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Abstract. Layered viscosity, temperature-dependent viscosity, and surface plates have an
important effect on the scale and morphology of structure in spherical models of mantle
convection. We find that long-wavelength structures can be produced either by a layered viscosity
with a weak upper mantle or temperature-dependent viscosity even in the absence of surface plates,
corroborating earlier studies. However, combining the layered viscosity structure with a
temperature-dependent viscosity results in structure with significantly shorter wavelengths. Our
models show that the scale of convection is mainly controlled by the surface plates, supporting
the previous two-dimensional studies. Our models with surface plates, layered and temperature-
dependent viscosity, and internal heating explain mantle structures inferred from seismic
tomography. The models show that hot upwellings initiate at the core-mantle boundary (CMB)
with linear structures, and as they depart from CMB, the linear upwellings quickly change into
quasi-cylindrical plumes that dynamically interact with the ambient mantle and surface plates
while ascending through the mantle. A linear upwelling structure is generated again at shallow
depths (<200 km) in the vicinity of diverging plate margins because of the surface plates. At
shallow depths, cold downwelling sheets form at converging plate margins. The evolution of
downwelling sheets depends on the mantle rheology. The temperature-dependent viscosity
strengthens the downwelling sheets so that the sheet structure can be maintained throughout the
mantle. The tendency for linear upwelling and downwelling structures to break into plume-like
structures is stronger at higher Rayleigh numbers. Our models also show that downwellings to
first-order control surface plate motions and the locations and horizontal motion of upwellings.
Upwellings tend to form at stagnation points predicted solely from the buoyancy forces of
downwellings. Temperature-dependent viscosity greatly enhances the ascending velocity of
developed upwelling plumes, and this may reduce the influence of global mantle flow on the
motion of plumes. Our results can explain the anticorrelation between hotspot distribution and
fast seismic wave speed anomalies in the lower mantle and may also have significant implications
to the observed stationarity of hotspots.

1. Introduction

Recent seismic tomography studies [van der Hilst et al.,
1997; Grand et al., 1997; Grand, 1994; Masters et al., 1996]
have greatly improved our understanding of global mantle
structure and dynamics. These studies show that down to a
depth of 1800 km in the upper and middle mantle, structure can
be characterized as linear slab-like features that are related to
subduction [Grand et al., 1997; van der Hilst et al., 1997]. The
bottom 1000 km of the mantle may display different
morphology in which the linear features have disappeared [van
der Hilst and Karason, 1999]. In the upper mantle, other
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features include fast wave speed anomalies down to a depth of
300 to 400 km beneath continental cratons and slow wave
speed anomalies associated with spreading centers at
relatively shallow depths [Zhang and Tanimoto, 1992;
Masters et al., 1996; Grand et al., 1997]. In addition, these
structures occur at wavelengths that are comparable with the
scale of tectonic plates, consistent with early studies [Su and
Dziewonski, 1992; Fukao et al., 1992]. Regional tomography
studies near Iceland and other hotspots have located plume
structures extending to a depth of at least 400 km [Wolfe et al.,
1997; Shen et al., 1998; VanDecar et al., 1995]. Recent
seismic studies with new techniques suggest that horizontal
rolls may exist in the upper mantle below the Pacific Plate,
aligned with the plate motion [Katzman et al., 1998].

These studies provide a simple but important picture about
the mantle: Plate motion controls mantle circulation,
confirming the predictions from previous dynamic models

11,063



11,064

based on plate kinematics (referred to as kinematic models
hereafter). It has been suggested that the motion of rigid
tectonic plates has dominant effects on mantle flow owing to
the coupling between plates and the mantle [Hager and
O’Connell, 1979; Davies, 1988]. In particular, because
creation and cooling of oceanic lithosphere associated with
plate motion transport more than 80% of the heat out of the
mantle, mantle flow and thermal structure must be dominated
by plate-scale mode [Davies and Richards, 1992]. Recent
numerical models in a spherical shell geometry with imposed
plate motion produce cold downwellings which have some
resemblances to the structure seen in seismic tomography
[Bunge et al., 1998].

Since surface plates are imposed in these kinematic models
[e.g., Bunge et al., 1998], substantial effort has been made to
formulate self-consistent dynamic models of the mantle in
order to interpret the large-scale seismic structure. Early
spherical models at low Rayleigh numbers (Ra=10%) with
constant viscosity produced large-scale structure with linear
downwelling sheets [Bercovici et al., 1989]. At relatively
high Ra (~10° still significantly smaller than the value
appropriate for the Earth), including either an endothermic
phase change at the 670 km [Tackley et al., 1993] or a weak
upper mantle [Zhang and Yuen, 1995; Bunge et al., 1996], but
still with no temperature-dependent rheology, produces long-
wavelength structures. Neither isoviscous nor layered
viscosity models produce surface plates. Temperature-
dependent rheology with small activation energy can also
produce long-wavelength structure, as shown in Cartesian
models [Tackley, 1993, 1996]. However, as the activation
energy increases (but still much smaller than a realistic value),
stagnant lid convection develops and the structure
wavelengths are dramatically reduced [Ratcliff et al., 1997;
Christensen, 1984; Tackley, 1993; Moresi and Solomatov,
1995; Solomatov, 1995]. Therefore, the mobility of tectonic
plates suggests that a brittle rheology that facilitates plate
motion by weakening plate margins may be important to the
dynamics and structure of the mantle [Gurnis, 1989; King and
Hager, 1990; Bercovici, 1993; Puster et al., 1995; Zhong and
Gurnis, 1994, 1996; Gurnis et al., 2000]. The dynamics of
plate margins and their relation to plate tectonics are an active
research area [Bercovici, 1998; Zhong et al., 1998; Moresi
and Solomatov, 1998; Tackley, 1998].

The purpose of this paper is to study the influence of mantle
rheology (layered viscosity, temperature-dependent viscosity,
and surface plates) on the scales and morphology of mantle
structure with spherical models of thermal convection. First,
we will focus on the influences of layered viscosity structure
coupled with a temperature-dependent viscosity and of surface
plates with a weak zone formulation. Second, we will examine
the morphology of downwellings and upwellings and their
dependence on rheology and surface plates. Specifically, we
will study the characteristic structures for upwellings and
downwellings when they form and as they evolve during
ascent or descent through the mantle under different conditions
(i.e., Rayleigh number Ra, surface plates, and the rheology
including constant, layered, and temperature-dependent
viscosities). These questions are important for understanding
the implications of structures revealed in seismic tomography
[e.g., van der Hilst and Karason, 1999; Van der Voo et al.,
1999] to rheology and dynamics of the mantle. Using
improved numerical and computational technology, our
constant viscosity ~and temperature-dependent viscosity
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models will employ Ra higher than those by Bercovici et al.
[1989], Glatzmaier et al. [1990], and Ratcliff et al. [1997].
Compared with previous kinematic models by Bunge et al.
[1998] that only include a layered viscosity structure, our
models include both temperature-dependent and layered
viscosity structure and free slip boundary condition but with
smaller Ra.

In the following sections we will first present the
governing equations, a new finite element formulation used to
solve the equations in a spherical geometry, and benchmarks
with analytic solutions and other previously published
numerical results. Second, we will present results from
standard mantle convection models without surface plates.
Third, flow and thermal structures for models with plates will
be presented.

2. Model Formulation and Numerical Approach

2.1. Governing Equations

The mantle is treated as an incompressible viscous medium.
Thermal convection in the mantle is governed by the
conservation equations of mass, momentum, and energy.

