
Geophys. J. Int. (2005) 162, 289–300 doi: 10.1111/j.1365-246X.2005.02633.x

G
JI

V
ol

ca
no

lo
gy

,
ge

ot
he

rm
ic

s,
fl
ui

ds
an

d
ro

ck
s

Dynamics of thermal plumes in three-dimensional isoviscous
thermal convection

Shijie Zhong
Department of Physics, University of Colorado at Boulder, Boulder, CO 80309, USA. E-mail: szhong@spice.colorado.edu

Accepted 2005 March 9. Received 2005 March 9; in original form 2004 August 31

S U M M A R Y
The dynamics of mantle plumes are important for understanding intraplate volcanism and heat
transfer in the mantle. Using 3-D numerical models and scaling analyses, we investigated the
controls of convective vigour or Ra (Rayleigh number) on the dynamics of thermal plumes in
isoviscous and basal heating thermal convection. We examined the Ra dependence of plume
number, plume spacing, plume vertical velocity and plume radius. We found that plume num-
ber does not increase monotonically with Ra. At relatively small Ra (≤106), plume number
is insensitive to Ra. For 3 × 106 ≤ Ra ≤ 3 × 107, plume number scales as Ra0.31 and plume
spacing λ ∼ Ra−0.16 ∼ δ1/2, where δ is the thickness of the thermal boundary layer. However,
for larger Ra (∼108) plume number and plume spacing again become insensitive to Ra. This
indicates that the box depth poses a limit on plume spacing and plume number. We demon-
strate from both scaling analyses and numerical experiments that the scaling exponents for
plume number, n, heat flux, β, and average velocity on the bottom boundary, v, satisfy n =
4β − 2v. Our scaling analyses also suggest that vertical velocity in upwelling plumes V up ∼
Ra2(1−n+β/2)/3 and that plume radius Rup ∼ Ra(β−1−n/2)/3, which differ from the scalings for
the bottom boundary velocity and boundary layer thickness.

Key words: mantle convection, mantle plumes.

1 I N T RO D U C T I O N

Information about the dynamics of mantle upwelling plumes is im-
portant for understanding the surface tectonics and dynamic evo-
lution of the Earth. Mantle plumes may be the main sources for
interplate volcanism (i.e. hotspots) (Wilson 1963; Morgan 1963)
and large igneous provinces (Morgan 1981; Richards et al. 1989).
They are also responsible for large-scale swell topography, includ-
ing the Hawaiian swell (Sleep 1987; Davies 1988; Olson 1990).
Because mantle plumes result from instabilities of a bottom ther-
mal boundary layer (TBL) of the convective mantle (Morgan 1963),
they are important agents in the release of heat to the shallow regions
of the mantle from either the core, for a compositionally uniform
mantle (i.e. whole mantle convection) (Davies 1988; Sleep 1990),
or the bottom layer, for a layered mantle (Davies 1998), thus af-
fecting the dynamic evolution of the Earth. A significant amount of
effort has been made in the last 30 yr to improve our understanding
of the dynamics of mantle plumes, particularly of the number of
plumes and their heat transfer properties. Early estimates of hotspot
numbers based on surface observations of hotspot volcanism range
from 50 to 100 (Burke & Wilson 1976; Crough 1983). However, only
some 30 hotspots display swell-topography and gravity anomalies
(Crough 1983; Davies 1988; Sleep 1990). Improved seismic imag-
ing techniques may help identify mantle plumes (Wolfe et al. 1997;
Romanowicz & Gung 2002; Zhao 2004; Courtillot et al. 2003). A

more recent seismic study reports about 30 mantle plumes, most of
which are related to surface hotspots (Montelli et al. 2004).

Transport of heat flux by mantle plumes can be constrained by the
hotspot swell topography and gravity anomalies (Davies 1988; Sleep
1990). The estimated plume heat flux differs greatly (by a factor of
∼20) among different plumes with Hawaii as the largest, transferring
∼1 per cent of the heat at the Earth’s surface. The total plume heat
flux is estimated to be 3–5 TW, which is ∼10 per cent of the total heat
flux from the Earth’s mantle, and has been attributed to the cooling
of the core (Davies 1988; Sleep 1990). Davies (1998) also used
this relatively small plume heat flux as evidence for whole mantle
convection that is driven mostly by internal heating. Davies (1998)
argued that if the lower mantle were more enriched with radioactive
elements, as in the conventional layered mantle model, plume heat
flux would be significantly greater than 3–5 TW as constrained by
the swell topography and gravity anomalies because significantly
more heat from the bottom layer (i.e. the lower mantle) needs to be
released via the plumes.

However, the actual heat flux via mantle plumes and its relation to
the heat flux out of the core (or the bottom layer of a layered mantle)
is controversial. Malamud & Turcotte (1999) suggested that the size
distribution of mantle plumes follows a power law and that there
might be as many as 5000 mantle plumes that transport 13 TW heat
flux to the base of lithosphere to account for reduced topographic
subsidence at areas of old seafloor. Malamud & Turcotte (1999)
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further suggested that the majority of the plumes are too weak to
produce any significant surface expression. If their proposal is true,
this suggests that the estimated 3–5 TW plume heat flux from surface
hotspots may not preclude layered convection. However, Malamud
& Turcotte (1999) did not discuss physical mechanisms that may
be responsible for such a distribution of mantle plumes. Another
question is how much heat flux from the core is actually trans-
ported via mantle plumes? Part of the heat flux from the core may
be consumed to heat up cold downwellings that reach the core–
mantle boundary (Labrosse 2002) and this part of core heat flux
is not included in the plume heat flux inferred from surface to-
pography and geoid (Davies 1988; Sleep 1990) that only measures
convective heat flux with respect to the upper mantle background
temperature.

