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Entrainment of a dense layer by thermal plumes
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S U M M A R Y
The large mismatch between Earth’s heat flux and that which would be produced in a uniform
mantle with the composition of the mid-ocean ridge basalt source region, and several recent
seismic models, suggest that the bottom part of the mantle may form a compositionally distinct
layer. The long-term stability of such a dense but hot abyssal layer may hinge on the rate of
entrainment of the dense material by upwelling thermal plumes that would originate from the
thermal boundary layer at the compositional boundary. We have formulated high-resolution
numerical models to examine the efficiency of such an entrainment. To isolate the physics of
entrainment, thermal buoyancy forces that drive the flow and entrain the dense material are
prescribed in both space and time in axisymmetric finite-element models with an isoviscous
structure. Our models employ a marker chain method to track the evolution of the material
interface. Thermal plumes entrain the dense material, forming a concentric annular structure,
with a hot thermal plume surrounding an inner cylinder of dense material. The entrainment
rate is controlled by two parameters: the radius of the thermal plume, rT, and the ratio of
compositional to thermal buoyancy, Rabt. The smaller rT is or the larger Rabt, the smaller the
entrainment rate will be, as expected. As Rabt increases, the radius of the entrained compo-
sitional plume decreases, but the vertical velocity of the compositional plume also increases.
We found that the entrainment rate scales as Ra−2.48

bt r3.80
T , while the radius of the entrained

compositional plume scales as Ra−1.43
bt r1.24

T . For a mantle viscosity of 1021 Pas, thermal plumes
with rT ∼ 100 km and temperature 600 K hotter than the ambient mantle, and with horizontal
spacings that are approximately the same as the mantle thickness, and for a denser layer with
a thickness of 1000 km and net negative buoyancy of approximately 1 per cent, more than
90 per cent of the dense material can survive for 4.5 Gyr.
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1 I N T RO D U C T I O N

Earth’s mantle loses approximately 38 TW through plate tectonic
processes. However, radioactive heating in a uniform mantle with
the composition of the Mid-Ocean Ridge Basalt (MORB) source
region would only produce 2–6 TW, because the MORB source re-
gion is depleted in heat-producing elements (O’Nions & Oxburgh
1983; Davies & Richards 1992; Kellogg et al. 1999). This large mis-
match in the heat budget suggests that the mantle is compositionally
stratified, with a bottom layer that has a higher heat production rate
than that in the top layer (i.e. MORB sources) (O’Nions & Oxburgh
1983). This suggests that mantle convection may take place in two
separate layers (Kellogg et al. 1999).

Early layered convection models suggested that the layering oc-
curs at the 670 km seismic discontinuity (Wasserburg & DePaolo
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1979; O’Nions & Oxburgh 1983). However, this depth is inconsis-
tent with recent high-resolution seismic images of the mantle that
indicate penetration of subducted lithosphere into the lower mantle
(Grand et al. 1997; van der Hilst et al. 1997). However, the seis-
mic images may be consistent with mantle layering at a depth of
∼1700 km (van der Hilst & Karason 1999). It is important to ex-
amine the dynamic stability of these models. For the layered mantle
convection model, the stability of a layered mantle requires that en-
riched material in the bottom layer be intrinsically denser than the
depleted mantle in the top layer (e.g. Kellogg et al. 1999).

In this study, we investigate the dynamic stability of a layered
mantle. In general, a layered mantle is stable against major over-
turns as long as the bottom layer is sufficiently dense (Davies &
Gurnis 1986; Tackley 1998). In this case, the long-term stability
of the bottom layer should be controlled by gradual entrainment
of the dense material by upwelling thermal plumes (Sleep 1988).
Ascending plumes in the upper layer entrain the dense material
of the bottom layer into the plumes, gradually eroding the bot-
tom layer. This regime of stability is particularly relevant for the
newly proposed layered convection model (Kellogg et al. 1999;
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van der Hilst & Karason 1999), because the proposed in situ den-
sity contrast must be small in order not to violate constraints from
seismology.

Previously, the entrainment of dense material by upwelling ther-
mal plumes has been studied with both laboratory studies (Davaille
1999; Gonnermann et al. 2002) and 1-D analytic models (Sleep
1988). Sleep (1988) employed a 1-D model to study the long-term
stability of the D′ ′ layer. However, for a given compositional buoy-
ancy for the dense material and thermal buoyancy for a plume, a
1-D analytic model cannot uniquely determine the entrainment rate.
For this reason, Sleep (1988) only estimated the maximum entrain-
ment rate, which he assumed to be the carrying capacity of thermal
plumes. Sleep’s studies (1988) suggest that the D′ ′ layer needs to
be 6 per cent denser than the overriding mantle in order for the D′ ′

layer to maintain itself over geological history. A more accurate de-
termination of the entrainment rate requires considering the flow at
the two ends of a plume, for which numerical modelling is neces-
sary. Indeed, numerical models suggest that a smaller density con-
trast is sufficient to maintain the long-term stability of the D′ ′ layer
(Tackley 1998). However, intrinsically small-scale compositional
features demand high resolution in numerical models (van Keken
et al. 1997; Tackley 1998; Tackley & King 2002).

We formulate high-resolution finite-element models in a 2-D ax-
isymmetric geometry to study how the entrainment rate depends on
the thermal buoyancy of plumes and the density contrast between
the two layers. Compared with previous numerical studies (van der
Hilst et al. 1997; Tackley 1998), our models use much higher res-
olution and explore a larger parameter space in a more systematic
manner. Our models also use a larger thickness for the dense layer
in order to be consistent with the newly proposed layer thickness
(van der Hilst & Karason 1999).

