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Dynamics of crustal compensation and its influences
on crustal isostasy
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Abstract. Deviation from isostasy is commonly believed to be caused by the strength of the
Earth's lithosphere. An analysis of crustal compensation dynamics suggests that the deviation may
have a dynamic origin. The analysis is based on analytic models that assume that (1) the medium
is incompressible and has a layered and linear viscoelastic rheology and (2) the amplitude of
topography is small compared with its wavelength. The models can describe topographic
relaxation of different density interfaces at both small (e.g., postglacial rebound) and large time-
scales. The models show that for a simple crust-mantle system with topography at the Earth's
surface and Moho representing the only mass anomalies, while the crust always approaches the
isostatic state at long wavelengths (>800 km), crustal isostasy may not be an asymptotic limit at
short wavelengths, depending on crustal and lithospheric rheology. For a crust with viscosity
smaller than lithospheric viscosity, at wavelengths comparable with widths of orogenic belts (i.e.,
<300 km), the crust tends to approach a state with significant overcompensation (i.e., excess
topography at the Moho) within a timescale of about 107 years, and this characteristic time
depends on wavelengths and crustal viscosity. This overcompensation is greater for weaker crust
and stronger lithosphere. A thicker crust or lithosphere also enhances this overcompensation. If
crustal and lithospheric viscosities are both large and comparable, the asymptotic state for the
crust displays a slight undercompensation. For an elastic and rigid upper crust, the crust eventually
becomes undercompensated after a characteristic decay time of topography at the Moho. The
characteristic time is dependent on viscosity and thickness of the lower crust. The deviation from
isostasy arises because these viscosity structures result in a ratio of vertical velocity at the surface
to vertical velocity at the Moho which in the asymptotic state for short wavelengths differs from
the ratio of density contrast at the Moho to that at the surface.

1. Introduction

Topography on the Earth's surface is directly related to
crustal and mantle dynamics, which include crustal
compensation, thermal subsidence [Parsons and Sclater,
1977], and viscous coupling of subcrustal mass anomalies
[Morgan, 1965; Hager and Richards, 1989; Gurnis, 1993]. On
continents, distinct topographic features including mountain
belts are dominated by variations in crustal thickness through
crustal compensation. Crustal compensation is effective in
producing topography because of the proximity of crust-
mantle boundary (i.e., Moho) to the Earth's surface and the
large crust-mantle density difference. Complete crustal
compensation (i.e., local Airy isostasy) is often assumed in
continental dynamic models [England and McKenzie, 1982;
Wdowinski and O'Connell, 1991; Jones et al., 1996] and in
retrieving continental dynamic topography (E.J. Vidale and W.D.
Mooney, The Earth’s topography: The influence of the crust and the
mantle, submitted to Nature, 1996).

Isostasy is often defined as a condition or state of
lithosphere under which no horizontal gradient in the
lithostatic pressure exists below a certain depth (e.g., the
depth of lithosphere) [e.g., Daly, 1940], although isostasy
can be defined in other ways [Dahlen, 1982]. If only the mass

Copyright 1997 by the American Geophysical Union.

Paper number 97JB00956.
0148-0227/97/971B-00956$09.00

anomalies associated with the two major density interfaces in
the lithosphere (i.e., the Earth's surface and Moho) are
considered, the isostasy would actually mean crustal isostasy
which is possibly the most frequently used definition of
isostasy. Admittedly, continental topography can also be
partially compensated by other mass anomalies within
lithosphere [e.g., Banks et al., 1977, Wernicke et al., 1996].
By measuring gravity and topography, one can check whether
isostasy is satisfied as a condition for a given region.
Although observations on North America [Daly, 1940;
Dorman and Lewis, 1970; Banks et al., 1977] and Australia
[Zuber et al., 1989] show that crustal isostasy explains long
and intermediate wavelength Bouguer's anomalies, there are
deviations from isostasy at short wavelengths (<400 km) in
orogenic belts including Tibet [Jin et al., 1994], eastern Tian
Shan [Burov et al., 1990], and the Appalachians [McNutt,
1980]. It has been long hypothesized that if lithosphere
deviates from isostasy, the lithosphere will adjust itself to
approach the isostatic state [Daly, 1940]. Postglacial rebound
in Fennoscandia is an example of this isostatic adjustment
[Daly, 1940].

Two mechanisms may cause crust to deviate from isostasy,
even if only the mass anomalies at the Earth's surface and
Moho are considered. First, the Earth's top layer may have a
finite strength allowing it to permanently support deviatoric
stresses at wavelengths comparable to elastic flexural
wavelength of the top layer [Barrell, 1914; Daly, 1940;
Jeffreys, 1970]. This mechanism can be conveniently modeled
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with a thin elastic plate floating on an invisid medium [Gunn,
1943; Heiskanen and Vening-Meinesz, 1958; Turcotte and
Schubert, 1982]. Second, Artyushkov [1974] indicated that
because of the asymmetry in crustal compensation resulting
from different density contrasts on the surface and Moho, a
crust even in the state of isostasy may have a significant
deviatoric stress (i.e., a nonequilibrium state), and the crust
tends to be undercompensated at shortwavelengths. In
essence, Artyushkov's [1974] analyses questioned the validity
of isostasy as a trend for lithosphere at short wavelengths.

The thin elastic plate model, combined with observed
gravity and topography, has been extensively applied in
many different regions to examine the isostasy and to infer
lithospheric strength including stress and thickness. The
inferred stress is often several kilobars in oceanic regions near
seamounts and trenches [Watts and Talwani, 1974], which
appears unrealistically large [Kanamori, 1980]. However, it
has been found that the gravity and topography data can be
explained equally well with other models employing plastic-
elastic or viscous rheology but with significantly smaller
stresses [Liu and Kosloff, 1978; DeBremaecker, 1977; Melosh
and Raefsky, 1980; Lambeck, 1980]. More fundamentally,
these plastic-elastic or viscous models imply that the
lithosphere should deform dynamically under the high stress,
contrary to the assumption of thin elastic models. Inferred
elastic plate thicknesses range from zero to over 100 km for
different regions [Watts et al., 1980; McNutt, 1980; Zuber et
al., 1989; Bechtel et al., 1991]. The inferred elastic plate
thickness on the North American plate appears smaller for
tectonically more active and higher heat flow regions (e.g.,
western United States) [McNutt, 1980; Bechtel et al., 1991].