The dynamics of thermal plumes is the key to understanding
the controls on plume numbers and plume heat transfer. The dy-
namics of thermal plumes has been investigated in the laboratory
and in theoretical and numerical studies. In laboratory studies,
Weeraratne & Manga (1998) showed that for thermal convection
at large Rayleigh number Ra with rigid boundaries, thermal plumes
replace large-scale structures and become the dominant features.
Laboratory studies also demonstrated that upwelling plumes are in-
fluenced by downwelling plumes (Schaeffer & Manga 2001) and
by plate motion (Jellinek et al. 2003; Gonnermann et al. 2004).
Theoretical and numerical studies have been more directly aimed at
the problem of plume number. A Rayleigh–Taylor instability anal-
ysis has been used to investigate the dependence of plume number
and plume spacing λ on the thickness of an unstable layer δ (e.g.
the bottom thermal boundary layer) (e.g. Ribe & Devalpine 1994).
However, the Rayleigh–Taylor analysis does not consider the ther-
mal energy balance and temporal evolution of structure. Solomatov
(2004) examined the dependence of aspect ratio of convection cells
and plume spacing on convective vigour (i.e. Ra) in 2-D stagnant
lid convection. Because the 3-D geometry may be important for
plume dynamics, 3-D Cartesian models of plume dynamics have
been formulated for basal heating (Malevsky & Yuen 1993) or en-
tirely volumetric heating (Parmentier et al. 1994) convection with
uniform viscosity. The study by Parmentier & Sotin (2000) was the
first to systematically examine the dependence of plume number on
Ra for 3-D isoviscous convection with entirely volumetric heating.

In this paper we present 3-D Cartesian isoviscous convection
models with basal heating and scaling analyses for the plume dy-
namics. We focus on the number, size (i.e. cross-sectional area),
vertical velocity and heat transfer of thermal plumes and their Ra
dependence. The paper is organized as follows: Section 2 presents
the numerical methods and scaling analyses; we will then show
results of plume dynamics from numerical models and compare
them with the scaling analyses before presenting our discussion and
conclusion.

2 N U M E R I C A L M O D E L S
A N D M E T H O D S

2.1 Description of the models

We consider thermal convection with basal heating and constant vis-
cosity in a 3-D Cartesian geometry. The governing equations are the
conservation equations of mass, momentum and energy under the
Boussinesq approximation (e.g. McKenzie et al. 1974). The equa-
tions are non-dimensionalized with temporal and spatial scales of
D2/κ and D, respectively, and a temperature scale of �T , where

D is the thickness of the box, κ is the thermal diffusivity and �T is
the temperature difference between the bottom and the top bound-
aries. The only controlling parameter in our models is the Rayleigh
number Ra which is defined as

Ra = ρgα�T D3

ηκ
, (1)

where ρ, η and α are respectively the density, viscosity and thermal
expansion coefficient and g is the gravitational acceleration.

We consider models in boxes with different sizes: 1 × 1 × 1,
2 × 2 × 1 and 3 × 3 × 1 in 3-D. The surface and bottom boundaries
are free-slip and isothermal with the non-dimensional temperatures
fixed to be 0 and 1, respectively. Reflecting boundary conditions
(i.e. thermally insulating and mechanically free-slip) are applied
to all the vertical boundaries. The initial temperature for steady-
state cases at relatively small Ra is the linear temperature profile
superimposed by sinusoidal perturbations of a given wavelength
with details that will be discussed later. The initial temperature for
time-dependent cases at large Ra is the linear temperature profile
superimposed by small random perturbations (10−3).

To solve the governing equations we use a finite-element code
CITCOM (Moresi & Solomatov 1995) with significant enhance-
ments including parallel computing (Zhong et al. 2000). We com-
pute our models for a sufficiently large number of timesteps to either
a steady state or a statistically steady state. We then analyse these
steady-state results.

2.2 Quantifying model results

In addition to the standard outputs of the flow velocity, temperature
and surface and bottom heat fluxes (i.e. the Nusselt number, Nu),
we also quantify the convective heat flux and dynamic properties of
plumes. In the interior of convective flow, conductive heat flux can
be ignored compared with convective heat flux. Non-dimensional
convective heat flux at any location (x , y, z) is defined as

Hadv = uz(T − Tave(z)), (2)

where T is the temperature, u z is the vertical velocity and T ave(z)
is the horizontally averaged temperature at vertical position z. This
definition of convective heat flux is consistent with that for plume
heat flux that is dependent on plume excess temperature (e.g. Davies
1988; Sleep 1990). This convective heat flux can also be related to
other geophysical observations, including seismic tomography, that
often measure anomalies with respect to background values. How-
ever, it should be pointed out that convective heat flux can be defined
without subtracting T ave(z) in (2) to get the same net convective heat
flux across a surface because of the mass conservation.