Ui = 0, M
=P;+(Mu; j +nu;;) j +8pgd; =0, ()
th +u,~7:,» = KT:ii + H, (3)

where u, is the velocity, P is the dynamic pressure, dp is the
density anomalies, g is the gravitational acceleration, 1 is the
viscosity; T is the temperature, K is the thermal diffusivity, H
is the heat production rate, and X,, represents the derivative of
X with respect to y, i and j are spatial indices, ¢ is the time.
The repeated indices represent summation. We ignore
buoyancy forces associated with composition and phase
changes. Therefore the density anomalies are

dp =—0apo(T-Tp), @
where o is the thermal expansivity, p, is a reference and Ty, is
the surface temperature.
Substituting (4) into (2) and performing the following
normalization:

x;=R,x!, u =RLM;, T=ATT'+Ty,
0
R? HR? NoK
t=—2¢" =0 =ngn’, P=—-%p, 5
" Y AT n=mnoen Ri ©)

where R, is the Earth’s radius, m, is a reference viscosity, AT
is the superadiabatic temperature drop from the core-mantle
boundary (CMB) to the surface. Dropping the primes, the
equations become

uj i =0, ©)
—P;+Mu; j +nu; ;) j +ERaTd;, =0, @)
Ty+uwT; =T+, ®)
where Ra, a Rayleigh number, and & are defined as
3 3
Ra = P8OATD” £= R';, ©)
MoK D

where D is the thickness of the mantle.
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Equations (6)—(8) can be solved when the boundary and
initial conditions are specified. The surface and CMB are
subject to free slip and isothermal boundary conditions.

2.2. CitcomS: A Three-Dimensional Spherical
Finite Element Code

For nonlinear and time-dependent thermal convection
problems the governing equations can only be solved
numerically. Because the finite element method (FEM) is
extremely robust in treating complex material properties and
geometry, we choose the FEM with a primitive variable (i.e.,
velocity and pressure) formulation [Hughes, 1987] to solve
these equations in a three-dimensional (3-D) spherical shell
geometry. The FEM has been widely used in studying mantle
dynamics [King et al., 1990; Moresi and Gurnis, 1996]. Both
our numerical algorithms and the resulting FEM software,
known as CitcomS, are extensions of a 3-D Cartesian FEM
software Citcom [Moresi and Gurnis, 1996]. However, four
additional developments have been made: spherical geometry,
a new grid design, parallel computing, and a full multigrid
algorithm. Because the new methodology is quite general and
could be used in a variety of global geophysical studies, we
present detailed analyses in a set of appendices with a briefed
description given as follows.

Inherited from Citcom [Moresi and Gurnis, 1996], CitcomS
employs a Uzawa algorithm to solve the momentum equation
coupled with the incompressibility constraint (i.e., equation
(6)) [Ramage and Wathen, 1994] and a streamline upwind
Petrov-Galerkin method [Brooks, 1981] for solving the
energy equation. Brick elements (i.e., eight velocity nodes
with trilinear interpolation functions and one constant
pressure node for each element) are used. The use of brick
elements in 3-D (or rectangular elements in 2-D) is important
for accurately determining the pressure (i.e., dynamic
topography) in incompressible Stokes’ flow [Hughes, 1987,
Bathe, 1995].

The use of eight node brick elements means that the
sphericity is only realized approximately for each individual
element. However, as our benchmarks demonstrate, the
resulting numerical error is insignificant even for a moderate
resolution. Our numerical grid is designed to have relatively
uniform resolution in both polar and equatorial regions,
avoiding excessive resolution near the poles, a strategy that
was demonstrated computationally efficient in the 3-D
spherical convection code Terra [Baumgardner, 1985].
However, our gridding approach is different from that used in
Terra because of the use of brick elements. We first divide a
spherical surface into 12 cells of approximately equal size and
then further divide each cell evenly into NXN elements
(Figure 1). In the radial direction the grid spacing can be
variable. Another advantage of such grids is that parallel
computing is naturally embedded. On the basis of the highly
efficient multigrid solver for the momentum equation in
Citcom we further improve its efficiency by implementing a
full multigrid algorithm [Press et al., 1992] with a consistent
projection scheme in CitcomS.

2.3. Validation of CitcomS

We now prove the accuracy of the method by comparing
results from CitcomS with analytic solutions and previously
published numerical solutions for three different problems.
The first problem is for Stokes’ flow with layered viscosity
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Figure 1. The three-dimensional grid used in CitcomS for
decomposition in parallel computing (Figure 1a) and the finite
element -grid on a spherical surface and plate boundaries
(Figure 1b).

structure for which analytic solutions can be obtained [e.g.,
Hager and O’Connell, 1981]. The second problem is for the
dependence of critical Rayleigh number on spherical harmonic
degree, which have been predicted from a linear stability
analysis [Chandrasekhar, 1961]. The third problem is for
finite amplitude thermal convection in isoviscous media, and
for this problem, previously published results are available in
the literature [Bercovici et al., 1989; Ratcliff et al., 1996].
While the first problem is used to verify our solver for the
momentum and continuity equations, the second and third
problems are for verifying our solvers for the three governing
equations. The detailed definitions for these three problems are
given in Appendix C.

For the first problem we use 32 elements in each dimension
in each of 12 cells (the total number of elements is
12x32x32x32), and for the second problem, 24 elements in
each dimension in each cell are used (Figure 1). Comparisons
are given in Tables 1, 2, and 3. Table 1 shows that for Stokes’
flow with both isoviscous and layered viscosity (10* viscosity
contrast) structures both surface velocity and stress (i.e.,
dynamic topography) from CitcomS agree with analytic
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Table 1. Benchmarks for the Stokes’ Flow Problém

/Mt (1 m Vet vt H;, H
ANA't 2, 0) -1.0064x10? 1.1861x10? -4.1919x10 7.7058x10"
Error*; % 1 0.44 0.30 0.32 0.38
ANA 4, 0) -5.2152x107*? 5.7116x10°* -4.1462x10" 7.3709x10"
Error, % 0.28 0.10 0.53 0.84
ANA » 2,0 -6.1380x10°° 4.0304x10° -5.3411x10™" 3.2094x10"
Error, % 10 - 0.40 0.55 0.32
ANA 4, 0) -1.4578x10°¢ 2.7046x107 -4.8059x10" 3.8212x10"
Error, % - 0.31 1.0 0.57

* This is the viscosity contrast between the top and bottom layers. There are 32 elements uniformly distributed in the radial

direction. The top layer spans five elements.

' Analytic solutions (ANA) are from propagator matrix techniques which can give coefficients of spherical harmonic

function for boundary velocity (i.e., Ve, Vb) and normal stress (i.e., H ‘,Yr, H f’,) for surface and bottom boundaries.

* The error is relative difference between analytic and Citcom$S solutions over the entire spherical surface on the top and
bottom boundaries. The boundary velocity and normal stress from the propagator matrix method can be calculated with the

coefficients V*, V2, H},, and HY, (e.g., for the surface Vg = V*3Y;, /30, Vi = V*/sin®-0Y;, /3¢, and o3, = HS Y}

where Y, is the spherical harmonic function).

solutions to within 1%. This indicates that CitcomS can be
used in studying the geoid problem [Zhong and Davies, 1999].
In fact, we have reproduced the geoid obtained from analytic
models by Ricard et al. [1993] with the same viscosity and
density structure [Zhong and Davies, 1999]. Table 2 shows a
similar accuracy of CitcomS in predicting critical Rayleigh
numbers for spherical harmonic degrees from 2 to 9 (note the
consistently small errors, all < 1%, for all the degrees). For

finite amplitude thermal convection problems the Nussult
numbers from CitcomS agree well with those previously
published results (Table 3). These are the Nussult numbers in
the steady state and are determined by solving the time-
dependent energy equation until the relative variation in the
Nussult number between two consecutive time steps is smaller
than 107,

2.4. Description of Models

We will present models with different viscosity structure:
constant viscosity, temperature-dependent viscosity, layered
viscosity, and a plate rheology. A nondimensional
temperature-dependent viscosity is given as [e.g., Ratcliff et
al., 1996]

n=Aexp[E(0.5-T)], 10)

where A can be a function of radius for simulating a layered
viscosity and E is the parameter controlling the magnitude of
viscosity variations due to temperature variations and is
equivalent to the activation energy. A viscosity at 7=0.5 with
preexponential constant A in the lower mantle is used to
define a Rayleigh number in (9).