2 P H Y S I C A L M O D E L S A N D
N U M E R I C A L F O R M U L AT I O N

The mantle is assumed to consist of two layers with different intrinsic
densities (Fig. 1). We treat the mantle as an incompressible viscous
fluid, in which case the equations governing mantle flow can be
expressed as

∇ · u = 0, (1)

−∇ P + ∇ · [η(∇u + ∇Tu)] + gδρez = 0, (2)

where u is the velocity, P is the pressure, η is the viscosity, g is the
gravitational acceleration, ez is the unit vector in the vertical direc-
tion and δρ is the density perturbation that is due to compositional
and/or thermal effects:

δρ = ρ0α(T − T0) − C�ρ. (3)

Here ρ0 and T 0 are the reference density and the reference tempera-
ture, α is the thermal expansion coefficient, T is the temperature, C
specifies the compositional field and �ρ is the compositional den-
sity difference between the two layers. In our two-layer models, C is
zero and one for materials in the top and bottom layers, respectively.

The transport equation for the compositional field is given by
(Kellogg & King 1993; Lenardic & Kaula 1993)

∂C

∂t
+ u · ∇C = 0, (4)

where t is time. The energy balance equation has a similar math-
ematical form to eq. (4) except that an additional diffusion term
governs the time evolution of temperature (van Keken et al. 1997).

T0, ρ0

ρ0+∆ρ

Tp

r
T

rc

Figure 1. A schematic representation of the model setup.

Previous numerical studies that have focused on the dynamics
of thermochemical convection often consider the transport equa-
tions for both composition and temperature (e.g. Kellogg & King
1993; Tackley 1998). To resolve small-scale compositional features
and thermal boundary layers, high numerical resolution is required.
Since the entrainment is mainly controlled by thermal plumes, fol-
lowing Sleep (1988), we consider only the transport equation for
composition and assume that the thermal structure for plumes, which
we fix a priori, does not change with time (Fig. 1). This simplifi-
cation enables us to have the resolution necessary to resolve both
the thermal and compositional plumes. In our calculations, the hori-
zontal resolution is ∼3 km at the centres of the plumes. Without the
need to resolve the transient effects of thermal boundary layers, this
simplification also makes it easier to quantify the entrainment rate.

In our model, the temperature for the thermal plume, T p, is as-
sumed to be the same as that for the bottom layer, whereas the top
layer, except for the thermal plume, has a background temperature
T 0 (Fig. 1). This approximation may be justified because the bottom
layer is approximately isothermal for a layered convective system
(Tackley 1998; Kellogg et al. 1999). The bottom layer temperature
may be somewhat larger than T p, but this does not significantly
affect our analysis. We treat the plume temperature, T p, and the
plume radius, rT, as independent variables that control the plume
buoyancy. A thermal plume entrains dense material from the bot-
tom layer, forming a concentric annular structure, with a hot ther-
mal plume surrounding an inner cylinder of dense material (Fig. 1)
(Sleep 1988). For different compositional (�ρ) and thermal (T p −
T 0 and rT) buoyancy, we determine the entrainment rate (i.e. the
mass flux for the compositional plume) and the radius of the com-
positional plume, r c.

We substitute eq. (3) into eqs (1) and (2) and normalizing variables
as

r = Dr′, t = η0

ρ0α(Tp − T0)gD
t ′, P = ρ0α(Tp − T0)gD P ′,

u = ρ0α(Tp − T0)gD2

η0
u′, η = η0η

′, T = (Tp − T0)T ′ + T0,

(5)

where r denotes a spatial variable, η0 is the background viscosity, D
is the thickness of the mantle and all the variables with a prime are
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non-dimensional. While the resulting non-dimensional equations
for the continuity equation and compositional transport equation
have the same forms as eqs (1) and (4), the non-dimensional mo-
mentum equation can be written as (dropping all of the primes, for
simplicity)

−∇ P + ∇ · [η(∇u + ∇Tu)] + (T − RabtC)ez = 0, (6)

where Rabt = �ρ/[ρ0α(T p − T 0)] is the ratio of compositional to
the thermal buoyancy, C is 1 for the denser material in the lower
layer and 0 for material in the upper layer, and T is 1 for the thermal
plume and denser material and 0 for the rest of the mantle.

The momentum and continuity equations are solved using the
finite-element software Citcom, which uses an Uzawa algorithm for
the pressure field and a multigrid solver for the velocity (Moresi
& Solomatov 1995; Moresi & Gurnis 1996). We have developed
a marker chain method to solve the compositional transport equa-
tion (i.e. eq. 4). We have also extended the finite-element formula-
tion to axisymmetric geometry. These new features are presented
in Appendix A. The validity of the marker chain method and our
finite-element analysis are verified in the results section.

In our calculations, the mantle is assumed to be isoviscous and to
have a constant coefficient of thermal expansion. All the boundaries
are assumed to be free-slip. Initially the compositional boundary is
set at z = z0 and is flat. With these initial and boundary conditions,
and for a given radius of a thermal plume, rT, and the ratio of
compositional to thermal buoyancy, Rabt, we solve the momentum,
continuity and compositional transport equations to determine the
mass flux and geometry for the entrained compositional plume.