It is clear from eq. (2) that cold downwellings (i.e. u z < 0 and
T < T ave(z)) produce positive (i.e. upward) convective heat flux,
just like what hot upwellings (i.e. u z > 0 and T > T ave(z)) do.
For the isoviscous and basal heating convection considered in this
study cold downwellings and hot upwellings are each responsible for
50 per cent of heat flux at the surface and bottom boundaries; this
is because |u z | and |T − T ave(z)| are the same for upwelling and
downwelling plumes and also because the total convective heat flux
is constant at any depth outside of the TBLs and is equal to heat flux
at the surface and bottom boundaries.

To quantify the dynamic properties of plumes we first use the fol-
lowing procedures to identify downwelling and upwelling plumes:

(1) For a given depth z, go through all the elements to identify
those for upwellings and downwellings with the following criteria.
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An element is a upwelling element if

T > Tavg(z) + f (Tmax(z) − Tave(z)), (3)

or is a downwelling element if

T < Tavg(z) + f (Tmin(z) − Tavg(z)). (4)

In eqs (3) and (4), T max(z) and T min(z) are the maximum and mini-
mum temperature at vertical position z, and f is a constant that de-
termines threshold temperatures for upwellings and downwellings.
The smaller f is, the larger the area of upwellings and downwellings
is at this depth. We used f ranging from 0.1 to 0.4, and the effects
of f will be discussed later. This step is similar to that in Labrosse
(2002).

(2) At this depth, go through all the upwelling (downwelling)
elements and group them into individual upwelling (downwelling)
plumes. For each plume, find its area, heat flux and vertical veloc-
ity. Find the total number of plumes Np and of upwelling plumes
N up. In determining the number of plumes we only include plumes
that carry no less than 5 per cent of the heat that is carried by
the strongest plume (note that the plume heat flux for different
hotspots may vary by a factor of 20; Sleep 1990). We call this
threshold Pf . The effects of thresholds Pf on our analyses are also
examined.

(3) Repeat steps (1) and (2) for a range of depths (0.45 ≤ z ≤ 0.55,
i.e. the mid-depth section of the box) and find the averaged properties
for plumes (i.e. plume radius, heat flux and vertical velocity).

For steady-state cases in addition to the algorithm outlined
above we also determine the radius of an upwelling plume Rup

by fitting plume temperature in the depth range of 0.45 ≤ z ≤
0.55 to

T (r ) = T0 + �T exp
[−(r/Rup)2

]
, (5)

where T(r) is the temperature as a function of the distance from
the centre of the upwelling plume, T 0 is the temperature at a large
distance and parameters Rup and �T are the fitting parameters.
However, this algorithm is only feasible for steady-state cases. After
Rup is obtained, we determine the area and average vertical velocity
of plumes.

2.3 A scaling analysis for plume dynamics

An important question that we want to answer in this study is how
plume number depends on the convective vigour or Ra. This question
can also be rephrased as how the plume spacing depends on Ra. It
is well known that Nu or heat flux increases with Ra to a power of
∼1/3 for basal heating and isoviscous convection. As Ra increases,
does the number of plumes need to increase in order to enhance
heat transfer? Or can the increased heat flux be accomplished with
increased convective heat flux for each plume without increasing
the number of plumes?

For thermal convection with high Ra Howard (1966) proposed
that the thermal boundary layer (TBL) thickens conductively before
becoming unstable when the TBL reaches a critical thickness (i.e. a
local Ra reaches a critical value). When becoming unstable, TBLs
produce upwelling or downwelling plumes.

Suppose that for thermal convection in 3-D, the number of plumes
including downwelling and upwelling N p ∼ Ran, then the av-
erage spacing between downwelling and upwelling plumes λ ∼
D(1/N p)1/2 ∼ DRa−n/2 (notice that for basal heating and isovis-
cous convection the average spacing between upwelling plumes is

2λ and the number of upwelling plumes is ∼N p/2). Let us con-
sider the bottom TBL that thickens with time starting from below
a downwelling. The critical TBL thickness δ ∼ (κt)1/2 where t =
λ/ub and ub is an averaged horizontal velocity at the bottom bound-
ary. Suppose that ub ∼ (κ/D)Rav , then we have δ ∼ (κ λ/ub)1/2 ∼
DRa−n/4−v/2. Also because Nu ∼ Raβ , δ ∼ DNu−1 ∼ DRa−β . There-
fore, we have the following relationship between the scaling expo-
nents n, β and v:

n = 4β − 2v. (6)

Since β is often found to be ∼1/3 for basal heating and isoviscous
convection, this simple analysis indicates that the scaling for N p or
plume spacing λ depends critically on the scaling for velocity. For
thermal convection in 2-D, a similar analysis leads to n = 2β − v.
From a boundary layer theory (e.g. Turcotte & Schubert 2002) for
2-D convection, β = 1/3 and v = 2/3, this implies that n = 0, i.e.
the number of plumes is independent of Ra.