For diffusion creep in olivine as determined from laboratory
studies [e.g., Karato and Wu, 1993], the activation energy is ~
300 KJ/mol. Studies of surface deflection of oceanic
lithosphere near seamounts suggest smaller activation
energies [Courtney and Beamount, 1983] particularly with
newly compiled data [Watts and Zhong, submitted, 1999]. The
activation energy implies a rapid increase in viscosity by
several tens of orders of magnitude from mantle to surface
temperatures. However, the high-viscosity regions are:
concentrated near the surface where deformation is controlled
by brittle rather than viscous deformation. Therefore we will
use relatively smaller activation energies to achieve moderate
viscosity variations (< 10°), which are also numerically
tractable. Since brittle deformation is only important at plate
margins, we represent plate margins with weak zones while
the rest of media is represented with layered and temperature-
dependent viscosity (Figure 1). The combination of weak
zones and temperature-dependent viscosity represents a

Table 2. Benchmarks for the Critical Rayleigh Number Ra,,

Spherical Harmonic Degree

2 3 4 5 6 7 8 9
Ra,, (CitcomS) 8875.0 7850.0 8875.0 11245 15050 20500 28000 37950
Ra, (L.S.A)* 8820.0 7880.0 8940.0 11350 15180 20630 28060 37820
Error, % 0.62. 0.38 0.73 0.93 0.86 0.63 0.21 0.34

* Ray,, for the linear stability analysis (L.S.A.) are from Chandrasekhar [1961]. Ra here are defined with the outer radius

of a spherical shell.
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Table 3. Comparison of Nussult Numbers Nu
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CitcomS Bercovici et al. [1989] Ratcliff et al. [1996]
Ra Nuygp Nuty Nty Nutpy Nuy,
2000 2.218 2.201 2.2507 2.2532 2.1740
7000 3.519 3.472 3.4657 3.5293 3.4423

For each case, Nussult numbers for both surface and bottom boundaries are listed. Ideally, they should be the identical. The
results for Bercovici et al. [1989] are from their AS code. Ratcliff et al., [1996] did not give Nussult numbers for bottom

boundary.

reasonable approximation to plate rheology [e.g., Davies,
1989; Gurnis, 1989]. In our models with plates the weak zones
are assumed to be 500 km wide and have a viscosity that is the
same as the average viscosity within the upper mantle (from
100 to 400 km in depth). The width of weak zones is ~ 2 times
" the thickness of thermal boundary layer in our models, and
this is chosen so that weak zones can effectively decouple
surface plates [King and Hager, 1990]. We also assume that
weak zones do not evolve with time. '

The thickness of the mantle is assumed to be 2867 km (the
nondimensional thickness is 0.45). This leads to &=10.974
in (9). Thermal expansivity, diffisivity, and heat production
rate are assumed to be constant. In models with internal
heating, the nondimensional heat production rate y is 60, and
this is equivalent to about half of heat production rate for the
Earth’s bulk mantle [Turcotte and Schubert, 1982]. We
integrate the models for at least four transit times to obtain
statistically stable solutions of flow and thermal structures.

To quantify our model results, we define divergence and
radial vorticity for surface velocity as [Forte and Peltier, 1987]

1 M.‘_%]’

5(6,0)=——

rsin@ 20 o) (b

9(sinBYV,
®(0,9) = %[M_%],

in® 08 o0 (12

where r, 0, and ¢ are the radial, latitudinal and longitudinal
coordinates, respectively, and V, and V, are the latitudinal and
longitudinal components of surface velocity. We define
residual temperature field as

8T (r,0,0) = T(r,e,(j))—L §T(r,0,0)sin0d0d0 (13)
4T 0,0

where the second term of the right-hand side is the average
temperature at radius r. This residual temperature is often used
to characterize 3-D thermal structure [e.g., Tackley, 1996]. To
better quantify the radial dependence of structure, we use the
temperature to define an average aspect ratio A, and length L
for downwelling and upwelling structures at each depth. In
defining A, we first identify individual upwelling and
downwelling structures at each depth. . A downwelling
(upwelling) structure is the region in which the temperature is
one third below (above) the average temperature at that depth
(the particular choice of one third for the threshold does not
influence the results significantly). Each downwelling
(upwelling) structure has a minimal separation of 5° between
themselves. Once a structure is determined, we can determine
its width and length (e.g., the maximum distance between any
two points within the structure) from which aspect ratio for

this structure can be computed. L and A, for downwellings
(upwellings) at this depth are the weighed average length and
aspect ratio for all the downwelling (upwelling) structures. A,
is unity if all the structures are cylindrical plumes.

3. Results

3.1. Models With Constant Viscosity

We first present two cases with constant viscosity and
internal heating at different Rayleigh numbers (Table 4). For
case 1 with Ra=2.43x10°, the internal heating rate determined
a posteriori from the average surface and bottom heat fluxes is
~ 60% (Table 4). The thermal structure for both downwellings
and upwellings varies with depth (Plate 1a). Near the surface,
the downwellings form long linear sheets that surround
upwelling plumes. However, the linear sheets break into
plume-like structure at relatively shallow depths. Near the
bottom of the mantle, the downwellings remain plume-like
and are surrounded by long linear upwellings (Plate la). Like
downwellings, the linear upwellings break into cylindrical
structures as they ascend from the CMB (Plate la). The
structural aspect ratio A, for downwellings is > 20 near the

surface but it decreases rapidly with depth to ~ 2. A, for
upwellings is symmetric with that for the downwellings

(Figures 2a and 2b).

The thermal structure is also dependent on Ra or the vigor of
convection [e.g., Tackley, 1996]. Case 2 differs from case 1 in
having a Ra that is 3 times higher. The higher Ra leads to
thermal structures with reduced wavelengths or spacings
between upwellings and downwellings (Plate 1b). Spectra of

Table 4. Model Parameters

Case Plates E N/ Mum Y Ra % H,
1 N 0 1 60 2.43E5 60 - 22.36
2 N 0 1 60 7.29E5 51 27.74
3 N 0 30 60 2.43E4 74 20.65
4 N 0 30 60 2.43E5 70 35.84
5 N 6.9078 1 60 7.29E5 31 19.15
6 N 6.9078 30 60 2.43E5 67 32.69
7 Y 9.2025 60 60 2.43E5 61 27.29
8 Y 0 60 60 4.0ES 61 22.22

E is the nondimensional activation energy; M,/M., is the ratio of the
lower mantle to upper mantle viscosities; yis heat production rate; Ra is
a Rayliegh number; { and H, are internal heating rate and surface
Nusselt number. Ra is defined by the lower mantle viscosity for layered
viscosity models (cases 3, 4 and 8). Ra for temperature-dependent
viscosity models (cases 5, 6 and 7) is defined by viscosity at 7=0.5 in the
lower mantle. Read 2.43ES5 as 2.43x10°,
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Plate 1. Isosurfaces for residual temperature for isoviscous (Plates 1a and 1b for cases 1 and 2, respectively),
layered viscosity (Plates 1c and 1d for cases 3 and 4, respectively), temperature-dependent viscosity (Plate le
for case 5), and layered viscosity coupled with temperature-dependent viscosity (Plate 1f for case 6). Yellow
isosurfaces represent 87=0.12 (i.e., above the average temperature), and blue isosurfaces represent 6T=-0.12,
except for Plate 1d in which the blue isosurfaces are for 6T=-0.08.
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Figure 2. Radial dependence of average structural aspect ratio A, for downwellings (Figures 2a, 2c, and 2e)
and upwellings (Figures 2b, 2d, and 2f) for cases 1-3, 5, 7, and 8. In Figures 2e and 2f, the dashed lines labelled
with 7s are for case 7 with 1/4 as the threshold in defining the structures. Figures 2g and 2h are the radial
dependence of average structural length L for downwellings and upwellings, respectively.