Laboratory studies on rock deformation have significantly
advanced our understanding of mantle and crust rheology in the
last two decades [Byerlee, 1978; Brace and Kohlstedt, 1980;
Carter and Tsenn, 1987; Karato and Wu, 1993]. The upper
crust, due to its lower temperature, may be dominated by brittle
deformation. If stress is large, the upper crust displays
significant vertical and horizontal deformation which are
essential for mountain-building. If stress is smaller than a
finite strength of crust (or faults), possibly in old and
tectonically stable continental areas with small amplitude of
topography, the stress may be supported by crust without
producing any deformation. The lower crust and lithospheric
mantle may behave as ductile flow under their temperature and
pressure conditions. On continents, owing to the difference in
temperature and composition between the lower crust and
lithospheric mantle (i.e., quartz for the lower crust and olivine
for mantle), the lower crust may be significantly weaker than
lithospheric mantle, depending on heat flow [e.g., Kusznir and
Matthews, 1988; Bird, 1991].

This multilayered structure with different deformation
mechanism is significantly more complex than elastic plate
models which implicitly assume a thin elastic layer overlying
an invisid asthenosphere. Consequently, it is essential to
understand how the multilayered structure of lithosphere and
mantle influences crustal compensation and isostasy, so often
considered with only thin elastic plate models. This is the
main objective of this study. Previously, the influence of a
weak lower crust on orogenic evolution has been considered in
continental dynamic models [Kusznir and Matthews, 1988;
Bird, 1991; Avouac and Burov, 1996]. By using semianalytic
models that treat the upper crust as a thin elastic plate and the
lower crust and mantle as a viscous medium, Kusznir and
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Matthews [1988] showed that a weak lower crust could result in
a flat Moho under orogenic belts, resembling the crustal
structure under old mountain belts such as the Caledonides of
Europe. Models that include crust and mantle with viscous
rheology have also been used to study stress field in
lithosphere [Fleitout and Froidevaux, 1982], topographic
relaxation on Venus [Grimm and Soloman, 1988; Bindschadler
and Parmentier, 1990], and tectonics of continental collision
zones [Lenardic and Kaula, 1995].

In this paper, an analytic model coupling crust and mantle
with a Maxwellian rheology is formulated to examine crustal
compensation for different rheological structure. The
equations of the mass and momentum conservation are solved
to obtain the time evolution of topography at the top, Moho,
and bottom boundaries, as well as the flow field, for any given
initial topography at these density boundaries. The
viscoelastic rheology naturally incorporates horizontal
crustal deformation and elastic strength of highly viscous
layers. The models indicate that at wavelengths comparable to
width of orogenic belts (<300 km), the state of isostasy may
be not the asymptotic limit for the crust and that the crust may
approach a state with significant overcompensation or
undercompensation on the Moho, depending on crustal and
lithospheric rheology. The mechanism resulting in the non-
isostatic state is different from that proposed by Artyushkov
[1974]. The results for the cases with an effectively elastic
upper crust are consistent with those from Kusznir and
Matthews [1988]. In what follows, first, the basic formulation
will be presented; second, results on crustal compensation for
different models will be shown; finally, I will discuss the
implications of the results to the Earth.

2. Physical Models and Analytic Approaches

2.1. General Description of Models

The models are in a two-dimensional Cartesian geometry
bounded by two free surfaces (i.e., zero normal and shear
stresses) at the top and bottom boundaries representing the
Earth's surface and core-mantle boundary (CMB), respectively
(Figure 1). The medium is assumed to be an incompressible
viscoelastic fluid with a Maxwellian rheology and with
arbitrarily layered elastic and viscosity structures. For
simplicity, the models include two density layers (i.e., crust
and mantle) and a constant shear modulus throughout the
medium, but there can be any number of viscosity layers
(Figure 1). The buoyancy forces include mass anomalies
associated with topography at three density boundaries (i.e.,
the surface, Moho, and CMB), and for some cases mantle
buoyancy (Figure 1). We seek the solution of time-dependent
topography at the surface, Moho, and CMB as well as the flow
field for given initial topography at these density boundaries
and mantle buoyancy. It should be pointed out that for most
cases with relatively small wavelengths (<1000 km) and
shallow mass anomalies (<100 km in depth), topography at
CMB is insignificant compared with topography at the surface
and Moho and that CMB is included primarily for the
completeness of formulation. The Earth's curvature is ignored
in this study, but this should not influence the main results of
this paper.

For most cases, the models include a crust with average
thickness of 35 km, a lithospheric mantle with thickness of
65 km, and mantle extending from the bottom of lithosphere
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Figure 1. A viscoelastic model for topographic relaxation
on the top surface, Moho, and core-mantle boundary.

to core-mantle boundary at 3000 km depth (Figure 1).
Viscosity of the lithospheric mantle used in the models is
about 1023 Pas, and mantle viscosity is 102! Pas, both
consistent with observations [Walcott, 1970; Haskell, 1936;
Cathles, 1975]. Brittle deformation in the upper crust is
approximated as viscoelastic deformation. Since this
approximation may only be proper in a macroscopic sense,
effective viscosity for the upper crust is difficult to constrain.
A viscosity of 5x1023 Pas is chosen for the upper crust to
represent tectonically active regions with high stress and
large deformation, and a viscosity of 5x10%° Pas (i.e.,
effectively elastic) is used for the upper crust to represent
tectonically stable regions with low stress. With a viscosity
of 5x1023 Pa's, 100 MPa stress would result in approximately
10716 -1 strain rate, comparable with observed 1015 51 to
10-165-1 strain rate on continents [Eddington et al., 1987]. A
wide variety of other rheological structure is also exploited.

2.2.

Under the assumption of incompressibility, the momentum
equation with no inertial forces and the continuity equation are

V.6-pgé, =0, o

Governing Equations and Solution Approach

V.i=0, @

where p, g, and G are the density, the acceleration of gravity,
and the stress tensor, respectively; i:(ux,uz) is the flow
velocity; e, is the unit vector pointing upward (Figure 1); all
the variables are a function of time . The density and stress
tensor for an incompressible Maxwell rheology may be
expressed as

p=p;+3p, 3
A MA_ -
0+—0=-pl+nVu, @)
v
where p; is the average density for the ith layer, 8p is the
density anomaly, G is the time derivative of stress tensor, it
is the shear modulus, 0 is the dynamic viscosity, p is the
pressure, and I is the identity matrix. After eliminating the
hydrostatic pressure in the stress tensor, (1) becomes

V-G-8pgé, =0. )
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The general strategy for solving (2), (4), and (5) includes
three steps. (1) The Laplace transform of these equations is
taken to bring the variables from the time to the spectral
domains. (2) The unknowns of the transformed equations are
determined in the spectral domain. (3) A reverse Laplace
transform is taken to bring the solutions back to the time
domain. In order to linearize the boundary conditions

facilitating analytic solutions, the assumption of a small ratio

of topography to wavelength is used [e.g., Cathles, 1975].
The correspondence principle, normally used for solving
viscoelastic problems [Peltier, 1974; Wu and Peltier, 1982],
is not used here because for an incompressible medium (i.e.,
Possion's ratio is 0.5), solutions in the spectral domain can be
easily derived (the Appendix). However, for a compressible
viscoelastic medium, the correspondence principle is needed
[Peltier, 1974]. In the approach used here, kinematic
conditions are used to relate topography to flow velocity on
each density boundary, so that topography is solved directly
(the Appendix). A Fourier's series is used to represent the
solutions for each wavelength in the spatial domain (the
Appendix). For a surface relaxation problem in an isoviscous
medium with a uniform density, our solution is identical to the
half-space solution of Wu [1992] for relatively short
wavelengths.