A stream function φ is used to illustrate the flow field, and it can
be related to the flow velocity as

ruz = ∂φ

∂r
, rur = −∂φ

∂z
. (7)

The stream function automatically satisfies the continuity equation.

3 R E S U LT S

In this section, we first present a representative case with rT = 0.05
and Rabt = 1.5 to show the basic physics of entrainment and the
validity of our numerical techniques. We then demonstrate how the
entrainment rate depends on rT , Rabt and other parameters.

3.1 Entrainment for rT = 0.05 and Rabt = 1.5

For this case the compositional boundary is initially set at z = 0.25.
At the beginning of the model run, thermal buoyancy in the plume
entrains the compositionally dense material into the thermal plume.
A compositional plume gradually forms at the centre of the ther-
mal plume (Fig. 2a). Upon reaching the surface, the compositional
plume spreads out below the surface (Fig. 2a). The upward vertical
flow near the plume indicates that the thermal plume entrains the
compositionally dense material (Fig. 3a). The entrainment causes
the volume of the bottom layer to decrease with time (Fig. 2b). The
volume of the bottom layer, V (t), is determined with the following
integral:

V (t) =
∫ 1

rT

2πr Z (r, t) dr , (8)

where Z(r, t) is the z-coordinate for the compositional boundary for
the bottom layer and is calculated with our marker chain technique.
Except for the initial phase, V (t) decreases with time at a nearly
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Figure 2. (a) Compositional boundary at four different non-dimensional
times: 209, 572, 2590 and 6640. The origins of the coordinate system for
the last three times have been shifted to better show the geometry of the
compositional boundary. (b) Time evolution of the volume of the dense
layer V and the radius of the compositional plume r c (averaged over the
depth range from z = 0.45 and 0.65). For this calculation, Rabt = 1.5 and
rT = 0.05.

constant rate (Fig. 2b; the entrainment rate can be determined from
the slope of the V (t) versus t plot and is approximately 1.07 ×
10−6 for this case). We also compute the average radius for the
compositional plume as a function of time, r c(t); the average is
calculated between z = 0.45 and 0.65. Similar to the entrainment
rate, r c(t) also reaches a constant value shortly after the initial phase
(Fig. 2b). We terminate the model run after the compositional plume
fully spreads under the surface (Fig. 2a). We think that the quasi-
steady-state entrainment rate is representative of the entrainment by
a thermal plume in a two-layer system.
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Figure 3. (a) Flow field at t = 6640 for the calculation with Rabt = 1.5 and
rT = 0.05. A positive stream function (thin solid lines) represents clock-
wise circulation, while a negative stream function (thin dashed lines) is
for counter-clockwise circulation. The contour levels are −0.125, −0.025,
0.025, 0.125, 0.225, 0.325 and 0.425. The thick solid and thick dashed lines
are for the compositional boundary and the thermal plume, respectively.
Note that only the flow field for r < 0.25 is displayed. (b) Spatial distribu-
tion of the three terms of the z-component momentum equation for the flow
in Fig. 3(a). The solid and dashed lines are for the compositional bound-
ary and the thermal plume, respectively. (c) Horizontal dependence of the
dτ r z/dr + τ r z/r (thin line) buoyancy force (dashed line) and τ zz,z − P ,z

(thick line) that are averaged over 0.55 < z < 0.65 for the flow in Fig. 3(a).

The flow field indicates that, except for the regions where the
compositionally dense material enters and exits the plume, the flow
in the vicinity of the plume is nearly 1-D and only depends on
the radial coordinate (Fig. 3a). This can be clearly seen in plots

for different terms in the z-component of the momentum equation:
∂ P/∂z, ∂τ zz/∂z and ∂τ r z/∂r + τ r z/r (Fig. 3b). Among these terms,
∂ P/∂z and ∂τ zz/∂z are much smaller than ∂τ r z/∂r + τ r z/r near
the plume, except near its ends (Fig. 3b), indicative of 1-D flow.
The term ∂τ r z/∂r + τ r z/r is dominant near the plume, except at
its ends, and is balanced by the buoyancy term T − RabtC (Fig. 3c
for these quantities averaged over 0.55 < z < 0.65). We believe that
the near cancellation of ∂τ r z/∂r + τ r z/r and T − RabtC validates
our numerical method. However, the 2-D flow at the ends of the
plume (Figs 3a and b) is important in determining the entrainment
rate, so a 1-D approximation to the entire problem is insufficient to
accurately determine the entrainment rate.

3.2 Dependence of entrainment rate on rT and Rabt

We now present results for calculations in which the initially flat
compositional boundary is at z0 = 0.25, but the radius for the ther-
mal plume, rT, and the ratio of compositional to thermal buoyancy,
Rabt, are varied systematically. When rT is fixed at 0.05, increas-
ing Rabt results in a narrower compositional plume, with a smaller
entrainment rate (Fig. 4a). Likewise, when Rabt is fixed at 1.5, de-
creasing rT has a similar effect on the entrainment rate as increasing
Rabt for a fixed rT (Fig. 4b). This is because decreasing rT reduces the
thermal buoyancy driving the flow, while increasing Rabt enhances
the compositional buoyancy resisting the flow, both of which hin-
der entrainment. For all of these calculations, except for the initial
stages, the entrainment rate, Q = dV/dt , and the average composi-
tional plume radius, r c, are nearly constant (Fig. 4). By averaging Q
and r c over the period of the quasi-steady state, we can determine
the average entrainment rate, Q, and the compositional plume ra-
dius, r c, that we take as representative measures of the dynamics of
entrainment.