the temperature field show that power peaks at /=10 and 12
near the surface and the bottom of the mantle, respectively
(Figures 3a and 3b for cases 1 and ‘2, respectively).
Downwellings (upwellings) within the mantle in case 2 break
into plume-like structure quicker as they leave the thermal
boundary layers (TBL), as indicated by A, (Figures 2a and 2b).
With smaller Ra, Glatzmaier et al. [1990] and Ratcliff et al.
[1997] have found similar downwelling structure that extends
to a greater depth. Our results show that the depth to which
linear downwellings extend reduces with increasing Ra. The
variations of thermal structure with depth from our models are
also consistent with that found in 3D Cartesian models with
entirely internal heating at high Ra (~ 107) [Parmentier et al.,
1994].

In both cases 1 and 2 the average horizontal velocity V, is
similar in magnitude in the top and bottom TBL, implying
similar thickness for these two TBL (Figures 4a and 4b). Case
1 with smaller Ra has a smaller V, but higher mantle
temperature, compared with case 2 (Figure 4a).

3.2. Models With Layered Viscosity

Much attention has been given to the influence of a layered
viscosity structure on thermal structure [Zhang and Yuen,
1995; Bunge et al., 1996, 1997], because a weak upper mantle
explains the geoid anomalies and post-glacial rebounding data
[Hager and Richards, 1989; Mitrovica and Forte, 1997]. Cases
3 and 4 employ a layered viscosity structure in which the lower
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Figure 3. Radial dependence of normalized spectra for different cases. The left plots are the radial dependence
of maximum power. Thin-dashed, thin solid, thick-dashed, and thick solid contours are for 0.2, 0.4, 0.6, and

0.8, respectively.

mantle (>670 km in depth) is a factor of 30 stronger than the
upper mantle. Case 3 is identical to case 2, except that the
lower mantle viscosity is increased by a factor of 30 (Table 4).
Compared to case 2, the higher-viscosity lower mantle results
in significantly longer wavelength structure with downwelling
sheets extending to greater depths (Plate 1c). For case 3 with
74% internal heating, /=3 is the most significant wavelength
throughout the mantle (Figure 3c), and this wavelength is
much longer than that in case 2 (Figure 3b). The downwelling
sheets extend to at least 1700 km depth, while the structure of
upwellings is mainly cylindrical (Figures 2c and 2d).

The increased wavelength can be partially attributed to the
effectively reduced Ra with increased viscosity within the
lower mantle [Bunge et al., 1996]. The reduced critical
Rayleigh numbers for 2-D models with layered viscosity led
Bunge et al. [1997] to suggest that other mechanisms may
contribute to the longer wavelength flow. However, in the
layered viscosity models by Bunge et al. [1996], the lower
mantle viscosity was higher than the viscosity in isoviscous
models. This may weaken the conclusion on the role of a weak
upper mantle. Case 4 is identical to case 1 but has a factor of
30 weaker upper mantle. Although flow velocity in case 4 is
dramatically increased compared with that in case 1 (Figure

4d), the thermal structure in case 4 has much longer
wavelengths (Plate 1d and Figure 3d). Calculations in cases 1

and 4, therefore, provide a direct confirmation on the role of a
weak upper mantle in forming the long-wavelength structure.
The layered viscosity structure also has important effects on
the TBL thickness and averaged temperature profiles. For both
cases 3 and 4, V, is smaller near the bottom TBL than near the
top TBL (Figure 4d). This leads to a thicker TBL at the bottom
than that at the top (Figure 4c) and a colder mantle than

isoviscous models (Figures 4a and 4c). It is interesting to
notice that although case 3 has less vigorous convection and
the same heat production rate as case 2, the mantle temperature
in case 3 is smaller than that in case 2 (Figures 4a and 4c).
This is different from constant viscosity models in which
reduced convective vigor results in a hotter mantle if heat
production rate is the same (e.g., cases 1 and 2 in Figure 4a). A
weak upper mantle also introduces a strong subadiabatic
temperature gradient in the lower mantle (Figure 4c).

3.3. Models With Temperature-Dependent
Viscosity :

Creep deformation of silicates is thermally activated, and
the rheology of the mantle is expected to be strongly
temperature-dependent. The influence of temperature-
dependent viscosity is investigated with case 5 which includes
a temperature-dependent rheology with E=6.9078 and A=1
(equation (10)), which leads to a factor of 10° variations in
viscosity from T=0 to T=1. Ra=7.29x10°, defined by the
viscosity at 7=0.5, is nearly an order of magnitude higher than
that in Ratcliff et al. [1997]. Otherwise, case 5 is identical to
case 2 with internal heating. Compared to the isoviscous
model (case 2), the temperature-dependent rheology gives rise
to thermal structure with a much longer wavelength (Plate le),
consistent with previous studies [Ratcliff et al., 1996, 1997;
Tackley, 1996]. While the upwelling structure remains plume-
like, the plumes are smaller in radius and have larger heads
near the surface (Plate le and Figure 2d) compared to
isoviscous models (Plate 1b). At a relatively shallow depth,
there are significant variations in temperature along the strike
of the linear downwelling structure, and the linear structure
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Figure 4. Radial dependence of azimuthally averaged temperature (Figures 4a, 4c, 4e, and 4g) and horizontal
velocity (Figures 4b, 4d, 4f, and 4h) for cases 1-8 (case numbers are labelled). In Figure 4h the line labelled

with P is the average horizontal velocity for upwelling plumes from #=9. 25x10™ to 1=1.263x107%;

the lines

labelled with 7A and 7B are for the two calculations without buoyancy for upwellings and w1th constant

viscosity in the lower mantle, respectively.

becomes disintegrated at great depths (Plate le and Figures 5
and 2c¢). A, for downwellings is maximum at »=0.92 (i.e., 500
km depth) (Figure 2c), because the downwellings are wider at
shallow depths (Figure 5).

The average horizontal velocity V, at the bottom boundary
is about twice the value at the surface (Figure 4f), a
consequence of temperature-dependent viscosity that reduces
the viscosity in the bottom TBL. This results in a thinner
bottom TBL than the top TBL (Figure 4e). Compared to case 2,
bottom heat flux increases, but surface heat flux remains about
the same (Table 4). This leads to the higher average mantle
temperature (Figures 4e and 4a) and lower internal heating rate
in case 5 (Table 4). Case 5 has similar V, near the surface to

case 2 (Figures 4f and 4b), indicating a relatively mobile
surface. The long-wavelength structure and the relative large
surface V, are characteristic of the sluggish convection regime
with moderate viscosity variations [Tackley, 1996; Ratcliff et
al., 1997].

As either a temperature-dependent viscosity or a layered
viscosity with a weak upper mantle can produce long-
wavelength structure, it is interesting to investigate how the
combination of temperature-dependent viscosity and layered
viscosity influences the thermal structure. Case 6 is identical
to case 4 with layered viscosity except that temperature-
dependent viscosity with E=6.9078 is also included. The
combination of layered and temperature-dependent viscosities
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-Figure 5. The temperature fields at three different depths (Figures 5a, 5b, and 5c¢), surface velocity and its
divergence S, and radial vorticity @ (Figures 5d and 5 ) for case 5.

significantly reduces the dominant wavelength (Plate 1f and
Figure 3e), compared with that from the layered viscosity
model (Plate 1d and Figure 3d), indicating the important
influence of temperature-dependent viscosity. Similar results
were also reported based on 3-D Cartesian models at a smaller
Ra [Tackley, 1996]. For case 6 the high viscosity at the
shallow depths reduces the convective vigor significantly
compared with case 4 (Figure 4f).