We can also derive scaling for plume radius Rup and plume ver-
tical velocity V up on Ra. For a cylindrical upwelling plume, if we
ignore its vertical variations, the force balance between the plume’s
buoyancy force and viscous traction is

π R2
upρgα�Tup = 2π Rupη(dV /dr )r=Rup , (7)

where V and �T up are the vertical velocity and excess temperature
of the plume and r is the distance from the centre of the plume. For
basal heating and isoviscous convection we have �T up ∼ �T , and
(dV/dr )r=Rup ∼ V up/λ, where �T is the temperature difference
between the top and bottom boundaries and λ is the plume spacing.
This leads to

Vup ∼ λRupρgα�T /η, (8)

or

Vup ∼ κ

D3
λRup Ra ∼ κ

D2
Rup Ra1−n/2, (9)

where in (9) λ ∼ D(1/N p)1/2 ∼ DRa−n/2 was used.
The energy balance leads to

NpρC�TupVupπ R2
up ∼ k

�T

D
Nu ∼ k

�T

D
Raβ . (10)

Substituting �T up ∼ �T , N p ∼ Ran and (9) into (10) leads to the
scaling of plume radius with Ra:

Rup ∼ DRa(β−1−n/2)/3. (11)

Combining (11) and (9), we have the scaling of plume vertical ve-
locity with Ra:

Vup ∼ κ

D
Ra2(1−n+β/2)/3. (12)

In particular, if n = 0 (i.e. the number of plumes is independent of
Ra) and β = 1/3, (11) and (12) suggest that Rup ∼ Ra−2/9 and V up ∼
Ra7/9, differing from the scaling for the thickness of TBLs and
velocity on the bottom boundary. For n > 0, Rup decreases more
rapidly with Ra, while V up increases more slowly with Ra, compared
with n = 0.

This analysis appears to be incomplete, as we do not explicitly
give n which affects the scaling for Rup and V up. However, as we
will demonstrate with our numerical experiments, for basal heating
and isoviscous convection there does not seem to be a simple and
monotonic dependence of N p or λ on Ra. However, eqs (6), (11)
and (12) are satisfied over a wide range of model parameters that
are considered in this study.
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Table 1. Model parameters and Nu and ub.

Case Ra Box size Mesh sizea Nu ub

1 104 1 × 1 × 1 48 × 48 × 48 4.72 31.77
2 3 × 104 1 × 1 × 1 48 × 48 × 48 7.32 72.5
3 105 1 × 1 × 1 48 × 48 × 48 11.24 165.4
4 3 × 105 1 × 1 × 1 48 × 48 × 48 16.10 335.7
5 106 1 × 1 × 1 64 × 64 × 64 23.45 710.5
6 3 × 106 1 × 1 × 1 64 × 64 × 64 29.28(1.51)b 1472(110)
7 104 3 × 3 × 1 96 × 96 × 48 5.12[4.54]c 49.8[63.7]
8 3 × 104 3 × 3 × 1 96 × 96 × 48 7.44[6.21] 104.3[123.1]
9 105 3 × 3 × 1 96 × 96 × 48 10.8[8.82] 223.3[244]
10 3 × 105 3 × 3 × 1 96 × 96 × 48 14.3[–] 397.9[–]
11 3 × 106 2 × 2 × 1 128 × 128 × 64 27.1(1.0) 1642(153)
12 107 2 × 2 × 1 192 × 192 × 96 41.2(1.9) 3085(348)
13 3 × 107 2 × 2 × 1 256 × 256 × 96 57.3(1.9) 5162(507)
14 108 2 × 2 × 1 320 × 320 × 96 82.1(2.4) 11012(1018)

aThe mesh is refined in the vertical direction near the TBLs, depending on Ra.
bThe numbers in round brackets for Nu and ub are the standard deviations which are negligibly small for cases
1–5 and 7–10.
cThe numbers in the square brackets for Nu and ub are the steady-state values for cases 7–9, while those before
the brackets are the quasi-steady-state values.

3 R E S U LT S

3.1 Number and spacing of plumes

We computed 14 models with boxes of different sizes, Ra ranging
from 104 to 108 and different initial conditions (Table 1). We first
present a series of cases with relatively small Ra that reach a steady
state, before showing intrinsically time-dependent cases at higher
Ra. Cases 1–5 are in a 1 × 1 × 1 box with Ra ranging from 104 to
106 and initial conditions

T (x, z) = 1 − z + δT sin(π z) cos

(
πx

L

)
cos

(
πy

L

)
, (13)

where δT = 10−3 and L = 1. For all these cases, grid refinement
is applied to the bottom and top boundary layers according to Ra.

Figure 1. 3-D thermal structure for cases 2 (a), 4 (b), 6 (c) and 8 (d) and quasi-steady state and final steady state (e). The figure shows isosurfaces of residual
temperature δT = T − T ave(z) with δT = 0.2 (light shading) and −0.2 (dark shading), respectively.