Our calculations show that for a given rT, both the entrainment
rate, Q, and the compositional plume radius, r c, decrease with in-
creasing Rabt and that for a given Rabt, Q and r c increase with
increasing rT (Figs 5a and b). In addition to Q and r c, we also com-
pute the averaged vertical velocity within compositional plumes, uzc,
over the same depth ranges for which r c is determined. For a given
rT, uzc increases with increasing Rabt (Fig. 5c). This is very different
from Q and r c, which decrease with increasing Rabt (Figs 5a and
b). The entrainment rate, Q, is the mass flux of the dense material
through the compositional plume, so Q ∼ uzcr c

2. Therefore, Q is
more sensitive to the variation of r c with Rabt than to the variation of
uzc with Rabt. The decrease of Q with Rabt (Fig. 5a) arises because
r c decreases much more rapidly than uzc increases as Rabt increases
(Figs 5b and c).

In all of the calculations that we have presented so far, the initially
flat compositional boundary is set at z0 = 0.25. It is important to
examine whether our results are sensitive to z0, because in a dynamic
mantle with two layers, the volume of the bottom layer must change
with time as a result of continuous entrainment. To address this issue,
we compute two sets of models with z0 = 0.1 and 0.5, respectively.
For each set of models, rT = 0.05, but Rabt varies systematically. Our
calculations show that both Q and r c are insensitive to z0 (Figs 5a
and b). However, compared with cases with z0 = 0.25, cases with
z0 = 0.5 yield smaller uzc, while cases with z0 = 0.1 lead to larger
uzc (Fig. 5c). This is expected because the net thermal buoyancy for
the plume decreases as z0 increases. The variations in uzc with z0

do not have a significant effect on Q, because of the corresponding
changes in r c that are relatively small but sufficient to offset the
effects of uzc on Q (Fig. 5b). This suggests that the entrainment rate
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Figure 4. (a) Time evolution of the volume of dense layer, V , and the averaged radius of the compositional plume, r c, for rT = 0.05 but different Rabt.
(b) Time evolution of the volume of dense layer, V , and the averaged radius of the compositional plume, r c, for Rabt = 1.5 but different rT.

for such a two-layer system is mainly controlled by rT and Rabt, with
a very weak dependence on z0 or the volume of the bottom layer.

For models with z0 = 0.25, we fit each of Q, r c and uzc with a
polynomial function aRab

btr
c

T to seek their dependence on rT and
Rabt. We found that Q ∼ Ra−2.48

bt r 3.80
T , r c∼ Ra−1.43

bt r 1.24
T and uzc ∼

Ra0.45
bt r 1.28

T (see Table 1 for the fit for constants a, b and c, and their
errors). Figs 5(d)–(f) and Table 1 show that these scaling laws fit
our numerical results quite well with errors of less than 8 per cent,
except for uzc for which the error for constant b is ∼24 per cent. We
also noticed that these scaling laws satisfy Q ∼ uzcr 2

c , as expected.
It should be pointed out that the scaling laws for Q and r c do not
explain well the two cases with smallest Q and r c (Figs 5d and
e). We believe that these two cases with their relatively small rT

(i.e. 0.025D) and relatively large Rabt (i.e. Rabt ≥ 2) are the most
demanding numerically and that our numerical resolution for these
two cases may not be high enough.

4 D I S C U S S I O N

Our numerical models have shown that a thermal plume entrains
compositionally dense material, forming a compositional plume that
is concentric to the thermal plume. The entrainment rate of compo-
sitionally dense material by a thermal plume is mainly dependent on
the ratio of compositional to thermal buoyancy, Rabt, and the radius
of the thermal plume, rT. We have determined how the entrainment
rate and radius of the entrained plume vary with Rabt and rT. In
this section, we discuss the implications of our results for previous
studies on entrainment and for the long-term stability of a layered
mantle.

4.1 Comparison with 1-D entrainment models

Before discussing their implications for the long-term stability of
a compositionally stratified mantle, we compare the entrainment

rate determined from our models with that from a 1-D model that
is similar to that of Sleep (1988). We have extended this model
to satisfy the constraints that the density contrast driving flow and
the vertical velocity must have a horizontal average of zero at every
depth. Our calculations demonstrate that the flow is nearly 1-D in the
vicinity of a plume, except at its two ends (Fig. 4), thus justifying
the approximation made by Sleep (1988). However, 1-D models
with a prescribed ratio of compositional to thermal buoyancy, Rabt,
and radius of the thermal plume, rT, cannot uniquely determine the
flow velocity, the radius of entrained compositional plume and the
entrainment rate. To determine the entrainment rate, Sleep (1988)
assumed that the radius of the compositional plume is such that the
entrainment is maximized. It is important to examine to what extent
this assumption is valid.