Temperature-dependent viscosity produces toroidal motion
or radial vorticity at the surface (Figure 5e for case 5).
However, the amplitude of vorticity is < 20% of the
convergence (Figure 5d). This is significantly less than that in
observed plate motion [Hager and O’Connell, 1978]. In
addition, the surface motion is diffuse (Figure 5d) and
significantly different from piecewise constant angular
velocity observed for tectonic plates. This is consistent with
previous findings based on 3-D Cartesian models that
temperature-dependent rheology alone cannot produce plate-
like surface motions [Christensen and Harder, 1991].

3.4. Models With Plates and Variable Viscosity

The combination of plates and layered viscosity has a
dramatic influence on the flow, as we will demonstrate with
cases 7 and 8. For the rheology used in case 7, E=9.2025,

~the top 120 km, the upper mantle,

which gives rise to 10* viscosity variations due to temperature
variations; preexponential constants A are 3, 0.05, and 3 in
and lower mantle,
respectively. Ra defined by the viscosity in the lower mantle
at T=0.5 is 2.43x10° (Ra=2.43x10" if defined by viscosity at
the CMB). For this case, average surface velocity is ~ 1 cm/yr,
indicating that our Ra is still at least one order magnitude
smaller than the Earth. The nondimensional heat production
rate is 60 throughout the mantle, and internal heating rate is ~
61% (Table 4). Initial temperature increases linearly from zero
at the surface to 0.55 (i.e., average mantle temperature in case
5) at a depth of 120 km; 7= 0.55 from 120 km depth to 250 km
above the CMB, except within cold slabs; in the bottom 250
km the temperature increases from 0.55 to 1.0 at the CMB.
Initially, cold slabs with 7=0.47 are placed at depths from 120
to 400 km in current subduction zones.

We have integrated this model for more than seven transit
times. The distribution of subduction zones becomes very
different from the initial distribution with new downwellings
developed at plate margins that are previously of other types,
and upwellings also develop as the bottom thermal boundary
layer becomes unstable (Plate 2 and Figure 6). The
combination of a strongly temperature-dependent viscosity
and weak plate margins gives rise to ‘“plate-like” surface
motion with localized divergence and vorticity at plate
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Plate 2. Isosurfaces of residual temperature for case 7 at t=9.25x10* (Plates 2a and 2b) and case 8 at
t=1.187x10" (Plates 2¢ and 2d) with weak plate margins (green lines). The yellow and blue isosurfaces are for
8T=0.15 and 8T=-0.15, respectively.
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Figure 6. Temperature at three different depths at r=9.245x10™* (Figures 6a, 6¢c, and 6¢) and t=1.263x10"*
(Figures 6b, 6d, and 6f) for case 7 and at two different depths at t=1.187x107 (Figures 6g and 6h) for case 8.
Flow velocities at the surface (Figures 2a and 2b) and CMB (Figures 2e, 2f, and 2h) are also plotted with the
same scale. Plate boundaries are plotted in Figures 6c, 6d, and 6g. '

margins (Figures 6a, 6b, 7a, and 7b). There is as much power
in the divergence as in the vorticity in the surface motion, and
many plate margins have a mixture of vorticity and
divergence, both of which are consistent with observed plate
motion. The “plate-like” motion has an important influence
on the thermal structure within the mantle, as demonstrated in
previous two-dimensional models [e.g., Davies, 1989; Zhong
and Gurnis, 1994]. Our focus will be on general characteristics
of thermal and flow structure and their relationship to surface
plates.

Although time-dependent, the thermal structure in case 7
(Plate 2a and 2b at #=9.245x10“) has the following
characteristics. With surface plates the thermal structure is

predominated by long wavelengths directly related to the
scales of plates (Figure 3f and Plate 2). The downwellings have
linear structure initiating at the prescribed weak plate margins
and extending to great depths in the mantle (Plate 2a and
Figures 6a-6f). The upwellings originate at the CMB and have
a plume-like structure throughout the mantle. There are also
thermal anomalies associated with divergent plate boundaries
(i.e., spreading centers), but these anomalies only exist at
shallow depths (<200 km) (Plate 2b and Figures 6a, 6b and 2f).

The structural aspect ratio A, for downwellings is
significantly greater than 1 throughout the mantle, but A,
decreases steadily with depth and is insensitive to the
threshold used to identify the structure (Figure 2e). However,
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the decrease in A, with depth is primarily caused by the
increased width of downwellings because the average length L
for downwellings actually increases slightly with depth except
in the upper mantle (Figure 2g). The linear downwellings in
the mantle display a similar along-strike morphologic
structure to that of plate margins (Figures 6¢ and 6d), showing
that plate margins control the downwelling structure. These
coherent linear downwellings are significantly different from
that found in all previous cases without plates in which the
linear downwellings disintegrate at great depths (Figures 2a
and 2c). i

A, for upwellings is close to unity except near the surface
and CMB (Figure 2f), and the large A, near the surface and CMB
results from the linear structure for spreading centers at the
surface (e.g., Plate 2b) and linear upwelling structure near the
CMB (Figures 6e and 6f). Upwelling plumes can form under
either plate margins or plate interiors, particularly for large
plates like the Pacific (Plate 2 and Figures 6¢c and 6d). The
upwelling plumes form between cold regions at CMB (Figures
6e and 6f). As they ascend to the surface, the upwelling plumes
may become tilted if they are beneath plate interiors owing to
the shearing of global and plate-scale mantle flow,
particularly in the upper mantle where flow velocity is large
owing to the small viscosity (Plate 2 and Figure 4h).

From #=9.245x10 to t=1.263x107, there is a significant
change in morphology and locations of downwellings and
upwellings (Figures 6a-6f). During this period, new plumes
form, while other plumes fade away. While the surface plate
(e.g., the Pacific) travels over a distance of ~ 6000 km, the
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upwelling plumes have relatively small lateral motion
(Figures 6¢ and 6d), although the average flow velocity at the
CMB is almost 70% of that at the surface (Figure 4h). We have
tracked the lateral motion for upwelling plumes at different
depths from 1=9.245x10™ to #=1.263x10" (Figures 8a-8c).
The upwelling plumes show quite coherent lateral motion at
depths from 800 to 2370 km (Figures 8a-8c). The average

horizontal velocity for the upwelling plumes Vhp tends to

decrease with the depth, which is opposite to the average
horizontal velocity in the lower mantle (Figure 4h). Near the
CMB, Vh” is about one fifth of the surface plate motion and

one third of the average velocity of CMB (Figure 4h).
However, at the relatively shallow depths, Vh” is nearly one

third of surface plate motion (Figure 4h). There is a significant
variability in the behaviors of mantle plumes. From
1=9.245x10* to t=1.263x10", some plumes (e.g., P2 in
Figure 8a) are nearly stationary even if they are under fast
moving plates, while others (e.g., P3 in Figure 8a) may
display considerable motion.