For these cases, a steady-state solution was achieved with two down-
welling plumes at two diagonal corners of the box and two upwelling
plumes at the other two corners (Figs 1a and b). Here our steady state
is an absolute steady state in which the numerical solutions of heat
flux and velocity do not vary with time (Fig. 2). When a higher
Ra (e.g. case 6 with 3 × 106) was used, the solution becomes time
dependent and we do not obtain the simple flow structure (Fig. 1c)
as in cases with small Ra. For each of these steady-state cases we
computed steady-state solutions of average surface heat flux (i.e.
Nu) and average bottom velocity ub (Table 1 and Fig. 2: note that
Fig. 2 uses a transit time which is defined as the product of time
and a characteristic velocity or the steady-state velocity ub). The
steady-state values of Nu and ub are fitted to power-law functions
of Ra: Nu = 0.201Ra0.347 and ub = 0.0683Ra0.673 (Figs 3a and
b and Table 2). From eq. (6), β = 0.347 and v = 0.673 lead to
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Figure 2. Time dependence of Nu (a) and ub (b) for cases 2, 4 and 8.
Notice that transit time is used here and that parts (a) and (b) use the same
line convention.

n = 0.04. The negligibly small n implies that the number of plumes
N p is independent of Ra, which is consistent with the results for
cases 1–5.

We now present cases 7–10 with Ra ranging from 104 to 3 × 105

in a 3 × 3 × 1 box (Table 1). For these four cases we use the same ini-
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N
u
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Figure 3. Dependence of Nu and ub on Ra. For cases 1–5 (circles with thin solid line), the quasi-steady state of cases 7–10 (diamonds with thick solid line)
and the steady state of cases 7–9 (squares with thin dashed line), Nu versus Ra (a) and ub versus Ra (b). For cases 11–14, Nu versus Ra (c) and ub versus Ra
(d), both with standard deviations. In (a)–(d) the lines are the fittings to power-law functions. In (c) and (d) the solid and dashed lines represent the fittings for
cases 11–13 and cases 11–14, respectively.

tial conditions as those for cases 1–6 but with L = 3/2. These cases
first reach a quasi-steady state with nine equally spaced and alternat-
ing upwelling and downwelling plumes (Fig. 1d). The solutions are
stable at this state for a period of time before changing into another
state (Fig. 2). Cases 7–9 eventually reach and stay at a steady state
in which only five plumes survive (Fig. 1e), while case 10 with Ra =
3 × 105 becomes time dependent. For these cases we compute Nu
and ub for the quasi-steady state and steady state (except for case 10
that does not reach a steady state) separately (Table 1) and fit them
to the power-law functions of Ra (Table 2). For the quasi-steady-
state solutions for these four cases Nu = 0.322Ra0.303 and ub =
0.182Ra0.613, and for the steady-state solutions for cases 7–9 Nu =
0.326Ra0.286 and ub = 0.298Ra0.583 (Table 2 and Fig. 3). According
to eq. (6), these exponents for Nu and ub suggest that n is −0.01 and
−0.02 for the quasi-steady state and steady state, respectively, which
is consistent with the modelling results that the number of plumes
for these cases is the same at their respective states. It is interesting
to notice that although Nu, ub and their scaling exponents β and v

all change significantly from the quasi-steady-state to steady-state
solutions because of the change in flow structure (Figs 1d and e),
the scaling exponent n remains to satisfy eq. (6).

While these steady-state cases demonstrate that the flow structure
and N p may not change with Ra but may be sensitive to initial con-
ditions or size of the model box, it is important to examine plume
dynamics from high-Ra models with intrinsically time-dependent
solutions. Cases 11–14 are computed at Ra ranging from 3 × 106 to
108 in a 2 × 2 × 1 box with random perturbations in the initial condi-
tion (Table 1). For this set of calculations we did not consider smaller
Ra because models with smaller Ra are more dependent on initial
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Table 2. Coefficient p and exponent q for fitting a power-law function pRaq.

Cases 1–5 Cases 7–10a Cases 7–9a Cases 11–14 Cases 11–13

Nub (0.201, 0.347) (0.322, 0.303) (0.326, 0.286) (0.250, 0.315) (0.210, 0.326)
ub (0.0683, 0.673) (0.182, 0.613) (0.298, 0.583) (0.542, 0.536) (0.985, 0.498)
nc 0.04 −0.01 −0.02 0.188 0.308

aCases 7–10 are for the quasi-steady-state solutions, while cases 7–9 are for the final steady state.
bp and q are given as (p, q).
c n is the predicted exponent for plume number and is equal to 4(qNu −qu/2), where qNu and qu are exponents for
Nu and ub, respectively (they are also given as β and v).
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Figure 4. Time dependence of Nu (a), ub (b) and N p (c) for cases 11–14.
Only the final 12–20 transit times of each case are shown. Each part uses
the same line convention. N p is measured every 500 time steps, and each
symbol in (c) represents a measurement.

conditions and box size, as we have seen in previous cases. We chose
a box with a moderate horizontal dimension to achieve a sufficiently
high numerical resolution. For example, for case 14 with Ra = 108,
we used 320 × 320 × 96 or nearly 10 million elements (Table 1),
which just fit to one of our Beowulf clusters with 48 Gbyte RAM and
48 Xeon processors. At such a high Ra, the box size of 2 × 2 × 1
should not influence flow structure significantly. For all these cases,
grid refinement is applied to the bottom and top boundary layers
according to Ra. These cases are computed for at least 60 000 time
steps and for more than 12 transit times after they reach a statisti-
cally steady state (see Figs 4a and b for time dependence of Nu and
ub). The averaged properties of the flow and plumes are computed
over at least 12 transit times after the solutions are in a statistically
steady state.

