, in Eq. (8) is zero for a node that is
not on ng, it is easy to show that the equations
which govern the flow field remain unchanged
from (6). Using the flow field solved from (6) and
substituting (8) into (7) yields a set of equations
computing the surface traction, §,, on I, . This
procedure can be carried out at an element level.
Only elements connected to boundary Fg need to
be computed. This approach will be illustrated
with the following example. Let us suppose that
for an element e, the boundary side is prescribed
with a horizontal traction and a vertical velocity
(Fig. 1), i.e. Iy, =7 . A matrix form of Eq. (7) for
the element e can be written as

ky ki ki ky ks ki ki kg
ky ky  ka ks ky ki ki
ks ks kss ki ki kg

ka kas ky kg kg

kss ks ks; ks

Sym kes ke kes

ky; ko

kgg

3
Uy N f; 0
U, N f, 0
Us N, f 0
Ly N, f, 0
X = dQ + drr (9
Us '/;le Nsf, fr;z N3h, ©)
Ug N f, Nys,
Uz N, fy Nyhy
Ug NS, N;s,

where the k;; are entries of an element stiffness
matrix, the N, are shape functions, A, is the
prescribed horizontal traction, and s, is the un-
known normal stress on F;z. Whereas the first
five and the seventh sub-equations of (9) are
simply parts of the normal equations of motion
(i.e. Eq. (6)), the sixth and the eighth sub-equa-
tions form equations which solve for the normal
stress on nodes 3 and 4 (Fig. 1). After substituting
(8) into (9), the sixth and the eighth sub-equa-
tions of (9) can be expressed as

1 ~ ~ 1 ~ ~ -
[ NiNyde [ NiN,dé |5,
-1 -1

1 ~ ~ 1 ~ ~ .
| NN, d¢ [ NN, d¢ |5,
-1 —1

8
)y k6juj__/ Nif, dQ
i=1 Q.
| s
E 81
j=1

(10)
J ZN f, dQ

where an isoparametric element notation (e.g.
Hughes, 1987) is used for the left-hand side, /, is
the length of I“gez, and N; and }\74 are the degen-
erated one-dimensional shape functions, which
can be written as

N;=3(1+&¢) (11)

where ¢,= —1for i =3 and ¢, =1 for i = 4. The
degeneration of the shape functions results from
the fact that the second integration on the right-
hand side of (9) is along T

Equation (10) can be assembled for all the
boundary elements in the usual way, and thus a
set of equations with the unknown boundary nor-
mal stresses is formed. The 2 X 2 matrix in (10),
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given the shape functions in (11), can be analyti-
cally computed and the diagonal entries and the
off-diagonal entries are 1/3 and 1/6, respec-
tively. After being assembled, the global matrix
equation is a tri-diagonal matrix equation and can
be easily solved with a conjugate gradient method.
With a trapezoidal integration rule, the 2 X2
matrix can even be diagonalized (Hughes, 1987),
and the resulting equations can be solved very
efficiently without losing much accuracy. We have
used the former approach in this paper.

The CBF occurs during a post-processing
phase, and does not have any effect on the pri-
mary equations of the flow. The CBF clearly has
several advantages over the pressure smoothing.
For instance, the CBF computes the boundary
stress directly on the boundaries, therefore this
method works for various irregular elements; the
pressure smoothing method prefers rectangle ele-
ments, because extrapolation of the elemental
stress onto the boundaries is used. Also, by solv-
ing the momentum equation, the CBF automati-
cally includes the contribution of the body force
within the boundary row elements to the bound-
ary stress. The pressure smoothing method can-
not accurately account for the contribution of the
body force (King (1991) proposed a different ap-
proach to include the contribution of the body
force). For thermal convection problems, because
of the existence of thermal boundary layers, the
body force may be significant in determining the
surface stress. It should be pointed out, however,
that the CBF can only be used to compute
boundary stresses. For some problems, such as
thermal convection with a stress-dependent rhe-
ology, in which computing the interior stresses is
necessary, the pressure smoothing method is still
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3. Results and discussion

The advantage of the CBF over the pressure
smoothing method will be illustrated through
three test cases. The first case is an analytic
solution and the other two are the standard cases
used in mantle convection benchmarks (Blan-
kenbach et al.,, 1989). For all three cases, the
improvement in computing boundary stress is sig-
nificant, especially for the case with variable vis-
cosity.