3. Results and Discussion

In this section, a simple two-layer model is first used to
demonstrate the basic physics of crustal compensation. The
influence of lithospheric and crustal rheology on crustal
compensation will be considered in models with relatively
weak and strong upper crust. Effect of mantle buoyancy will be
investigated before discussing the overall implications of the
work.

3.1. Two-Layer Model and Comparison With Thin
Elastic Plate

For this two-layer model (model 1), viscosities for crust and
mantle are 5x1023 Pa s and 102! Pa s, respectively, and crustal
thickness is 35 km (Tables la and 1b). Initial topography is
zero at the Moho but 3 km at the top surface (i.e., H,O in
equation (A9) is 3 km). For a wavelength of 400 km, both the
Moho and top surface initially experience a uniform
subsidence, and at about 3x10% years after the loading, the
Moho and top surface approach a state with a degree of
compensation, D, of 0.997, indicating nearly complete
isostasy (Figure 2a). Degree of compensation, D, is defined as
the ratio of excess mass at the Moho to that at the top surface
[Turcotte and Schubert, 1982]. After 3x106 years, D remains
constant, while the Moho and surface topography diminish

Table 1a. Physical and Parameters

Parameter Value
Crust density 2.8¢3 kg m3
Mantle density 3.3e3 kg m3
Outer core density 6.6e3 kg m3
Acceleration of gravity 10 m 2
Shear modulus 1.5e11 Pa

* Possion's ratio 0.5

Read 2.8¢3 as 2.8 x 10°.
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Table 1b. Geometrical Model Parameters

Model Layer1 Layer2 Layer3 Layer4 Layer5 MB
1 5e23 le2l - - - no
(0-35) (35-
3000)

2 5¢23 le21 5e23 le23 le21 no
(0-20)  (20- (35- (55- (100-
35) 55) 100) 3000)

3 5e23 le21 S5e23 1e23 1le21  no
(0-20)  (20- (50- (70- (115-
50) 70) 115) 3000)

4 5e30 le21 5e23 le23 le21 no
(0-20)  (20- (35- (55- (200-
35) 55) 200)  3000)

5 5e23 le21 5e23 1e23 1e21 yes
(0-20)  (20- (35- (55- (100-
35) 55) 100) 3000)

MB stands for mantle buoyancy. Viscosity (in pascal seconds)
and depth range (in parentheses with unit of kilometers) for each
layer are given. Read 5e23 as 5 x 107,

with time (Figure 2a). Flow fields for the top 100 km layer at
two different instants in time (Figure 2a for time marks) show
that flow within the crust is dominated by vertical motion at
the early stage (Figure 3a) and by horizontal motion after D
becomes constant (Figure 3b). The horizontal crustal
deformation reduces the crustal thickness variation (Figure

3b).
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For this two-layer model with three density boundaries,
there are five different deformation modes (the Appendix).
From Figure 2a, two distinct deformation modes can be
identified. The first mode with the longest characteristic time
T (4.3x108 years) is associated with horizontal crustal
deformation that reduces the crustal thickness variation (e.g.,
Figure 3b). The second mode with the second longest
characteristic time T, (5.3x10° years) is related to vertical
deformation which leads the Moho and surface to the state with
constant D. The other three modes with much shorter
characteristic times also contribute to the vertical deformation
(e.g., Figure 3a). 1, increases with decreasing wavelength, but
it is always significantly smaller than T; which is insensitive
to wavelength (Figure 2b). Both 7, and 1, increase with crustal
viscosity, but the other three short characteristic times are
dependent on mantle viscosity and are insensitive to crustal
viscosity. Deformation associated with the modes other than
T, has been extensively discussed in glacial rebound studies
[Cathles, 1975; Wu and Peltier, 1982). The horizontal crustal
flow is discussed in previous studies [Artyushkov, 1974]. D in
an asymptotic state is close to unity for wavelengths from
6000 km to 200 km for model 1 (Figure 2b), indicating that
crustal isostasy is the asymptotic state at these wavelengths.
At shorter wavelengths, it takes a longer time for the crust to
reach the constant D state (Figure 2b).

The results from the viscoelastic models may be compared
with thin elastic plate models. Thin elastic plate models do
not account for creep deformation and vertical variation in
stress [e.g., Turcotte and Schubert, 1982]. For a thin elastic
plate model, if the elastic plate is assumed to have the same
elastic properties as in model 1 (table 1a) with a thickness of
35 km, degree of compensation is significantly smaller than
1.0 for wavelengths less than 1000 km (Figure 2c).
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Figure 2. (a) Time history of Moho and surface topography and degree of compensation D for model 1 with
400 km wavelength; (b) wavelength dependence of two longest characteristic times T, and T, and D at an
asymptotic state for model 1; and comparisons of D between viscoelastic models and thin elastic plate models

for (c) 35 km thick crust and (d) 15 km thick crust.
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Figure 3. Flow fields at (a) 104 years and (b) 107 years for
model 1 with 400 km wavelength (time marks in Figure 2a).
The maximum velocities are 1.975 cm/yr and 0.00128 cm/yr
in Figures 3a and 3b, respectively. Only the flow fields in the
top 100 km for the half wavelength are shown. The solid lines
represent the locations of the surface and Moho.

Comparison can be made between the viscoelastic and thin
elastic plate models if a very large viscosity contrast between
crust and mantle is used in viscoelastic models. That is to
assume T, and T, in Figure 2b to be infinite; accordingly,
degree of compensation can be computed from the
eigenfunctions of these two modes (see (A20) in the
Appendix).

For model 1, degree of compensation differs from the thin
elastic plate model at both intermediate and short wavelengths
(Figure 2c). To increase crustal viscosity to 5x10%4 Pa s
reduces the difference at intermediate-wavelengths but
increases the difference at short wavelengths (Figure 2c). The
difference in D is more than 20% for wavelengths shorter than
230 km (Figure 2c) and cannot be reduced by further increasing
viscosity contrast between crust and mantle. However, for
reduced crustal thickness and elastic plate thickness (15 km),
viscoelastic (5x102* Pa s for crust and 102! Pa s for mantle)
and thin elastic plate models agree with each other for
wavelengths from 6000 km to 200 km (Figure 2d). This
suggests that the difference in D at short wavelengths in
Figure 2c is caused by ignoring vertically varied stress in thin
plate approximation.