For a 1-D model in which a thermal plume with a radius, rT,
and density anomaly �ρT = ρ0(T p − T 0)α entrains a compo-
sitional plume with a radius, r c, and density anomaly, �ρc (note
Rabt = �ρc/�ρT), the non-dimensional averaged vertical velocity
and entrainment rate are (Appendix B)

uzc = r 2
T

4η
− (2Rabt + 1)r 2

c

12η
− Rabtr 2

c

2η
ln

(
rT

rc

)

+ 1

8η

{
Rabtr

2
c

(
2r 2

T − r 2
c

) − r 4
T − δρb[4 ln(rT) + 3]

}
, (9)

and Q = πr c
2 uzc, where δρb = (r 2

T − Rabt r 2
c)/(1 − r 2

T) represents
the background buoyancy for rT ≤ r ≤ 1. It is clear from eq. (9)
and Appendix B that unless Rabt , rT and r c are all specified, neither
the vertical velocity nor the entrainment rate can be determined.
Following the approach by Sleep (1988), the radius of the compo-
sitional plume r c is obtained by maximizing the entrainment rate,
Qmax, for prescribed Rabt and rT.

The 1-D model predicts that for a fixed rT, Qmax and r c decrease
with Rabt at a slower rate than that given by the 2-D calculations
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Figure 5. Dependence of (a) the averaged entrainment rate, Q, (b) the averaged radius of the compositional plume, r c, (c) the averaged vertical velocity for
the compositional plume, uzc, on Rabt and rT, and fitting of polynomial functions to Q (d), r c (e) and uzc (f). While the compositional boundary is initially at
z = z0 = 0.25 for most calculations, the dashed lines with squares and triangles in (a)–(c) are for calculations with z0 = 0.5 and 0.1, respectively. In (d)–(f),
the horizontal and vertical axes represent results from finite-element calculations and from the fitting functions, respectively.

(Figs 5a, b, 6a and b). uzc from the 1-D model is nearly constant
(Fig. 6c), in contrast to the 2-D calculations which clearly show
an increase of vertical velocity with Rabt (Fig. 5c). Depending on
Rabt and rT, the 1-D model can overestimate the entrainment rate
by more than a factor of 4, compared with our 2-D calculations
(Figs 5a and 6a). This indicates that we should exercise caution
when interpreting the maximum entrainment rate predicted from
1-D entrainment models. Although the plume flow is nearly 1-D,
the 2-D flow at the two ends of a plume is important in determin-
ing the entrainment rate. With numerical models, Tackley (1998)
also reported smaller entrainment rates than predicted by Sleep
(1988).

4.2 A modified 1-D model with τ zz,z − P,z term

One interesting question is what causes the deviation of our 1-D
entrainment model from our 2-D numerical models. As discussed
in the previous section, the 1-D entrainment model includes two
important assumptions (Sleep 1988): (1) r c is determined by maxi-
mizing the entrainment rate and (2) vertical variations of deviatoric
stresses and pressure, (τ zz,z − P ,z), are ignored. Is the deviation of
the 1-D entrainment models caused by the neglect of (τ zz,z − P ,z),
or the way in which r c is determined?

To answer this question, we use the averaged compositional
plume radius, r c, from our 2-D numerical models (Fig. 5b) as the
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Figure 6. Dependence of (a) the maximum entrainment rate, Q, (b) the
radius of the compositional plume, r c, and (c) the averaged vertical velocity
for the compositional plume, uzc, on Rabt and rT from the 1-D analytic
models.

compositional plume radius in 1-D analytic models to determine
the averaged vertical velocity and entrainment rate for rT = 0.05
and different Rabt (i.e. we use eq. 9). The predicted entrainment
rate and averaged vertical velocity (the dashed lines with squares
in Figs 7a and c) are larger than those from our 2-D numeri-
cal models, although the rates at which they vary with Rabt be-
come similar to those from our numerical models. This indi-
cates that in addition to the determination of r c, the neglect of
(τ zz,z − P ,z) may also contribute to the deviation of the 1-D
models.

To examine the effects of (τ zz,z − P ,z), we have modified the
1-D entrainment model to include this term (Appendix C). (τ zz,z

− P ,z) is significantly smaller than the buoyancy and shear stress
terms (Figs 3b and c). However, (τ zz,z − P ,z) reflects the 2-D nature
of the entrainment problem. The 2-D numerical models show that
(τ zz,z − P ,z) may be approximated as an exponential function of the
distance from the plume centre, r (Fig. 3c), that is, τ zz,z − P ,z = −l
exp(−mr). For the calculation in Fig. 3(c), l and m are found to be
0.059 and 6.47, respectively. The parameters l and m depend only
weakly on Rabt. For 1.3 ≤ Rabt ≤ 2.25, l varies from 0.058 to 0.051,
and m varies from 6.89 to 5.55.

The modified 1-D model with the (τ zz,z − P ,z) term cannot
uniquely determine the flow velocity, uzc, the radius of the entrained
compositional plume, r c, and the entrainment rate, Q, similar to our
analytic 1-D model. Again we determine r c by maximizing the en-
trainment rate (Appendix C). While the predicted r c and Q from
the modified 1-D model are improved, the predicted uzc deviates
more from the 2-D numerical models, compared with the origi-
nal 1-D model (in Figs 7a–c, the modified 1-D model is shown
as solid lines with inverted triangles, the original 1-D model as
solid lines with circles and the 2-D numerical model as dashed
lines with diamonds). Although uzc in the modified 1-D model de-
viates more from the 2-D numerical model, the improved r c leads
to better estimates of entrainment rate in the modified 1-D model
(Figs 7a–c). This is because the entrainment rate depends more
strongly on r c than on uzc. However, because the difference in r c

between the modified 1-D and 2-D numerical models remains sig-
nificant (Fig. 7b), the entrainment rate from the modified 1-D model
deviates substantially from the 2-D numerical models (Fig. 7a). This
indicates that the inclusion of either r c or (τ zz,z − P ,z) only mod-
erately improves the 1-D entrainment model. However, using r c de-
termined from the 2-D numerical model in the modified 1-D model
results in an entrainment rate and a plume velocity that are nearly
identical to those from the 2-D numerical model (solid lines with
triangles in Figs 7a and c). This suggests that both the determi-
nation of r c and the inclusion of (τ zz,z − P ,z) are important for
improving the 1-D entrainment model. This also confirms the ac-
curacy of our 2-D numerical models in predicting the entrainment
rate.