In order to better understand the formation and motion of
upwelling plumes, we re-solve flow field (equations (6) and
(7)) at t=9.245x10* with the same thermal structure but’
excluding the hotter-than-average structure in the lower mantle
(i.e., > 670 km depth). The surface motion from this
calculation (7A) without upwelling plumes is similar to that
from case 7 except the amplitude is slightly reduced by ~ 10%
(Figures 6a and 9a), but the reduction in velocity at the CMB is
much larger (Figures 4h, 6e and 9b). This indicates that the
buoyancy of downwellings controls the surface motion, while
the upwelling plumes contribute significantly to the motion at
the CMB. The gross flow structure that diverges from cold
regions at the CMB from calculation 7A is quite similar to that
in case 7 (Figures 6e and 9b). Many upwelling plumes in case
7 tend to form in regions with relatively small horizontal
velocities (or stagnant points) in calculation 7A (Figures 9c
and 9d). To first order the buoyancy for upwellings does not
significantly influence the horizontal motion in the vicinity
of upwellings (Figures 9c-9f). However, the plume buoyancy
may substantially alter the horizontal and vertical velocities
within plumes (Figures 9e and 9f), and such plume-induced
motion may stabilize the plumes. This may explain why the
average horizontal motion of upwelling plumes decreases with
the depth and becomes relatively stationary near the CMB
(Figure 4h). This may also explain why some plumes are
stationary over a long time and are nearly vertical throughout
the mantle (e.g., P2 in Figure 8a).

We also compute the flow field from the thermal structure at
9.245x10* in case 7 but with a constant viscosity in the lower
mantle (i.e., the viscosity at 7=0.5). The general flow pattern
at the surface and CMB from this calculation 7B (Figure 9g) is
quite similar to that in case 7 with temperature-dependent
viscosity (Figure 9d). However, the amplitude of motion is
increased near the surface and within much of the lower mantle
except near the CMB where the absence of temperature-
dependent viscosity reduces the motion (Figure 4h).
Moreover, the vertical flow velocity for upwelling plumes is
reduced by more than a factor of 4, compared with that in case
7 (Figures 9f and 9h), indicating the influence of temperature-
dependent viscosity on the dynamics of plumes including their
trajectory.

Finally, we present case 8 with the plates and layered
viscosity  structure but without temperature-dependent
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Figure 8. Thermal structure at =9.245x10™ for Case 7 at depths of 800 km (Figure 8a), 1900 km (Figure 8b),
and 2370 km (Figure 8c) and the locations of upwelling plumes at these depths from r=9.245x10™ to
1=1.263x10". Figure 8d shows the trajectory for three upwelling plumes that are labelled in Figure 8a.

viscosity. In this case the viscosities are 30, 0.1, 0.0333, and
2 in the top 120 km, weak zones, the upper mantle, and lower
mantle, respectively. Ra defined by the viscosity in the lower
mantle is 4x10°. For Case 8, the average flow velocity is
reduced by ~ 30% compared with that in case 7 with
temperature-dependent viscosity (Figure 4h). There are two
important changes in the thermal structure compared to case 7.
The number of upwelling plumes is reduced significantly; the
linear downwelling structure becomes disintegrated at the mid-
mantle depths (Plates 2c and 2d and Figures 6g, 6h, and 2e).
Although the convection is less vigorous (Figure 4h), because
the downwellings have the same strength as the background
mantle, linear downwellings have a greater tendency to
disintegrate compared to the model with temperature-
dependent viscosity.

4. Discussions

Understanding the origin of the long wavelengths observed
in seismic tomography [e.g., Su and Dziewonski, 1992; van
der Hilst et al., 1997; Masters et al., 1996] has been a goal in
geodynamics. Long-wavelength thermal structure can be
produced with a layered viscosity structure with a weak upper
mantle [Zhang and Yuen, 1995; Bunge et al., 1996, 1997],
moderately temperature-dependent viscosity [Tackley, 1996;
Ratcliff et al., 1997], surface plates [Davies, 1988], and
endothermic phase changes [Tackley et al., 1993; Tackley,
1996]. We have examined the first three scenarios.

A temperature-dependent  rheology  with  viscosity
variations of 10° at Ra=7.29x10° (defined by the viscosity at
T=0.5) results in significantly longer wavelength (Plate le),
consistent with spherical models at smaller Ra [Ratcliff et al.,
1996, 1997] and Cartesian models [Tackley, 1996].

Comparison of our model with those of Ratcliff et al. [1996]
suggests that the increase in wavelengths due to a temperature-
dependent viscosity does not strongly depend on Ra. Layered
viscosity structure leads to longer wavelengths (Plate 1d and
Figure 3d) [Zhang and Yuen, 1995; Bunge et al., 1996, 1997].
However, this increase in wavelengths due to the layered
viscosity structure becomes less significant when temperature-
dependent viscosity is included (Plate 1f and Figure 3e).
Tackley [1996] found a similar trend in Cartesian models at
smaller Ra. This may be because temperature-dependent
viscosity gives rise to large viscosities at shallow depths that
offset the “lubrication” of a weak upper mantle in layered
viscosity models. This clearly demonstrates the sensitivity of
thermal structure on mantle rheology, particularly the
temperature-dependent viscosity.

Although with moderately temperature-dependent viscosity,
convection models produce long-wavelength structures,
témperature-dependent viscosity models are limited in two
important respects. First, the models cannot produce “plate-
like” surface motion (Figures 5d and Se). Second, if a realistic
activation energy is used, the large viscosity variation results
in stagnant lid convection with dramatically reduced
wavelengths of internal convection, as demonstrated by

Ratcliff et al. [1997] and in Cartesian models by Christensen
[1984], Tackley [1993], and Moresi and Solomatov [1995]. Of
course, the extremely large viscosity at shallow depths for the
Earth may be irrelevant because deformation at shallow depths
is accommodated through other mechanisms such as faulting.
Effective viscosity may be used to approximate faulting
deformation. ' In our models with prescribed weak plate
margins, “plate-like” surface motion and long-wavelength
structure are produced (Plate 2 and Figure 7).

We have investigated the morphology of downwellings and
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Figure 9. Flow velocity at the surface (Figure 9a) and CMB (Figure 9b) for calculation 7A. Also plotted in
Figures 9a and 9b are the thermal structure at two different depths. Figures 9¢ and 9d are the horizontal velocity
at CMB and thermal structure at a depth of 2700 km for regions outlined in Figures 9b (calculation 7A) and 6e
(case 7), respectively. Figures 9e and 9f are for horizontal (V,) and radial (V,) velocities at a depth of 1900 km
for a region surrounding a upwelling plume (see outline in Figure 6¢) for calculation 7A and case 7,
respectively. Figures 9g and 9h show the horizontal velocity at CMB for the same regions outlined in Figure
6e, and horizontal (V,) and radial (V,) velocities at a depth of 1900 km for a region surrounding a upwelling
plume (see outline in Figure 6c¢) for calculation 7B. In Figures 9a and 9b, velocities have the same scale as in

Figure 6.

upwellings in the mantle. In isoviscous models, cold
downwellings form linear structure only at shallow depths, and
they break into plume-like structure at great depths. The depth
at which the linear structure breaks down depends on the vigor
of convection or Ra and is shallower for larger Ra (Plates la
and 1b and Figure 2a). The upwelling structure is symmetric to
the downwellings in that the linear upwelling structure near
the CMB turns into plume-like structure as the hot fluid

ascends (Plates la and 1b and Figures 2a and 2b). Similar
structural changes for upwellings and downwellings are also
observed in temperature-dependent viscosity models, although
cold downwellings owing to their high viscosity, can be
maintained over a longer distance than the linear upwellings
(Plate 1e and Figures 2c and 2d). These models show that in the
absence of surface plates the dominant structure in the mantle
away from thermal boundary layers is plume-like.
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At low Ra, downwelling and upwelling structures are
asymmetric with plume-like upwellings and linear sheet
downwellings [Bercovici et al., 1989], similar to case 3 (Plate
Ic). The upwellings and downwellings with these structures are
mutually compatible. The asymmetry has been attributed to
the spherical shell geometry (i.e., smaller surface area at
smaller radius) [Bercovici et al., 1989]. However, the
asymmetry can only be attained at low Ra, and at high Ra the
symmetry to some extent is recovered (Plates la and 1b and
Figures 2a and 2b). This is because at high Ra the vigor of
convection tends to homogenize the thermal structure and the
long linear sheet downwelling structure may give way to
plume-like structure in order to more efficiently transfer the
heat. When cold downwelling plumes reach the CMB, they
push aside hot fluids. The hot fluids merge and, in many cases,
form a linear structure at the CMB. This recovery of symmetry
at relatively high Ra can also be seen in the spherical models
by Tackley et al. [1993]. The change in downwelling structure
is also consistent with previous studies with smaller Ra
[Glatzimaier et al., 1990; Ratcliff et al., 1997] and 3-D
Cartesian models with higher Ra [Parmentier et al., 1994].