If we group these four cases together and fit their time-averaged
Nu and ub to a power-law function of Ra we obtain Nu = 0.250Ra0.315

and ub = 0.542Ra0.536 (Table 1 and Figs 3c and d with standard
deviations). According to eq. (6), these exponents suggest that the
exponent for N p, n is 0.188 (Table 2). That N p increases with Ra is
generally consistent with the flow structure for these cases (Fig. 5).
The length scale of the flow becomes smaller and the number of
upwelling and downwelling plumes increases, as Ra increases from
3 × 106 to 3 × 107 (Figs 5a, b and c). However, this trend does not
seem to hold for case 14 with Ra = 108 that displays a similar flow
length scale to that of case 13 with Ra = 3 × 107 (Figs 5c and d).
Using the algorithm outlined in Section 2.2 with f = 0.2 and Pf =
5 per cent, we determined the time dependence of N p and N up for
each of these cases (Fig. 4c for N p). Time averages of N p, 〈N p〉,
for cases with Ra = 3 × 106, 107, 3 × 107 and 108 are 7.1, 9.5,
14.6 and 15.5 respectively. The corresponding number of upwelling
plumes 〈N up〉 is 3.7, 5.1, 8.2 and 7.0, for Ra = 3 × 106, 107, 3 × 107

and 108, respectively (Table 3 for 〈N p〉, 〈N up〉, and their standard
deviations). There is a significant time fluctuation in the number
of plumes (e.g. Fig. 4c), as indicated by the standard deviations.
However, it is clear that 〈N p〉 and 〈N up〉 in general increase with
Ra (Figs 6a and b), consistent with the thermal structure (Fig. 5). It
is also clear that 〈N p〉 and 〈N up〉 for case 14 with Ra = 108 do not
differ significantly from those for case 13 with Ra = 3 × 107.

That 〈N p〉 appears to be saturated at Ra = 3 × 107 suggests
that perhaps we should consider these cases differently. If we group
cases 11–13 together, we find that Nu = 0.210Ra0.326 and ub =
0.985Ra0.498, which leads to the exponent for N p, n = 0.308 from
eq. (6) (Table 2). We can also fit 〈N p〉 for cases 11–13 to a power-law
function of Ra as 〈N p〉 = 0.0678Ra0.310 (Table 3 and Fig. 6a). For the
upwelling plumes, the power-law function is 〈N up〉 = 0.0222Ra0.342

(Table 3 and Fig. 6a). These exponents for plume scalings are similar
to n = 0.308 derived from eq. (6) with exponents β and v for Nu and
ub. It is also interesting to notice that if only cases 13 and 14 (i.e. Ra=
3 × 107 and 108) are considered, we obtain Nu = 0.335Ra0.299 and
ub = 0.103Ra0.629, which leads to n = −0.06 from eq. (6). This is
consistent with the modelling results that N p does not increase with
Ra over this range of Ra. This further demonstrates that the simple
analysis of boundary layer instabilities presented in Section 2.3 cor-
rectly describes the physics in these rather complicated numerical
models.

We now examine the effects of parameters f and Pf . If f is re-
duced from 0.2 to 0.1, 〈N p〉 determined from our algorithm for
each of cases 11–14 is reduced by ∼1, and 〈N up〉 is reduced by
∼0.5 (Table 3). This ∼10 per cent reduction in number of plumes
arises because a smaller f leads to smaller threshold temperature that
defines plumes and hence a larger cross-sectional area for plumes,
which with our algorithm causes some plumes to connect and be-
come one plume. For cases 11–13, we found 〈N p〉 = 0.0622Ra0.309

and 〈N up〉 = 0.0237Ra0.332, which have similar exponents to those
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Figure 5. Representative 3-D thermal structure for cases 11 (a), 12 (b), 13 (c) and 14 (d). The figure shows isosurfaces of residual temperature δT =
T − T ave(z) with δT = 0.2 (light shading) and −0.2 (dark shading), respectively.

Table 3. The number, area, and vertical velocity of plumes for cases 11–14.

f Pf Case 11a Case 12 Case 13 Case 14 (p, q)b

〈N up〉 0.4 0.05 3.95(1.27) 5.59(1.53) 8.16(2.00) 6.26(1.90) (0.0358, 0.315)
0.2 0.05 3.74(1.11) 5.15(1.42) 8.23(1.90) 7.00(1.95) (0.0222, 0.342)
0.1 0.05 3.48(1.04) 4.61(1.24) 7.51(1.83) 6.63(2.12) (0.0237, 0.332)

〈N p〉 0.4 0.05 7.85(1.44) 10.5(1.93) 14.3(3.03) 14.3(3.09) (0.164, 0.259)
0.2 0.05 7.13(1.49) 9.49(1.80) 14.6(2.61) 15.5(3.55) (0.0678, 0.310)
0.1 0.05 6.44(1.41) 8.60(1.75) 13.2(2.25) 15.1(3.36) (0.0622, 0.309)

〈N up〉 0.4 0.10 3.32(1.55) 4.76(1.52) 6.71(1.65) 4.96(1.84) (0.0345, 0.306)
0.2 0.10 2.90(0.99) 4.34(1.41) 6.85(1.74) 5.35(1.84) (0.0109, 0.373)
0.1 0.10 2.82(0.95) 3.80(1.19) 6.08(2.01) 4.99(1.88) (0.0191, 0.333)