4.3 Implications for the long-term stability
of a layered mantle

Whether a layered mantle can survive through Earth’s history de-
pends critically on the rate at which the dense material in the lower
layer is entrained into the upper layer by thermal plumes (Sleep
1988). Our models determine the entrainment rate under different
mantle conditions (Fig. 5a). We find that the entrainment rate is
mainly controlled by the ratio of compositional to thermal buoyancy,
Rabt, and the radius of the thermal plume, rT, with a functional re-
lationship Q ∼ Ra−2.48

bt r 3.80
T . Either decreasing rT or increasing Rabt

reduces the entrainment rate (Fig. 5a). The entrainment rate is rela-
tively insensitive to the thickness of the dense layer (Fig. 5a).

These results may be used to estimate the survival time for a lay-
ered mantle. If we assume that the mantle consists of two composi-
tionally distinct layers, with the dense layer at the bottom entrained
by thermal upwelling plumes, then the survival time of this layer is
t s = V c/Qt, where V c is the volume of the dense layer and Qt is the
total entrainment rate. If the characteristic spacing between thermal
plumes at mid-mantle depth is the same as the thickness of the man-
tle, D(2900 km), there would be ∼40 plumes, which is similar to
the number of identified hotspots on the Earth’s surface (e.g. Sleep
1990). If the bottom layer is ∼1000 km thick, as suggested by recent
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Figure 7. Dependence of (a) the entrainment rate, Q, (b) the radius of
the compositional plume, r c, and (c) the averaged vertical velocity for the
compositional plume, uzc, on Rabt for rT = 0.05D and z0 = 0.25 from dif-
ferent models. In Figs 7(a)–(c), the solid lines with open circles and dashed
lines with diamonds are from the 1-D analytic and 2-D numerical mod-
els, respectively (i.e. the same as those in Figs 5 and 6), the solid lines
with inverted triangles are for the modified 1-D model that includes the
τ zz,z − P ,z term. In (a) and (c), the dashed lines with squares and solid lines
with triangles are from the 1-D and modified 1-D models with r c that are
determined from the 2-D numerical models.

seismic models (van der Hilst & Karason 1999), then the volume
of the bottom layer that is affected by entrainment for each plume
is ∼0.27D3. Therefore, the survival time can be expressed as t s =
0.27Q−1t scale, where Q is the non-dimensional rate of entrainment
by a thermal plume, given by our calculations (Fig. 5a and Table 1),
and t scale = η0/[(ρ0gαD(T p − T 0)]. As an example, let us first
examine under what conditions the dense layer can be completely

Table 1. Scaling law parameters† for Q, r c, and uzc.

Parameters Q r c uzc

a 0.26 (±0.01)‡ 1.08 (±0.02) 0.06 (±0.001)
b −2.48 (±0.20) −1.43 (±0.02) 0.45 (±0.11)
c 3.80 (±0.11) 1.24 (±0.05) 1.28 (±0.04)

†The functional dependence is assumed to be aRab
btr

c
T for Q, r c and uzc. In

our fitting, we did not use the two data points with rT = 0.025D and Rabt

≥ 2.
‡The number in parentheses indicates the error in fitting.

entrained in the age of the Earth. For rT = 145 km (i.e. 0.05D) and
Rabt = 1.5, our scaling law shows Q ∼ 10−6 and t s ∼ 2.7 × 105t scale.
For mantle parameters: η0 = 1021 Pa s, α = 2.5 × 10−5 K−1, ρ0 =
3300 kg m−3 and T p − T 0 = 800 K, the survival time t s is ∼4.5 ×
109 yr, which is equal to the age of the Earth. For these mantle con-
ditions, with Rabt = 1.5, the compositional density anomaly �ρ is
3 per cent of ρ0 and the net buoyancy (i.e. �ρ − ρ0α(T p − T 0))
for the dense material is only 1 per cent of ρ0.

However, the actual survival time of the dense layer can be sig-
nificantly longer than the above t s estimate. The thermal buoyancy
varies between plumes, as indicated by the estimated mass flux for
different hotspots (e.g. Davies 1988; Sleep 1990). For the Hawai-
ian plume, possibly the strongest plume on Earth, the estimates for
plume excess temperature are between 250 and 400 K (Campbell &
Griffiths 1990; Zhong & Watts 2002) and the plume radius is less
than 80 km (Zhong & Watts 2002). If we take rT = 100 km (i.e.
0.0345D) and T p − T 0 = 600 K (i.e. Rabt = 2) in our estimate of
survival time t s, while keeping other parameters the same, we found
that t s ∼ 5.56 × 1010 yr, which is more than 12 times of the age
of the Earth (i.e. only ∼8 per cent of the denser layer is entrained
through the age of the Earth). This is because the entrainment rate
is highly sensitive to rT and Rabt (Table 1). We also realize that
our entrainment model includes assumptions that may affect the en-
trainment rates and hence the survival times. Our models assume an
isoviscous mantle. A temperature-dependent rheology that would
reduce the viscosity for the hot and compositionally dense mate-
rial may reduce the entrainment, because the reduced viscosity may
reduce mechanical coupling at the material interface (Sleep 1988).
While future studies are needed to address the effects of temperature-
dependent viscosity with dynamically generated thermal plumes,
our estimates of the survival time suggest that a dense layer with
∼1 per cent net compositional buoyancy may survive over geologi-
cal history.