In models with relatively realistic rheological structure
(i.e., surface plates and layered and temperature-dependent
viscosity) the dominant structure for upwellings is plume-like,
similar to models without plates (Plate 2 and Figure 2f). There
are also linear thermal anomalies along the spreading centers,
a consequence of ‘“plate-like” surface motion, and these
thermal anomalies cannot be traced down to 200 km depth
(Plate 2 and Figure 2f). The downwellings show stronger
linearity and extend into a great depth in the mantle, mainly
due to the prescribed weak plate margins that facilitate the
subduction with linear structure (Plate 2). Whether the linear
downwelling structure can be maintained throughout the
mantle while they descend may depend on mantle rheology. In
models  with  temperature-dependent  viscosity, the
strengthened linear downwellings can largely maintain their
structure throughout the mantle (Plate 2 and Figures 2e and
2g), although it is unclear how this result will be influenced by
increased Ra, which tends to homogenize the structure.

Thermal structure from our models with plates explains well
the seismic observations, including the shallow anomalies
associated with spreading centers [Zhang and Tanimoto, 1992,
Masters et al., 1996], plume structure beneath hotspots [e.g.,
Wolfe et al., 1997], and the linear structure beneath subduction
zones that extends at least to the depth of mid-mantle [van der
Hilst et al., 1997; Grand et al., 1997]. Recent seismic
tomography studies show that linear downwellings appear to
become disintegrated at the great depths (>1800 km) [van der
Hilst and Karason, 1999]. It has also been suggested that
subducted slabs can keep the morphology that they acquire at
trenches for quite a long time as they descend into the lower
mantle [van der Voo et al., 1999]. Interpretation of seismic
images may hinge on our understanding of the effects of
rheology and composition of the mantle on the mantle
structure [Kellogg et al., 1999].

Our dynamic models with plates also demonstrate that
surface motion is mainly determined by buoyancy force
associated with downwellings (Figures 6a and 9a). This is
because plate-scale flow associated with subduction of top
thermal boundary layer transfers most of the heat out of the
mantle, whereas the heat transfer associated with upwelling
plumes is secondary, a fundamental feature for the Earth
dynamic system [Davies, 1988; Davies and Richards, 1992]
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that is captured in our models. This result also supports the
instantaneous flow models for plate motion in which only
subducted slabs are included as driving forces [Lithgow-
Bertolloni and Richards, 1998].

By controlling surface plate motion and global flow field,
buoyancy for downwellings to first order determines where
upwelling plumes form at the CMB. Upwelling plumes tend to
form at the stagnant points predicted from the buoyancy of
downwellings, and these stagnant points are often located
between downwellings (Figures 6e, 9b-9d). As a result,
upwelling plumes can form under spreading centers or plate
interiors, particularly for large plates like the Pacific (e.g.,
Figure 6c). This may explain the apparent anticorrelation
between distribution of hotspots and fast seismic wave speed
anomalies in the lower mantle [Richards et al., 1988;
Steinberger and O’Connell, 1998] if these fast anomalies
represent cold downwellings. The horizontal motion in the
vicinity of the upwellings is not very sensitive to the
buoyancy of upwellings (Figures 9¢ and 9f). Therefore the
horizontal migration of upwellings to first order is influenced
by mantle flow determined by the slab buoyancy, as suggested
by Steinberger and O’Connell [1998].

However, we have also observed plumes that in spite of
under fast moving plates appear insensitive to global flow and
can stay stationary in the mantle over a long time (e.g., P2 in
Figure 8a), possibly because these plumes can produce
significant localized flow to reduce the influence of the global
flow. For well-established upwelling plumes the combination
of temperature-dependent viscosity and high plume
temperature may yield vertical plume velocity that is much
larger than the plate motion (Figure 9f). The vertical velocity
of upwelling plumes can be greatly enhanced with the
coupling of viscous heating and temperature-dependent
viscosity [Larson and Yuen, 1997]. The formation of plumes
at stagnant points on the CMB and the possibly strong
localized flow induced by plume buoyancy, temperature-
dependent rheology, and viscous heating may contribute to
the observed stationarity between hotspots, although the high
viscosity lower mantle may also play a role [Steinberger and
O’Connell, 1998]. Clearly, more studies that include large-
scale plate motion, realistic rheology, and plume buoyancy
are needed in order to understand the plume dynamics better.

It should be pointed out that our models with plates have
two unrealistic aspects: symmetric subduction and prescribed
weak plate margins. Asymmetric subduction or one-sided
subduction observed for the Earth may be due to the thrust
faults that are not considered yet in our models. This should be
considered in the future, as in Cartesian models [Zhong et al.,
1998]. The migration of plate margins, especially for
converging margins, may be important for the dynamics of
subducted slabs [Gurnis and Hager, 1988; Kincaid and Olson,
1987; Zhong and Gurnis, 1995]. However, the motion of
converging margins is typically smaller than the motion of
plates [Jarrard, 1986]. We believe that it will not significantly
change our main results. In addition, the radii of upwelling
plumes in our models are large because the models use
relatively small Rayleigh numbers. High-resolution models at
higher Ra with a better physical treatment of plate margins
and possibly different compositions may be needed to
examine how linear downwelling structure evolves with depths
and how upwelling plumes are influenced by downwellings and
surface plate motion. Future models also need to consider the
effects of compressibilty, which may also increase the
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wavelengths of mantle structure, as demonstrated in 3-D
Cartesian models [e.g., Tackley, 1996].

5. Conclusions

We have investigated how.the mantle thermal structures
including both the scales and morphology depend on heating
modes, vigor of convection, and viscosity structure including
layered viscosity, temperature-dependent viscosity, and
surface plates in 3-D spherical models of mantle convection.
We find that in the absence of surface plates either a layered
viscosity with a weak upper mantle or temperature-dependent
viscosity with moderately large activation energy can produce
long-wavelength structures in the mantle, consistent with
previous studies with temperature-dependent viscosity
[Tackley, 1996] and layered viscosity models [Zhang and
Yuen, 1995; Bunge et al., 1996]. However, combining the
layered viscosity structure with a temperature-dependent
viscosity results in structure with significantly shorter
wavelengths. Our models confirm that the dominant
wavelength of thermal structure within the mantle is mainly
controlled by the surface plates [Davies, 1988].

Our models with significant internal heating, layered and
temperature-dependent viscosity, and surface plates explain to
first order the structure revealed from seismic tomography. Our
models show that hot upwellings initiate at core-mantle
boundary (CMB) with linear structures, and as they ascend, the
linear upwellings change into quasi-cylindrical plumes. Linear
upwelling structures are generated at shallow depths (<200 km)
in the vicinity of diverging plate margins due to surface plate
motion. Linear sheets are the predominant structure for cold
downwellings that originate at converging plate margins. The
evolution of linear downwellings as they descend may depend
on the rheology of the mantle. A temperature-dependent
viscosity strengthens the cold downwellings and therefore
helps maintain linear downwelling structure in the mantle.