3.2. Models With Moderately High Viscosity
Upper Crust

Studies on crustal rheology indicate that the lower crust may
be weaker than mantle and upper crust [Brace and Kohlsted:,
1980]. In model 2, the viscosities for the upper and lower crust
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are assumed to be 5x1023 Pa s and 102! Pa s, respectively, and
the viscosity for mantle lithosphere varies from 5x10%3 Pa s
to 1023 Pa s (Table 1b). The thickness for the upper and lower
crust are 20 km and 15 km, respectively (Table 1b). The initial
Moho and surface topography are assumed to be isostatic with
1 km topography at the surface. For 300 km wavelength,
Moho and surface topography monotonously decrease with
time, and Moho topography is reduced to one third of its
initial value after 6x107 years (Figure 4a). However, D drifts
from the initial 1.0 to 1.21 after 4x10° years and D remains as
1.21, independent of amplitude of topography (Figure 4a).
This indicates that for the given rheological structure and
wavelength, the state of isostasy is intrinsically not an
asymptotic limit, and the crust tends to be overcompensated at
the asymptotic state.

Deviation from isostasy at the asymptotic state is greater
for shorter wavelengths, but isostasy remains valid within 5%
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Figure 4. (a) Time history of Moho and surface topography
and degree of compensation D for model 2 with 300 km
wavelength and initially isostatic crust; (b) wavelength
dependence of two longest characteristic times T, and 7, and D
at an asymptotic state for model 2; and (c) time history of
Moho and surface topography and degree of compensation D
for model 2 with 300 km wavelength and initially non-
isostatic crust.
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for wavelengths longer than 400 km (Figure 4b). The time T,
decreases with decreasing wavelength and reverses this trend at
a wavelength of 240 km (Figure 4b), displaying properties of
a channel flow [Cathles, 1975]. 1, increases with decreasing
wavelength (Figure 4b), similar to model 1 (Figure 2b). It
should be emphasized that D at the asymptotic state does not
depend on initial conditions which only influence D in the
first several million years, depending on wavelength, as
demonstrated by a case which only differs from the calculation
in Figure 4a by having initial 3 km and -3 km topography at
the top and Moho, respectively (Figure 4c).

To understand the controls on deviation from isostasy,
cases with different rheological structure are computed. In each
of these cases, only one model parameter is allowed to differ
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Figure 5. Wavelength dependence of (a) D at an asymptotic
state, (b) 7, and (c) 1, for six different cases. STD is for model
2. For TKL, HVL, HVC1, and HVC2, each of these four cases
differs from model 2 in only one model parameter. TKL is for
the case with 200 km thick lithosphere; HVL is for the case
with 5x102* Pa s viscosity for the ug)er lithosphere; HVC1
and HVC2 are for the cases with 10?2 Pa s and 5x1023 Pa s
viscosity for the lower crust, respectively. UVC case is
identical to model 2 except that the upper and lower crust have
the same viscosity 1022 Pa s.
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Figure 6. (a) Time history of Moho and surface topography
and degree of compensation D for model 3 with 300 km
wavelength and initially isostatic crust; (b) wavelength
dependence of two longest characteristic times T, and T, and D
at an asymptotic state for model 3; and (c) time history of free-
air and isostatic anomalies for the same calculation in Figure
6a.

from model 2. If lithospheric viscosity is increased, the
wavelength at which isostasy cannot be attained increases,
and the deviation from isostasy increases (Figure 5a). A
thicker continental lithosphere (200 km) has a similar effect
than a larger lithospheric viscosity (Figure 5a). However, as
the lower crust viscosity increases, deviation from isostasy
decreases (Figure 5a). When the lower and upper crust have the
same viscosity (5x1023 Pas), D shows a nearly complete
isostasy for all the wavelengths only with a slight
undercompensation for wavelengths from 200 km to 800 km
(Figure 5a). The degree of undercompensation does not
increase with further increase in crust viscosity. For these
cases, T, and T, are generally longer than those in model 2
(Figures 5b and 5c). Particularly, a thicker continental
lithosphere increases T, substantially at long wavelengths,
and a larger lower crust viscosity increases T, at short
wavelengths (Figure Sc).
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A significant overcompensation at short wavelengths is
also observed for a case which includes a crust with uniform
strength (1022 Pa s for both the upper and lower crust) but is
otherwise identical to model 2 (Figure 5a), suggesting that the
overcompensation occurs as long as the overall strength of
crust is weaker than lithospheric mantle. The reduced viscosity
for the upper crust yields a smaller T, (Figure 5b), indicating
that crustal thickness variation decays more rapidly. The
influence of mantle viscosity is studied with a case that
includes a weak asthenosphere and a high viscosity lower
mantle (i.e., 1020 Pa s between 100 km and 400 km, 102! Pa s
between 400 km and 670 km, and 1022 Pa s below 670 km) but
is otherwise identical to model 2. Mantle viscosity structure
only influences deformation modes with short characteristic
times and does not have noticeable effects on eigenfunctions
associated with T, and 7, and hence D.

The influence of a thicker lower crust is considered in model
3. In model 3, the thickness of the lower crust is increased to
30 km, while thicknesses of the other layers in lithosphere
remain the same as those in model 2 (Table 1b); viscosities for
each layer are the same as in model 2 (Table 1b). For model 3
with 300 km wavelength and initially isostatic crust, a state
with constant D is reached after 4x10® years with a greater
deviation from isostasy than Model 2 (Figures 4a, 4b, 6a and
6b). For model 3, 1, and T, are both reduced (Figure 6b). The
reduced characteristic times suggest that any crustal thickness
variation at a few hundred kilometers wavelength would vanish
within about 2x107 years. The implications of the rapid decay
in crustal thickness variation to continental topography were
discussed by Bird [1991] and Avouac and Burov [1996]. For
300 km wavelength, after 2x10° years, the free-air gravity
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anomaly decreases to about 10 mGal, but the magnitude of
isostatic anomaly (negative) increases to 20 mGal (i.e., the
peak-to-peak magnitude is 40 mGal) and the significant
isostatic anomaly can last for more than 107 years (Figure 6c).