〈Np〉 0.4 0.10 6.89(1.50) 9.21(1.93) 11.8(2.53) 10.8(2.74) (0.217, 0.232)
0.2 0.10 5.97(1.42) 8.06(1.90) 12.3(2.51) 11.6(3.39) (0.0565, 0.311)
0.1 0.10 5.52(1.37) 7.08(1.76) 11.0(2.34) 11.1(3.22) (0.0637, 0.297)

〈Aup〉 (×10−3) 0.4 0.05 6.87(1.71) 3.96(1.61) 1.89(0.48) 1.35(0.38) (29.5, −0.558)
0.2 0.05 24.8(20.5) 10.8(4.59) 5.08(1.23) 3.76(1.18) (728, −0.690)
0.1 0.05 45.2(32.8) 20.1(9.39) 9.44(2.25) 7.65(2.62) (1150, −0.680)

〈V up〉 (×103) 0.4 0.05 3.59(0.52) 7.58(1.13) 13.3(1.51) 30.2(4.38) (0.737, 0.571)
0.2 0.05 3.04(0.42) 6.88(1.19) 12.3(1.27) 26.2(3.44) (0.368, 0.606)
0.1 0.05 2.85(0.41) 6.35(0.99) 11.7(1.40) 24.5(3.41) (0.314, 0.613)

aThe numbers in the round brackets under each case column are the standard deviation.
b p and q are the coefficient and exponent of a power-law function pRaq for cases 11–13.

with f = 0.2 (Table 3 and Figs 6a and b). Not surprisingly, if f is
increased from 0.2 to 0.4, the number of plumes for each case on
average increases by ∼10 per cent. For f = 0.4, we found 〈N p〉 =
0.164Ra0.259 and 〈N up〉 = 0.0358Ra0.315 for cases 11–13, which are
again similar to those with f = 0.2 (Table 3 and Figs 6a and b). The
exponents for 〈N p〉 and 〈N up〉 averaged for f = 0.1, 0.2 and 0.4 are
0.293 and 0.330, respectively.

If we increase Pf from 5 per cent to 10 per cent (i.e. only plumes
that carry heat flux that is greater than 10 per cent of the strongest
plume are counted), the number of plumes is reduced by 20 per cent
for all cases (Table 3). For f = 0.2 we found 〈N p〉 = 0.0565Ra0.311

and 〈N up〉 = 0.0109Ra0.373 for cases 11–13. For Pf = 10 per cent,
the exponents for 〈N p〉 and 〈N up〉 averaged for f = 0.1, 0.2 and
0.4 are 0.280 and 0.337, respectively. These scaling exponents for

C© 2005 RAS, GJI, 162, 289–300



296 S. Zhong

2

5

10

20

N
p

107107 108

Ra

(a)

f=0.4

f=0.2

f=0.1

2

5

10

20

N
up

107107 108

Ra

(b)

10-3

10-210-2

10-1

A
up

107107 108

Ra

(c)

103103

104

V
up

107107 108

Ra

(d)

Figure 6. Dependence of N p (a), N up (b), Aup (c) and V up (d) on Ra for cases 11–14. Circles, diamonds and squares are for f = 0.4, 0.2 and 0.1, respectively.
The lines are the fittings to power-law functions for cases 11–13.

plume number are similar to n = 0.308 derived from exponents
β and v based on eq. (6). If we include all the plumes by decreasing
Pf from 5 per cent to 0.1 per cent, the number of plumes on average
increases by ∼35 per cent for all the cases. Further decrease in Pf

has almost no effect on the number of plumes. This suggests that
there cannot be a large number of small plumes present in these
models.

In summary, we found that the effects of Ra on plume num-
ber depend on the range of Ra. For Ra < 106, plume number may
not be sensitive to Ra. For Ra varying from 3 × 106 to 3 × 107

(i.e. cases 11–13), 〈N p〉 and 〈N up〉 scale with Ra to the power of n
∼ 0.31 (i.e. cases 11–13), as determined either directly from fitting
the number of plumes for these cases or from our boundary layer in-
stability analysis (i.e. eq. 6) in combination with scalings for global
quantities Nu and ub. This implies that plume spacing λ ∼ Ra−n/2

Table 4. The area and vertical velocity of upwelling plumes for cases 1–5.

f Case 1 Case 2 Case 3 Case 4 Case 5 (p, q)a

Aup (×10−2) 0.4 5.40 2.73 1.55 0.868 0.513 (5.47, −0.508)
0.2 9.61 5.07 2.64 1.69 0.952 (8.77, −0.497)
0.1 13.9 7.39 4.06 2.38 1.40 (12.8, −0.497)

V up 0.4 67.4 176.9 458.2 1030.6 2452 (0.0561, 0.777)
0.2 56.5 154.5 416.6 942.6 2286 (0.0388, 0.800)
0.1 47.6 135.8 370.4 870.4 2120 (0.0272, 0.821)

Rb
up — 0.240 0.175 0.130 0.101 0.0749 (2.35, −0.250)

Aup (×10−2) — 4.51 2.34 1.30 0.825 0.449 (3.93, −0.491)
V up — 70.0 181.8 470.2 1059 2544 (0.0579, 0.777)

a p and q are the coefficient and exponent of a power-law function pRaq for cases 1–5.
b Rup is from fitting temperature to an exponential function in eq. (5). Aup and V up below the line for this radius are the
area and average vertical velocity of plumes defined by this radius. Also notice that the plumes are not perfectly
cylindrical.