Our models also show that downwellings control not only
surface plate motions but also the locations of upwellings.
Upwellings tend to form at stagnation points on the CMB
predicted solely from the buoyancy forces of downwellings,
which causes the horizontal motion of upwelling plumes to
decrease with depth. This explains the anticorrelation between
hotspot distribution and fast seismic wave speed anomalies.
Although downwellings to first order also determine the
horizontal motion of upwelling plumes, plumes may produce
significant localized flow to reduce the influence of global
flow on their trajectories. With the tendency of the plume
formation in stagnation regions on the CMB this may also
have important implications to the observed stationarity of
hotspots.

Appendix A: Spherical Finite Element Analyses
for the Stokes’ Flow

A Galerkin formulation for incompressible Stokes' flow
(i.e., equations (6) and (7)) can be written as [Hughes, 1987]

j'qu,»’idV=0, (Al)

j'w,-,jnui,jdV - j w,”PS,]dV = JSng,S,rdV + J WihidS N (A2)

where g and wj are the interpolation functions for pressure and
velocity, respectively.
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Stiffness matrix is derived from the evaluation of strain
energy [Hughes, 1987]

[w; mu; ;dV = [e(w)" De(u)dv, (A3)
where
dug u
—3 4
5 0 r
U
¢6p 1 Oy | o cot® W
rsin® d¢ r r
‘g0 ou,
| ér|_ or
8(u) = eeq) = 1 %_ uq) Cote +%— ) (A4)
eor rsin® 0@ r 70 |
cor Quy Uy | Oy
¢ or r ro@
Lty Oy
rsin® ¢ r  Or

and D is a diagonal matrix with diagonal elements n(2, 2, 2,
1, 1, D.

We use isoparametric elements, and the velocities in each
element can be related to nodal velocities with shape function
N

a

ug eg-ey eq-e’ 4

a a
ee~eq, ue "ﬁ
— a a a a|_ a
Uy —%Nu ep-eg ey-eq ey-ep |uy |=XN,Clug |, (AS)
a
u, e, ey e.eq e.e |u uy

where e; is the unit vector in i direction; the superscript a
represents the nodal values; the matrix C is approximately a
unit matrix for elements far away from the two poles, but the
off-diagonal terms are significant for elements near the poles
(i.e., 6=0 and w).

Substituting (AS) into (A4) leads to

e) =Y Biu¢

it > (A6)

where B matrix is a 6x3 matrix. The strain energy (A3) can be
written as

[ew)T Deu)dV = 3, w4 Y. (] BEDy Bl dV b, . (A7)
a b .

The elemental stiffness matrix for node a and b is a 3x3 matrix
and can be expressed as

K = [B%DyBfh,dV. (A8)

The pressure term involves [w;;PdV. The divergence of

velocity is

W = ow, 2w, N owg N cotOwg . 1w,

. A9
or r  ri@ r rsin® 0@ (A%

Again using (AS), the divergence within an element can be
expressed as
Gf
wi’i=2(wg,w$,wf) G3 |.
a Gg

(A10)

"Therefore
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Gt
G4 |Pav.
G§

j'wi’iPdV:Z(wg,w(‘s,wf)j (A11)
a

The force term involves [3pgw;d;.dV, and with (A5) it can
be expressed as

[8pgw,dV =X w{[N,C38pgdV, (A12)
a
where C;; is the last row of C matrix in (AS5).
Finally, after substituting (A7), (Al11), and (A12), we have a
matrix equation [Hughes, 1987; Moresi and Gurnis, 1996]

o ole)lo)

We use a two-level Uzawa algorithm to solve this matrix
equation to obtain the velocity and pressure fields [Moresi and
Gurnis, 1996].

(A13)

Appendix B: A Full Multigrid Solver and
Parallel Computing

In the original Cartesian Citcom, an efficient multigrid
solver is used to solve the velocity field with a Uzawa
algorithm [Moresi and Gurnis, 1996]. This code has been
ported onto parallel computers with the standard Message
Passing Interface, MPI [Zhong et al., 1998]. CitcomS uses a
very different design for numerical grids because of the
spherical geometry (Figure 1), whose design was partially
influenced by the mesh in another mantle convection code,
Terra [Baumgarder, 1985]. Parallelism is naturally embedded
for this type of numerical grid design [e.g., Baumgarder, 1985]
because exchange of information is necessary between
adjacent blocks in order to carry out the calculations even on a
single-processor workstation.

In addition to parallel computing, CitcomS also
implements the full multigrid algorithm [Press et al., 1992]
coupled with a consistent projection scheme. We also notice
that a different full multigrid algorithm was developed for a
Cartesian Citcom by Moresi and Salamotov [1998]. With the
consistent projection scheme we consider the effects of
volumes of elements on the smoothing projection from one
level of grids to another, because the coefficients in matrix
equations at different grid levels in the finite element method
are directly scaled with the volume of elements. We have found
that for Cartesian models with either temperature-dependent
viscosity and isoviscous structure the full multigrid algorithm
with the consistent projection scheme can lead to a speedup of
at least a factor of 3 compared to the original Citcom. In
implementing the full multigrid - algorithm for CitcomS we
treat each block of grids separately (e.g., 12x2"x2"x2");
consequently, special treatment for boundary nodes between
each block is needed to ensure the convergence. We find that
the Jacobi iteration for boundary nodes and Gauss-Seidel
iteration for interior nodes work quite well.

Owing to different requirements for the parallel computing
and the multigrid algorithm, merging them together has been
quite challenging. An efficient multigrid algorithm requires
calculations at not only fine but also coarse grids, while
effective parallel computing prefers a computational domain
that has a large ratio of volume to surface area. This means that
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parallel computing becomes less efficient for calculations at
the coarse grid level. However, we find that parallel computing
is always beneficial even for our full multigrid algorithm.
Benchmarks and comparisons have proven that CitcomS
combines together the accuracy, efficiency, and robustness
and is a very useful tool for studying global geodynamic
problems.

Appendix C: Definitions of Benchmark Problems

We will define the three benchmark ~problems. The
benchmark results are presented in Tables 1 to 3 and are
discussed in section 2.3. The first benchmark problem only
tests the Stokes’ flow in which equations (6) and (7) are
solved. The inner radius r,= 0.55, and the outer radius r, = 1.
The driving force is

r+

T=58(r— 2r”)Y;m(9,(p),

Cn

and Ra= 1. Free slip boundary conditions are applied on both
surface and bottom boundaries. For this problem, propagator
matrix techniques can be used to solve (6) and (7) analytically
[e.g., Hager and O’Connell, 1981]. The numerical solutions
are straightforward with the input T and Ra.

The second benchmark problem is on the determination of
critical Rayleigh numbers. Critical Rayleigh numbers are the
Rayleigh numbers at which the flow is unstable to thermal
perturbations. For this problem, equations (6), (7), and (8)
need to be solved. Critical Rayleigh numbers can be
determined with linear stability analyses [Chandrasekhar,
1961]. Critical Rayleigh numbers at different spherical
harmonic degrees have been given for bottom-heated
isoviscous flows in a spherical shell with free-slip and
isothermal boundary conditions at r, = 0.50 and r, = 1, and
gravity that is linearly dependent on the radius. The critical
Rayleigh numbers for each harmonic degree can also be
determined from numerical solutions [e.g., Zhong and Gurnis,
1993].

The third benchmark problem concerns thermal convection
with finite amplitude. For this problem, we will solve
equations (6), (7), and (8) at Rayleigh numbers significantly
larger than the critical Rayleigh numbers. Because no analytic
solutions exist for this problem, we compare our results
(Nussult numbers) from CitcomS with previously published
results by Bercovici et al. [1989] and Ratcliff et al. [1996].
Two calculations at different Rayleigh numbers have been
performed for bottom-heated isoviscous flows with free slip
and isothermal boundary conditions at r; = 0.55 and r, = 1, and
constant gravitational acceleration within the shell.
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