3.3. Models With Effectively Elastic Upper Crust

Tectonically stable continental regions with a small stress
may have a strong upper crust and thick lithosphere. In model
4, the effective viscosity for the upper crust is assumed to be
5x1039 Pa s (i.e., effectively elastic for the time period
considered here), and the thickness of continental lithosphere
is 200 km (Table 1b). Other model parameters are the same as
those in model 2. Since models with deformable upper crust
(i.e., 5x1023 Pa s) in section 3.2 mainly suggest two states for
crustal compensation: overcompensation and isostasy (Figure
5a), we will use these two states as initial conditions for
calculations in this section.

For 300 km wavelength and an initially isostatic crust with
1 km surface topography, the crust becomes moderately
overcompensated between 106 and 107 years and then becomes
significantly undercompensated after 108 years (Figure 7a).
While the Moho topography diminishes at about 3x108 years,
surface topography is about 0.72 km that can be permanently
supported by strength of the upper crust (Figure 7a). The two
modes with longest characteristic times T, and 1, for 300 km
wavelength are 10% and 8.6x107 years (Figure 7b). The
duration of the over-compensation period is controlled by T,
and T,. Similar to that in section 3.2, deformation associated
with T; mode reduces crustal thickness variation (Figures 4a
and 7a). However, for model 4 with an effectively elastic upper
crust, only Moho topography approaches to zero, and surface
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Figure 7. (a) Time history of Moho and surface topography and degree of compensation D for model 4 with
300 km wavelength and initially isostatic crust; (b) wavelength dependence of two longest characteristic times
7, and 7, and R, for model 4; (c) wavelength dependence of D,, between T, and 1, for model 4 with initially
isostatic (i_iso) and non-isostatic crust (i_noniso); and (d) time history of Moho and surface topography and
degree of compensation D for model 4 with 300 km wavelength and initially non-isostatic crust.
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topography will be reduced to a value that can be elastically
supported by the upper crust.

The time T, is strongly dependent on wavelength and varies
from 1010 years for 6000 km wavelength to 9x107 years for
200 km wavelength (Figure 7b); 1, is about 10° years for long
wavelength; and T, increases to about 1.3x108 years at 400
km wavelength and then decreases with decreasing wavelength
(Figure 7b). Degree of compensation between T, and T,, D ,,
is close to 1.0 for all wavelengths, similar to its initial value
(i.e., the solid line in Figure 7c). After 7, crust becomes
undercompensated for all wavelengths, but the elastically
supported surface topography is insignificant for wavelengths
longer than 1000 km, as indicated by the ratio of elastically
supported topography to initial topography at the surface, R,
(Figure 7b). The elastically supported topography increases
for decreasing wavelength (Figure 7b), consistent with thin
elastic plate models [e.g., Turcotte and Schubert, 1982].

If the initial topography at the surface and Moho for 300
km wavelength are 0.3 km and 5 km (i.e., initially
overcompensated with D=2.976), respectively, the crust
remains over-compensated between 106 and 2x107 years with
D~2.3 (Figure 7d). However, crust becomes greatly
undercompensated at 2x108 years (Figure 7d), similar to the
calculation with an initially isostatic crust (Figure 7a). Surface
topography increases to about 0.36 km at 4x105 years, and
then starts to decrease (Figure 7d). After 3x108 years, the
surface topography is reduced to 0.22 km that is permanently
supported by the elastic strength of the upper crust (Figure 7d).
For wavelengths longer than 1000 km, D, between T; and T,
is close to 1.0; for wavelengths less than 400 km, D, is
larger than 1.5 (i.e., dashed line in Figure 7c). For long
wavelengths, isostasy can be restored shortly (~10° years)
after the initial non-isostatic state, and the isostasy can be
maintained for 10° years before crustal thickness variation
diminishes (Figure 7c for D,,, and Figure 7b for 7;, T,, and R,
which do not vary with initial conditions). D, for short
wavelengths depends on initial conditions (Figure 7c),
indicating that the influence of initial conditions at short
wavelengths can last for a long time, but crust always becomes
undercompensated after ;.

Influences of viscosity in the lower crust, thickness of the
upper and lower crust, and lithospheric thickness are
investigated with four more calculations for the initially
overcompensated crust (D=2.976). In each calculation, only
one model parameter differs from model 4. Compared with
model 4 (STD in Figure 8), a thicker crust (TKC1 and TKC2 in
Figure 8a) increases D, between T, and 1, at short
wavelengths; a more viscous lower crust (HVC in Figure 8a)
reduces D, at short wavelengths. Compared with model 4, 1,
for a thicker lower crust is reduced significantly for
wavelengths larger than 300 km (TKC1 in Figure 8b); 1, for
the more viscous lower crust is increased at all wavelengths
(HVC in Figure 8b). However, neither a thicker upper crust
(TKC2 in Figure 8b) nor a thinner continental lithosphere
(TNL in Figure 8b) influences T, significantly (Figure 8b); 1,
is always less than 2.4x108 years (Figure 8c). These results
indicate that crust with an elastic upper crust and viscous lower
crust can keep its initial state (i.e., isostatic or
overcompensated) at short wavelengths for a long period in
time before the crust eventually becomes significantly
undercompensated. The more viscous the lower crust, the
longer the crust can maintain its initial state, but a thicker
lower crust has an opposite effect.
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Figure 8. Wavelength dependence of (a) D, for initially
non-isostatic crust, (b) T, and (b) 1, for five different cases.
STD is for model 4. Each of the other four cases differs from
model 4 in only one model parameter. HVC is for the case with
5x1023 Pa s viscosity for the lower crust; TNL is for the case
with 100 km thick lithosphere; TKC1 is for the case with a 30
km thick lower crust; and TKC2 is for the case with a 35 km
thick upper crust.

3.4. Influences of Mantle Buoyancy on Crustal
Compensation

In this section, two specific questions will be addressed: (1)
influence of mantle buoyancy forces on crustal compensation
and (2) retrieval of dynamic topography and geoid derived
from mantle buoyancy. Model S includes the same rheological
structure as in model 2 but with additional mantle buoyancy
(Table 1b). Two different wavelengths 300 km and 3000 km
will be considered. For 300 km wavelength, the mantle
buoyancy is assumed to locate at a depth of 200 km with a
surface density of 8.25x104 kg m2, and for 3000 km
wavelength, the mantle buoyancy is at a depth of 500 km with
a surface density of 1.65x10% kg m2. The shallower and larger
mantle buoyancy for 300 km wavelength is used to produce a
comparable dynamic topography with that for 3000 km
wavelength.
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Fig. 9. (a) Time history of Moho and surface topography and geoid for model 5 with mantle buoyancy for
3000 km wavelength and (b) the corresponding corrected topography and geoid; (c) time history of Moho and
surface topography and geoid for 300 km wavelength and (d) the corresponding corrected topography and
geoid. Also shown in Figures 9b and 9d are time history of topography and geoid (thick lines) for calculations
that exclude the crust but otherwise are identical to the calculations in Figures 9a and 9c. Time history of Moho
and surface topography and D for model 5 that includes (e) initially isostatic crust and mantle buoyancy for 300
km wavelength, and (f) with reduced mantle buoyancy. In Figures 9b and 9d, c_t and c_g stand for corrected
topography and geoid with D=1. In Figure 9d, c_tl and c_gl are for corrected topography and geoid with

D=1.21.