In Case 1, an isoviscous flow within a 1 X 1 box
with free slip boundary conditions on all bound-
aries is driven by a buoyant force

fi=0and f, =pagT(x,, x,) (12)

where p and a are the density and the coefficient
of thermal expansion, respectively, g is the accel-
eration of gravity, and T(x,, x,) is the tempera-
ture field, given by

T(xy, x7) = cos(kx,) - 8(x; —x3),
forO0<x;, x,<1 (13)

where k=2m/A and A is a wavelength, 6(x, —
x;) is the Dirac delta function, and x} represents
the location of the buoyancy. Using a Green’s
function method (Parson and Daly, 1983), an
analytic solution of surface stress ¢,, after being
normalized by pag, can be obtained:

cos( kx,) .
o(%1,1) = Ein—hzT_IS{k(l —x3) sinh(k)

X cosh(kx3) — k sinh[ k(1 —x3)]
+sinh(k) sinh(kx})},

needed. for0<x, <1 (14)
TABLE 1

Surface stress o,, at the top-left corner point (x; = 0) for Case 1

Method x5 =63/64 x5=62/64 x5=1060/64

Analytic solution 0.995476 0.983053 0.912506

Pressure smoothing 1.15974 (16.5%) 1.06498 (8.3%) 0.911109 (0.15%)

CBF 0.994236 (0.13%) 0.982116 (0.10%) 0.912157 (0.04%)
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TABLE 2

Physical and geometry parameters for Cases 2 and 3

Height, 4, and length, /,

of the box 10 m
Temperature contrast, AT 1000 K
Density, p 4x10° kgm™3
Thermal diffusivity 1079 m?s~!
Acceleration of gravity, g 10ms~?
Thermal expansion, a 25%107°K!

(Surface) kinematic viscosity, vq  2.5X 10" m? 57!
Gravitational constant 6.673x 107! N m? kg2

For A =1, the surface stresses o, for x;=
63/64, 62 /64, and 60/64 are computed. The o,
values at the top-left corner point (x, =0) ap-
proach one, as the buoyancy is approaching the
surface (Table 1).

With the FEM, the flow with the same buoy-
ancy is solved for a 64 X 64 uniform mesh, and
o, on the surface is computed with both the
pressure smoothing method and the CBF (Table
1). Although the pressure smoothing is fairly ac-
curate when the buoyancy is four meshes away
from the surface, the accuracy from the pressure
smoothing suffers when the buoyancy is one or
two meshes away from the surface; a similar
result was also reported by King (1991). The CBF
is clearly superior to the pressure smoothing (Ta-
ble 1). For example, when the buoyancy is only
one mesh away from the surface (x}=63/64),
the relative error (Table 1, in parentheses) of the
pressure smoothing is 16.5%, but the CBF re-
duces the error to 0.13%.

TABLE 3

Cases 2 and 3 are for full thermal convection
problems involving the solution of the energy
equation. We use a Streamline Upwind Petrov—
Galerkin method (Brooks, 1981) to solve the en-
ergy equation. Cases 2 and 3 are identical to
Cases 1(a) and 2(a) in the Blankenbach et al.
(1989) benchmark paper and are briefly defined
below.

The flows are confined to a non-dimensional
1 X 1 box with free slip and isothermal boundary
conditions on the bottom and top boundaries and
with reflecting boundary conditions on the verti-
cal boundaries. The body force also has the form
of (12). For Case 2, a constant viscosity with a
Rayleigh number of 10* is used. For Case 3, a
temperature-dependent viscosity,

o

V=1V exp(—A—T

(15)
is used. A Rayleigh number defined by surface
viscosity, v, is also 10, In (15), b = In(1000),
which limits the maximum variation of viscosity to
103, and AT is the temperature difference be-
tween bottom and top boundaries. An initial con-
dition is chosen such that a single convection cell
forms in the steady state.

Topography can be calculated from the surface
normal stress by assuming that the surface will
deform with the normal stress such that no net
traction acts on the surface after deforming. Fol-
lowing Blankenbach et al. (1989), the topography
and geoid are computed by setting the mean
value of each to zero. Both calculations are done

Topography and geoid for Case 2 (numbers in parentheses are relative errors, given as percentages)

Mesh &1 & ¥, v,

24x24 CBF 2256.7 (0.12) —2906.6 (0.11) 54.92 (0.18) —62.72(0.15)
PS 2283.1 (1.30) —2930.2(0.93) 56.64 (3.30) —64.46 (2.90)

32x32 CBF 2255.5(0.07) —2907.5(0.15) 54.89 (0.08) —62.71(0.15)
PS 2272.0 (0.80) —2922.1 (0.65) 55.94 (2.00) —63.77 (1.80)

48X 48 CBF 2254.7 (0.03) —2905.2 (0.07) 54.85 (0.06) —62.67 (0.08)
PS 2262.6 (0.38) —2912.1(0.31) 55.35(0.97) ~63.17 (0.87)

64 X 64 CBF 2254.4 (0.02) —2904.3 (0.04) 54.84 (0.03) —62.65 (0.04)
PS 2259.0(0.22) —2908.3 (0.18) 55.12(0.55) —62.93 (0.49)

Christensen 2254.0 —-2903.2 54.82 —62.62




dimensionally with values shown in Table 2. In
computing the topography, no overlying medium
is assumed, and the density of the underlying
medium is twice that of the flow. The geoid is
computed with a spectral method.