5 C O N C L U S I O N S

The long-term stability of a compositionally layered mantle depends
critically on the entrainment of dense material by upwelling thermal
plumes that may originate from thermal boundary layers at the ma-
terial interface. We have formulated high-resolution finite-element
models in axisymmetric geometry to examine the efficiency of such
an entrainment. We employ a marker chain method to track the
evolution of the material interface. Our models show that a ther-
mal plume entrains the dense material, forming a compositionally
distinct plume that is concentric to the thermal plume. While the
entrainment rate is relatively insensitive to the volume (or thick-
ness) of the dense layer, it is sensitive to two parameters: the radius
of the thermal plume, rT, and the ratio of compositional to ther-
mal buoyancy, Rabt. The smaller rT or the larger Rabt, the smaller
the entrainment rate, as expected. The entrainment rate scales with
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rT and Rabt as Ra−2.48
bt r 3.80

T . As Rabt increases, the radius of the
entrained compositional plume decreases, but the vertical velocity
for the compositional plume increases. The functional dependence
of the radius of the compositional plume is Ra−1.43

bt r 1.24
T . We have

applied these results to study the long-term stability of a layered
mantle. For a mantle viscosity of 1021 Pa s, thermal plumes with
rT ∼ 100 km and temperature 600 K hotter than the ambient mantle
and with horizontal spacings that are approximately the same as the
mantle thickness, and for a denser layer with a thickness of 1000 km
and net negative buoyancy of approximately 1 per cent, our model
predicts that more than 90 per cent of the dense material can survive
after 4.5 Gyr.
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A P P E N D I X A : A F I N I T E - E L E M E N T
A N A LY S I S A N D A M A R K E R
C H A I N M E T H O D

We briefly describe the numerical methods used in our 2-D axisym-
metric models. In axisymmetric cylindrical coordinates, non-zero
stress components are

σrr = −P + 2η
∂ur

∂r
, (A1)

σzz = −P + 2η
∂uz

∂z
, (A2)

σθθ = −P + 2η
ur

r
, (A3)

σr z = η

(
∂uz

∂r
+ ∂ur

∂z

)
, (A4)

where P is the pressure, ur and uz are the radial and vertical velocity
components. The elemental stiffness matrix can be expressed as
(Hughes 1987)

ke
pq = eT

i

(∫
Se

BT
a Dη Bb d S

)
e j , (A5)

where ei and ej are the unit direction vectors, the superscript T
represents the transpose of a matrix, Se is the area of element e, Dη

is a diagonal matrix with diagonal entries (2η, 2η, η, 2η), subscripts
a and b are element node indices, and the B matrix can be expressed
in terms of a nodal shape function, Na, and its derivatives with
respect to r and z.

BT
a =

(
Na,r 0 Na,z Na/r

0 Na,z Na,r 0

)
. (A6)

The continuity equation in an axisymmetric cylindrical coordi-
nate can be written as

∂ur

∂r
+ ur

r
+ ∂uz

∂z
= 0. (A7)

The finite-element representation of this equation is (Hughes 1987),

∑
a

(
Na,r + Na

r
, Na,z

) (
va

r

va
z

)
= 0. (A8)
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Now we discuss our marker chain method for solving the advec-
tion eq. (4). For tracking a compositional boundary with a relatively
simple geometry, the marker chain method is very efficient (e.g. van
Keken et al. 1997). Suppose that we have a compositional field, C0,
that is defined by a set of markers with coordinates, xi

0, for marker,
i, and velocity, u0, at t = t0. Our algorithm for solving C1 at the
next time step, t = t0 + dt = t1, can be summarized as follows.

(1) Using a forward Euler scheme, predict the new position for
each marker i with xi

1p = xi
0 + v0 dt and compositional field C1p at

t = t1.
(2) Using the predicted C1p , solve the Stokes equation for new

velocity u1p .
(3) Using a modified Euler scheme with second-order accuracy,

compute the position for each marker i with xi
1 = xi

0 + 0.5(u0 +
u1p) dt and compositional field C1 at t = t1. Add or delete markers
to ensure that the distance between neighbouring markers satisfies
certain criteria.

(4) Using the new compositional field, C1, solve the Stokes equa-
tions to obtain a new velocity u1 at t = t1.

We have two remarks concerning our marker chain method. (1)
For an element that is cut through by segments of the marker chain,
the element force vector includes the contribution only from the part
of element with C = 1. (2) We do not use a fourth-order accurate
Runge–Kutta method in our advection scheme, which requires the
velocity field at four different times. It is unclear what we would
gain by using such a computationally more expensive scheme given
the only second-order accurate velocity solver used in our method
(Moresi & Gurnis 1996).