For 3000 km wavelength with zero initial topography at
the Moho and surface, the Moho and surface subside at a
similar rate before Moho and surface topography reach about
-0.37 km at 2x10* years (Figure 9a). After about 108 years,
while the Moho continues to subside, the top surface starts to
rebound (Figure 9a). At about 10° years, Moho and surface
topography stabilize at -11 km and 1.5 km, respectively
(Figure 9a). This result indicates that a topographic high can
be generated over a negatively buoyant mass anomaly if the
mantle flow generated by the mass anomaly shears the crust
for a sufficiently long period of time. A similar result was
reported by Bindschadler and Parmentier [1990] in a half-space
viscous model for topographic evolution on Venus. By
examining the Moho and surface topography (Figure 9a),
crustal isostasy as a condition is clearly violated. The geoid
over the negatively buoyant mass anomalies is initially 10 m,

but the geoid becomes -13 m after the top and Moho surfaces
are depressed to -0.37 km at 2x10% years (Figure 9a). The
geoid starts to decrease after 10° years and it stabilizes at
about -5 m after 10° years (Figure 9a). The variation in geoid
reflects the topographic variations at the surface, Moho, and
core-mantle boundary.

For a long wavelength, since crustal isostasy is expected if
no external force acts on crust (e.g., Figure 5a), one may
perform isostatic corrections on topography and geoid to
retrieve the topography and geoid derived solely from
subcrustal buoyancy. In retrieving corrected topography, our
approach is similar to that of Vidale and Mooney [1996] and
consists of three steps: (1) compute the compensated
topography on the top surface based on the Moho
topography, assuming ideal crustal isostasy; (2) subtract the
compensated topography determined from step 1 from surface



15,296

topography; and (3) convert the resulting topography onto a
surface that has a density contrast p,. The corrected
topography is  Hypy =[H; +(Pp/Pc ~1DHp1pc/Pm - The
corrected geoid is obtained with two steps, similar to those of
Chase and McNutt [1982]: (1) compute the corresponding
Moho topography based on surface topography, assuming
ideal crustal isostasy; and (2) correct out the geoid associated
with the surface topography and the Moho topography
computed in step 1. In above procedures, while crustal
structure is needed for computing the corrected topography,
the only information required for the corrected geoid is the
surface topography. _

The corrected topography and geoid for 3000 km
wavelength do not show any variations after 2x10* years
(Figure 9b). Compared with a case that only differs from the
current calculation in excluding the crust, the corrected
topography is nearly identical, but the corrected geoid is about
15% smaller after 2x10% years (Figure 9b). For 300 km
wavelength with the same initial conditions, surface and
Moho topography and geoid evolve in a similar way to those
for 3000 km wavelength (Figure 9c). However, corrected
topography and geoid differ significantly from those for a
calculation without crust (Figure 9d). This may be because
crustal isostasy does not hold as a trend at this short
wavelength (Figure 4a). Interestingly, if the corrections are
made with D=1.21 which is the trend of crustal compensation
at 300 km wavelength with the same rheological structure
(Figure 4a), the corrected topography agrees well with that for
the calculation without crust, but corrected geoid is about 50%
smaller (Figure 9d).

The influences of mantle buoyancy on crustal compensation
depend on relative strength between mantle buoyancy and
crustal buoyancy. Compared with the calculation in Figure 4a,
if an additional mantle buoyancy with a surface density of
8.25x10% kg m2 is included at 200 km depth, Moho and
surface topography and D show quite different time history
(Figure 9¢). A state with constant D is achieved after 2x108

years with D greater than 10 (Figure 9¢). The Moho and surface -

topography at this constant D state are only dependent on the
mantle buoyancy. The time it takes to reach this state is

determined by T; (Figure 4b for 300 km wavelength). D is’

about 2 between 4x108 and 3x107 years (Figure 9e), which is
larger than 1.21 for the case without mantle buoyancy (Figure
4a). If the surface density is reduced to 1.65x10% kg m2, D
greatly differs from that in Figure 4a only after 4x10/ years
when the mantle buoyancy starts to dominate crustai
deformation (Figure 9f). :

3.5. Discussions

Our results show that for a simple crust-mantle system in
which topography at the Earth's surface and Moho represents
the only density anomalies, while the crust approaches an
isostatic state at long wavelengths (>800 km), the state of
isostasy may not be the asymptotic limit at short wavelengths
that are comparable with the widths of mountain belts,
depending on crustal and lithospheric rheology (Figures 5 and
8). At short-wavelengths (<300 km), when crustal viscosity is
smaller than lithospheric viscosity, the crust approaches a
state with significant crustal over-compensation (Figures 5a
and 6a); when crustal and lithospheric viscosities are both
large and comparable, the crust approaches a state with slight
under-compensation (Figure 5a). Crust reaches an asymptotic
state with constant D after characteristic time T,, and crustal
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thickness variation can be maintained until T (Figures 4a and
6a). The deviation from isostasy at the asymptotic state can
produce large gravity anomalies (Figure 6¢) which may last for
long geologic time (i.e., T;-T; in Figures 4b and 6b). It should
be pointed out that we must be cautious in interpreting the
time history of topography and degree of compensation D
when topography is small (Figures 4b and 6b). The models
with a deformable crust presumably can only be applied when
the crust has a relatively large stress. When topography
becomes sufficiently small such that the resulting stress is
smaller than a finite strength of crust (or faults), a deformable
crust may be no longer a valid assumption [Lambeck, 1980].

For an effectively elastic upper crust that prevents any
horizontal crustal deformation, both initial conditions and
crustal and lithospheric rheology play important roles in
crustal compensation at short wavelengths (Figure 7). Because
the upper crust can permanently support topography, crust
will eventually become undercompensated after a characteristic
time 7y which is the decay time of Moho topography (Figures
7b and 8b). Priori to T;, the state of crustal compensation is
mainly determined by initial conditions (i.e., degree of
compensation is similar to its initial value); T; is strongly
dependent on viscosity and thickness of the lower crust. For a
thick and weak lower crust, T; can be as small as tens of
million years at short wavelengths; for a moderately strong
lower crust, t; can be as large as one billion years (Figure 8b).
The results for an elastic upper crust and a weak lower crust are
consistent with the results of Kusznir and Matthews [1988].