For Case 2, surface topographies at x, =0, £,
and at x, =1, £,, from pressure smoothing and
CBF methods with different meshes, and Chris-
tensen’s extrapolated results given by Blanken-
bach et al. (1989) are shown in Table 3. The
relative errors of the pressure smoothing and the
CBF (Table 3, in parentheses) are also computed
by taking Christensen’s extrapolated results as
‘exact’ solutions. The pressure smoothing method
(referred to as PS in Table 3) achieves a reason-
ably high accuracy, and typical relative errors are
about 1%. However, the CBF has a much higher
accuracy and reduces the relative errors by about
one order of magnitude (Table 3). The geoid is
the difference between two terms: one measures
contributions from internal density structure and
another accounts for the topographic contribu-
tion. As these two terms usually have much larger
magnitudes than the geoid itself, the geoid is very
sensitive to each of them; accurate topography is
essential for an accurate determination of the
geoid. The geoid at x, =0, ¥, and at x;, =1, ¥,
(Table 3), clearly shows that the CBF yields a
much more accurate geoid than pressure smooth-
ing. For example, for a 32 X 32 mesh, whereas
the relative error of ¥, is 2.0% for the pressure
smoothing method, it is reduced to 0.08% for the
CBF.

For Case 3 with a temperature-dependent vis-
cosity, we observe (Table 4) that the pressure
smoothing method significantly underestimates

S.ZHONG ET AL.

topography, especially over thermal upwellings.
For example, for a 48 X 48 mesh, the relative
error of topography over the upwelling (x, = 0) is
23%, and this error is notably larger than that
over the downwelling (x; = 1), which is 4.70%.
Also, accuracy of the CBF is about one order of
magnitude higher than that of the pressure
smoothing. Not surprisingly, geoids from the CBF
have much smaller errors than those from the
pressure smoothing method. The differences in
surface topography and the geoid between these
two methods can easily be seen in Fig. 2, which
shows the topography and geoid profiles for a
48 X 48 mesh.

The pressure smoothing method significantly
underestimates topography for Case 3 with a
temperature-dependent viscosity. As is well
known, temperature-dependent viscosity can thin
the upper thermal boundary layer, especially near
upwellings. This results in a sharp change in
viscosity and body forces near the boundaries.
Any difference scheme, which is necessary for
computing the stress with a constitutive equation
in the pressure smoothing method, will be inaccu-
rate near these boundaries. The accuracy be-
comes worse near the upwelling, as a result of the
thinner boundary layers, and this explains why
the errors over the upwellings are much larger
than those over the downwellings (Table 4). How-
ever, the CBF overcomes this difficulty by solving
the boundary stress directly from the momentum
equation. A higher Rayleigh number would result
in an even thinner thermal boundary layer, and
thus the CBF has a great advantage. With a
64 X 64 mesh substantially refined near the top
and bottom boundaries, we have computed to-

TABLE 4

Topography and geoid for Case 3 (numbers in parentheses are relative errors, given as percentages)

Mesh & & v, v,

32%x32 CBF 1044.4 (3.30) —4029.2 (1.70) 18.50 (6.70) —54.98 (0.69)
PS 721.36 (28.6) —3752.1(8.40) 6.064 (65.0) —47.01 (13.9)

48x 48 CBF 1023.6 (1.26) —4062.4 (0.87) 17.78 (2.50) —54.71 (0.20)
PS 778.16 (23.0) —3906.5 (4.70) 8.497 (51.0) —49.28 (9.70)

64 X 64 CBF 1019.3 (0.80) —4084.4 (0.33) 17.67 (1.90) —54.61 (0.02)
PS 833.19(17.6) —3982.5(2.82) 10.68 (38.4) —50.83 (6.90)

Christensen 1010.9 —4098.1 17.34 —54.60
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Fig. 2. Comparison of surface topography and geoid between
the pressure smoothing method (dashed lines) and the CBF
(solid lines) for Case 3 with a 48 X 48 mesh.

pography and geoid for a case which is identical
to Case 3 except now Ra =10° The ¢, and £,
are 744.69 m and — 2803.6 m from the CBF, and
525,64 m and —2721.4 m from the pressure
smoothing, respectively. The pressure smoothing
method underestimates £, and &, by about 30%
and 3.0%, respectively.

It should be pointed out that there are still
some differences between Christensen’s results
(Blankenbach et al., 1989) and those from the
CBF. Several factors may be responsible for these
differences: (1) although both of us have used

finite element methods, our formulations are dif-
ferent — Christensen (1984) used a streamfunc-
tion—vorticity formulation, whereas we have used
a penalty function formulation; (2) Christensen
used refined and bicubic elements, whereas we
used uniform and bilinear elements; (3) in search-
ing for a steady state, Christensen directly solved
static equations, whereas we solve the time-de-
pendent equations.

In summary, the CBF acquires about one or-
der of magnitude higher accuracy than the pres-
sure smoothing method in computing boundary
stress without increasing computational cost, and
thus yields more accurate topography and geoid.
The CBF can easily be applied to a range of
element types, and to compute various physical
quantities such as heat flow on boundaries.
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