A P P E N D I X B : 1 - D E N T R A I N M E N T
M O D E L

We consider a 1-D entrainment model in which a thermal plume with
a radius, rT, and density anomaly, �ρT, entrains a compositional
plume with a radius, r c, and density anomaly, �ρc (e.g. Sleep 1988).
The normalized momentum equation is

1

r

d(rτ )

dr
− δρ = 0, (B1)

where δρ is Rabt − 1, − 1 and δρb = (r 2
T − Rabtr 2

c)/(1 − r 2
T), for r ≤

r c, r c≤ r ≤ rT, and rT ≤ r ≤ 1, respectively. The buoyancy for rT ≤
r ≤ 1, δ ρb, is obtained from the mass balance for 0 ≤ r ≤ 1, and it
automatically enforces zero shear stress boundary condition at r =
1. (This source of buoyancy was not included by Sleep (1988), and
his model does not satisfy the condition that the horizontal average
of the density perturbation must vanish.)

The vertical velocity u is

u = Rabt − 1

4η
r 2 + v0, for r ≤ rc; (B2)

u = −
(
r 2 − r 2

c

)
4η

+ Rabtr 2
c

2η
ln

(
r

rc

)
+ u1, for rc ≤ r ≤ rT; (B3)

u = δρb

(
r 2 − r 2

c

)
4η

− δρb

2η
ln

(
r

rT

)
+ u2, for rT ≤ r ≤ 1; , (B4)

where u0, u1 and u2 are velocities at r = 0, r c and rT, respectively.
The zero net mass flux from r = 0 to 1 and continuity conditions at
r c and rT are used to constrain u0, u1 and u2.

u0 = u2 − Rabtr 2
c − r 2

T

4η
− Rabtr 2

c

2η
ln

(
rT

rc

)
, (B5)

u1 = u2 +
(
r 2

T − r 2
c

)
4η

− Rabtr 2
c

2η
ln

(
rT

rc

)
, (B6)

u2 = 1

8η

{
Rabtr

2
c

(
2r 2

T − r 2
c

) − r 4
T − δρb[4 ln(rT) + 3]

}
, (B7)

where in eq. (B7), we have considered rT � 1.
Eqs (B2) and (B5) allow the determination of the averaged vertical

velocity in the compositional plume and the entrainment rate:

uzc = 1

rc

∫ rc

0
v dr = r 2

T

4η
− (2Rabt + 1)r 2

c

12η
− Rabtr 2

c

2η
ln

(
rT

rc

)

+ 1

8η

{
Rabtr

2
c

(
2r 2

T − r 2
c

) − r 4
T − δρb[4 ln(rT) + 3]

}
,

(B8)

Q = πr 2
c uzc. (B9)

Eqs (B8) and (B9) show that the plume velocity and entrainment
rate cannot be determined unless Rabt, rT and r c are all given. How-
ever, for typical entrainment problems, r c is unknown a priori. Sleep
(1988) solved for the value of r c, which leads to a maximum en-
trainment rate by maximizing eq. (B9) with respect to r c.

A P P E N D I X C : A M O D I F I E D 1 - D
E N T R A I N M E N T M O D E L

The modified 1-D entrainment model considers the vertical varia-
tions of stress and pressure τ zz,z − P ,z in the momentum equation.
τ zz,z − P ,z may be approximated as an exponential function of the
distance from the plume centre r (Fig. 3c), that is τ zz,z − P ,z =
−l exp(−mr). For 1.3 ≤ Rabt ≤ 2.25, the 2-D numerical calcula-
tions suggest that l varies from 0.058 to 0.051 and m varies from
6.89 to 5.55. Similar to the 1-D entrainment model, the momentum
equation is

1

r

d(rτ )

dr
− δρ − l exp(−mr ) = 0. (C1)

Considering for r ≤ rT , mr � 1 and exp(−mr ) + mr exp(−mr )
− 1 ≈ −m2r 2

/
2, we can express the vertical velocity u as

u = Rabt − 1 + l

4η
r 2 + u0, for r ≤ rc; (C2)

u = − (1 − l)
(
r 2 − r 2

c

)
4η

+ Rabtr 2
c

2η
ln

(
r

rc

)
+ u1, for rc ≤ r ≤ rT;

(C3)

u = δρb

(
r 2 − r 2

c

)
4η

− δρb

2η
ln

(
r

rT

)
− l

m2

{
exp(−mrT) − exp(−mr )

+
∞∑

n=1

[
(−m)n

n · n!
(rn − rn

T)

] }
+ u2, for rT ≤ r ≤ 1.

(C4)
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Similar to those in the original 1-D entrainment in Appendix B,
zero net mass flux from r = 0 to 1 and continuity conditions at r c

and rT are used to constrain u0, u1 and u2.

u0 = u2 − Rabtr 2
c − (1 − l)r 2

T

4η
− Rabtr 2

c

2η
ln

(
rT

rc

)
, (C5)

u1 = u2 + (1 − l)
(
r 2

T − r 2
c

)
4η

− Rabtr 2
c

2η
ln

(
rT

rc

)
, (C6)

u2 = 1

8η

{
2Rabtr

2
c r 2

T − Rabtr
4
c − (1 − l)r 4

T − δρb[4 ln(rT) + 3]

+16l

m2

[
exp(−mrT)

2
+

∞∑
n=1

(−m)n

n(n + 2) · n!

] }
, (C7)

where in eq. (C7), we have considered rT � 1 and m ∼ 6.
Similarly, we can determine the averaged vertical velocity in the

compositional plume and the entrainment rate. It can be shown that
these equations become identical to those in Appendix B for l = 0.
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