In order to have the state of isostasy as an asymptotic state,
the ratio of vertical velocity at the surface to vertical velocity
at the Moho in the asymptotic state must be identical to
(Pm —Pc)/Pe » when both the surface and Moho topography
decay with time. Clearly, this ratio of vertical velocities in the
asymptotic state depends on crustal and lithospheric
rheological structure and wavelength. Deviation from isostasy
arises when the viscosity structure and wavelength lead to a
ratio of vertical velocities which differs from (p,, —p.)/p. -
The crustal compensation with a moderately high viscosity
crust can also be understood in terms of coupling between
crustal buoyancy forces and mantle flow. A weak lower crust
reduces the coupling between the Moho and surface;
consequently, mass anomaly associated with the variations in
Moho topography cannot be effectively compensated onto the
surface, and part of this mass anomaly is compensated by
mantle flow. Increasing either viscosity or thickness of
lithosphere, or crustal thickness results in a stronger coupling
between mass anomaly on the Moho and mantle flow, thus
enhancing the deviation from isostasy (Figure 5a). Increasing
viscosity in the lower crust enhances the coupling between the
Moho and surface and reduces the deviation from isostasy
(Figure 5a). The physics of the coupling is similar to that in
studies on long wavelength dynamic topography and geoid
[Hager and Richards, 1989].

Although these models may be limited for understanding
crustal dynamics in regions where crustal deformation is
predominantly caused by external forces which are not
considered in this study (e.g., actively building mountain
belts due to crustal shortening), they may have implications
to the evolution of postorogeny or orogenic belts where
external forces have a diminishing influence. Models with a
moderately high viscosity upper crust may be proper for
regions that remain tectonically active, while models with an
effectively elastic upper crust may be applicable to old and
tectonically stable regions. Relatively young mountain belts
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result from a crust that is weaker than the underlying mantle.
Excess Moho topography beneath old orogenic belts (e.g.,
the Appalachian) may be a consequence of a relatively strong
lower crust and lithosphere that help preserve an initially
overcompensated crustal structure. The absence of roots at the
Moho underneath old orogenic belts (e.g., the Caledonides)
may result from a relaiively weak lower crust that might have
existed for a long geologic time and effectively removed
Moho topography, as originally suggested by Kusznir and
Matthews [1988]. Further elaboration is difficult without
having a proper thermal model that describes temperature and

viecosity evolution within crmict and lithaoenhera
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It should be pointed out that our results are different from
Artyushkov's [1974] analyses that predicted crustal under-
compensation. The analyses by Artyushkov [1974] suggested
that crustal isostasy would be a stable state if density contrast
across the mantle-crust boundary is the same as that on the
surface. However, we found that crustal isostasy is not an
asymptotic state even when the surface and manile-crust
boundary have the same density contrast. The difference may
be due to the differences between these two formulations. Our
models incorporate the effects of the mantie and time
dependence which as we have demonstrated are crucial for
crustal compensation, but these effects were not considered in
Artyushkov's [1974] analyses.

The influence of mantle buoyancy on topography at the
surface and crust-mantle boundary was studied by Bindschadler
and Parmentier [1990] with different models. Since the
topographic growth caused by horizontal shear stress of
mantle flow is quite slow (Figure 9a and 7; in Figure 5b which
is about 108 years), regions where topography of this origin
is likely to be observed are those long-lived subduction zones.
If such topography is achieved in subduction zones, the crust
above the subducted slabs would show a significant over-
compensation (Figure 9¢). However, seismically observed
crustal thickness variations in the central Andes do not seem
to show significant deviation from crustal isostasy [Beck et
al., 1996], suggesting that topography derived from
horizontal shear stress of mantle flow may not be so
important for the Earth. Although the presence of mantle
buoyancy complicates crustal compensation, the general
trends in crustal compensation derived from models without
mantle buoyancy may be used to infer subcrustal dynamics
including dynamic topography induced by mantle buoyancy
(Figure 9).

4. Conclusions

Analytic models for time evolution of topography at the
surface and crust-mantle boundary have been formulated for a
layered viscoelastic medium. The models can describe the
topographic relaxation at these density interfaces in both
small timescale associated with vertical crustal deformation
(i.e., postglacial rebound), and large timescale associated with
horizontal crustal deformation. These models are used to
investigate the influences of crustal and lithospheric rheology
on crustal compensation. The models show that for a simple
crust-mantle system in which topography at the Earth's surface
and Moho represents the only density anomalies, while the
crust approaches the state of isostasy at long wavelengths (>
800 km), the state of isostasy may not be the asymptotic state
for the crust at short-wavelengths, depending on crustal and
lithospheric rheology. Models with two different types of
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upper crust are considered:
high viscosity, and (2)
crust.

When the overall strength of crust is weaker than
lithosphere, the crust tends to approach a state with a
significant overcompensation at crust-mantle boundary at
wavelengths comparable with width of orogenic belts (<300
km). The overcompensated crust can produce significant
negative isostatic gravity anomalies over orogenic belts. The
overcompensation for deformable crust is greater for weaker
crust and stronger lithosphere. A thicker crust or lithosphere
also enhances the overcompensation. Slight crustal
undercompensation may occur when crustal and lithospheric
viscosities are both large and comparable. For effectively
elastic and rigid upper crust that can permanently support
topography, crust will eventually become under-compensated
after a characteristic time T; which is the decay time of Moho
topography, consistent with results of Kusznir and Matthews
[1988]. Priori to Ty, degree of compensation is close to its
lnl[lal Value 'Cl ranges from tens OI million years to one
billion years and is strongly dependent on viscosity and
thickness of the lower crust. These models may be useful for
understanding the evolution of postorogeny or orogenic belits
where external forces (e.g., crustal shortening) have a
diminishing influence.

\1) uppcl crust wuu lllUUCldlC y
effectively elastic and rigid upper

Appendix: Solution of Time-Dependent
Topography at Top, Moho, and Bottom
Boundaries in a Maxwellian Medium

After a Laplace transformation, (2) and (5) keep the same
mathematic forms, and (4) becomes

5(s) = P(s)] +M(s)Vii (s), (AD)

where P(s)= p(s)/(1+s1), N(s)=n/(1+sT), T=n/} is the
Maxwell time for this layer, the tilt stands for the Laplace
transform of the corresponding function, and s is the Laplace
transform variable. Equations (2), (5), and (A1) have the same
mathematic form as those for purely viscous flow. We can
apply the Fourier series and propagator matrix techniques to
solve these equations as done for viscous flow [e.g., Cathles,
1975; Hager and O'Connell, 1981]. Since the equations are
linear, we will only derive solutions for a single harmonics in
the following analysis. Solutions for complex problems can
be obtained by summation of different harmonics. Define

W(5) =ity (5),ix (51,5 27 (5)/(2K), Bar ()/ @R, (A2)

b(s) =[0,0,8p(s)/(2k),017 , (A3)

where k=2m/X is the wavenumber, A is the wavelength, the
superscript T stands for the matrix transpose, and all variables
may be a function of z, w(z;,s) can be expressed as

22 -
W(zg,5) = P(z3,21,9)W(z1,8)+ [ P(22,8,5)b(E,5)dE, (Ad)

2]

where z; and z; are two arbitrary points within the layer;
P(zy,71,5) is a propagator matrix and is a function of s due to
the dependence of n(s).

In what follows, we will present a solution for a simple
three-layer model with crust, lithosphere, and mantle (Figure
1), using the propagator matrix technique. For simplicity, the
driving forces except those associated with topography at
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density boundaries are assumed in the mantle. The following
approach can be easily extended for models with more
complicated buoyancy and viscosity structures. For the three-
layer model, w on the Moho and the top surface can be
expressed, respectively, as

7] .
W(zpm,s)=PaPyw(0,5)+ Py [ P(z;,E,5)b(§,5)dE,  (AS)
0

1 -
w(zs,5) = P3Py Pyw(0,5) + P3P, | P(z7,&,5)b(&,s)dE
0

+Py | Plam bos)b(Es)det | P28, 5)b(E5)dE,

] Im

where Pj = P(z;,0,5), Py =P(2y,7,5) and P3
are the propagator matrices for each layer.

We now seek the solution for the time evolution of surface
topography H,(t), the Moho topography H,,(t), and bottom
topography Hp(t), under given initial and boundary
conditions. Suppose that the Moho topography H,, () <<A,
then the buoyancy force associated with the Moho topography
can be treated as a delta function H,,(t)Apd(z—z,,), where
Ap is the density contrast across the Moho (i.e., p,; —pc,
p. and p,, are the densities of crust and mantle, respectively).
In case that mantle buoyancy is included, the mantle buoyancy
is assumed to be 8pd(z—zg)H(t) with the same wavelength
A, where 8p is surface density and H(t) is the Heaviside
function.

On the top and bottom boundaries (i.e., z=z;+H(t) and
z=Hp(#) in Figure 1), both tangential and normal stresses are
zero. If the amplitudes of surface and bottom topography are
much smaller than the wavelength A and the thickness of box
D, the free-surface boundary conditions can be written as [e.g.,

(A6)

= P(z¢,2,5)

Cathles, 1975; Soloman et al., 1982]
ze(ovt)__‘cxz(zt,t):o’ (A7)
042(0,6)=(Pco —Pm)8Hp (1), Oz7(24,8)=—pcgH;(2), (AB)

where p., is the density of the outer core.
The initial condition is given in terms of topography at the
top, Moho, and bottom boundaries as
Hy(24,0)= HY, Hp(zn,0)=HC, Hp(0,0)=H, (A9)
HI? is set to zero in this study. On the density interfaces,
kinematic conditions are

dH, (t) dH,, 0

uz(z,,t)— ) Z(O )“ ) z( m» )_ (Alo)

dH,, (t)
dt
Since the general solutions (AS) and (A6) are in the spectral

s domain, a Laplace transform is needed to perform on

boundary conditions (A7) and (A8); #@,(s) in w(z,s),

Ww(z,,,5), and w(0,s) in (AS) and (A6) are substituted by the

transformed kinematic conditions (A10) in which the initial

conditions (A9) are used. Substituting the transformed
kinematic and boundary conditions into (AS) and (A6) results
in two matrix equations

W(z,,,8)=PpP{W(0,5)+ Py Py'T(5)+ B(z,,,5), (All)
W(z;,5) = P3Py PiW(0,5)+ P3Py Py' T(s)+ P3B(z,,,s), (A12)
where

W(zy,5)
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= (= HO, 4 $81y (5), i (25,2 (z'"”) O (&) 7

Tk 1", (A13)
W(O,s)=[sI:Ib(s),ﬁx(O,s),Ylfib(s),O]T, (A14)
T(s)=[0,0,8p(s)g/ (2k),017 , (A15)
B(2y,5)=[0,0,Y2Hy, (),017, (A16)
W(zs,5)=[-H? +sH,(s)iix (2,9),73H;(),01T, (A7)
P.'— Pl(>» 0O ¢) Ay =(0y —_a YO AMa = AN (I and
£] TEKgHVes s 1] T\VPco TPmIi\4r), 2 =Aapi«r), ana
Y3 =-pc/(2k).

Defining A=P,P;, B=P3P)P|, C=P3, D=PyP',
EF = PaPaP.' and caomhinina the firet anmuatinn in FA11) and
s i jl L‘ l y Qli N\)llluxlllll& LiIW 1110V V\iuutl\lll 111 \nx 11 ailu
the first three equations in (A12), we obtain a system of

equations

Aps+ApYr A s 0 ) Hy(s)
Biis+BiaYr B Y2Gs  =s [ i, (0,9)
Byis+ByYy By Y2Ciz Y3 || H,(s)
Bys+ByY1 By Y2Ci 0 || H,(s)

—~HQ - Dy38p(s)g / (2k)

~H - E133p(s)g/ (2K) |
—E338p(s)g/ (2k)
~E438p(s)g / (2k)

From (A18), we can determine Hy(s), iy (0,5), H,y(s),
and H;(s). We can then solve the reverse Laplace transform to
obtain the solution in time domain by applying a residue
theory. As an example, we show the solution procedure for
H;(t) as follow. From (A18), H, (s) can be expressed as

det[K; ()] _ Q(s)
det[K(s)] N(s)’

(A18)

H(s)= (A19)

where det stands for determinant, K(s) is the 4x4 matrix in
(A18), and K,(s) is the same matrix but with the last column
being replaced by the right-hand-side vector in (A18).
det[K(s)]=0 is the equation for eigenvalues, and for the
model with three density interfaces and two viscosity
interfaces there are seven eigenvalues [Han and Wahr, 1995;
Fang and Hager, 1995]. If there are no repeated eigenvalues,
the residue theory can be readily applied to give the solution
in time domain,

0(si)

H,(1)= Z —exp(s;t),

i=I N'(5;)

where N'(s,-)=dN/ds| s=s; - Bach eigenvalue s; represents a
deformation mode whose characteristic decay time is
determined by s,. It should be pointed out that the eigenvalues
are only dependent on the viscosity and density structures of
the model. After the time dependence of topography is
obtained, time dependence of velocity and stress can be
determined from (A4)-(A6).

(A20)
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