∼ Ra−0.16 in this Ra range. However, this scaling may not hold for
larger Ra and plume number does not change significantly from Ra=
3 × 107 to Ra = 108.

3.2 Size, vertical velocity and heat transfer
of upwelling plumes

For all these cases, we also quantified the averaged cross-sectional
area per plume Aup, averaged vertical velocity V up and plume heat
flux for upwelling plumes in the depth range of 0.45 ≤ z ≤ 0.55.
For the steady-state cases with Ra varying from 104 to 106 (cases 1–
5), there are two upwelling and two downwelling plumes all having
the same plume heat flux, and Aup decreases with Ra and f (Ta-
ble 4 and Fig. 7a). A larger f leads to a larger threshold temperature
that defines upwelling plumes and hence a smaller cross-sectional
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Figure 7. Dependence of Aup (a) and V up (b) on Ra for cases 1–5; for case 2, the temperature structure at z = 0.5 (c) and the temperature at z = 0.5 as a
function of distance from the centre of the upwelling plume (solid line) and its fitting to an exponential function (dashed line) (d); and Ra-dependence of Rup

and Aup (e) and V up (f) for cases 1–5 that are determined by fitting to an exponential function.

area for the plumes. The power-law fittings are Aup = 12.79Ra−0.497,
Aup = 8.77Ra−0.497 and Aup = 5.47Ra−0.508, for f = 0.1, 0.2 and 0.4,
respectively (Table 4 and Fig. 7a). Notice that the power-law expo-
nents for Aup are all close to −0.5 (the averaged exponent is −0.50).
This also implies that averaged plume radius Rup ∼ Ra−0.25. The av-
eraged vertical velocity for upwelling plumes increases with Ra and
scales as V up = 0.0272Ra0.821, V up = 0.0388Ra0.800 and V up =
0.0561Ra0.777, for f = 0.1, 0.2 and 0.4, respectively (Table 4 and
Fig. 7b). The averaged exponent for V up for different f is 0.799. On
average, the upwelling plumes for these cases transfer heat fluxes
that are 48 per cent, 44 per cent and 35 per cent of the total sur-
face heat flux, for f = 0.1, 0.2 and 0.4, respectively. The smaller
percentage for larger f arises because a larger f leads to a smaller
plume area. However, for a given f , the percentage of plume heat
flux to the total surface or bottom heat flux is nearly the same for
different Ra.

For each of cases 1–5, we also determined Rup by fitting to eq. (5)
the temperature of an upwelling plume as a function of distance to
the plume centre in the depth range of 0.45 ≤ z ≤ 0.55. We then used
Rup to determine Aup and V up. With this approach, we do not need
parameter f to characterize plumes. An example is given in Figs 7c
and d for case 2 at z =0.5. For this case, Rup is determined to be 0.175
and Aup and V up are determined as 0.0234 and 181.8, respectively
(Table 4). Notice that Aup is not exactly equal to π R2

up/4 because the
plumes are not perfectly cylindrical (Fig. 7c). In fact, this imperfect
cylindrical geometry for plumes causes the fluctuation in tempera-
ture in Fig. 7d (note that this temperature is a collection of tempera-
tures at gridpoints near the plume). With this approach, we found that
Rup = 2.35Ra−0.250, Aup = 3.93Ra−0.491 and V up = 0.0579Ra0.777

(Table 4 and Figs 7e and f), and these scaling exponents com-
pare well with those determined from the other approach with
parameter f .
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These scaling relationships for plume area and velocity can also
be compared with the scaling analyses in Section 2.3. For cases
1–5 n = 0 and β = 0.347, and using eqs (11) and (12) we have
Rup ∼ Ra−0.22, Aup ∼ Ra−0.435 and V up ∼ Ra0.782. If we use β =
1/3, Rup ∼ Ra−2/9 = Ra−0.222, Aup ∼ Ra−4/9 = Ra−0.444 and V up ∼
Ra7/9 = Ra0.777. These scaling exponents compare reasonably well
with our numerical results.

For time-dependent cases in which the number of plumes in-
creases with Ra (i.e. cases 11–13), for f = 0.2 and Pf = 0.05 we
found Aup = 728.3Ra−0.690 and V up = 0.369Ra0.606 (Table 3 and
Figs 6c and d). When being averaged over f = 0.1, 0.2 and 0.4, the
exponents for Aup and V up are −0.643 and 0.597, respectively. For
these cases, β = 0.326 and n = 0.308 as determined from Nu and ub

(Table 2), and substituting them into eqs (11) and (12) leads to Rup

∼ Ra−0.276, Aup ∼ Ra−0.552 and V up ∼ Ra0.570. These scaling expo-
nents compare reasonably well with averaged exponents for Aup and
V up : −0.643 and 0.597. The difference may be partly caused by the
relatively large variations in plume strength among the plumes that
we average. With Pf = 0.05, heat flux carried by upwelling plumes
on average accounts for 22.9, 39 and 47 per cent of the total surface
heat flux, for f = 0.4, 0.2 and 0.1, respectively. With Pf = 0.001,
these percentages increase slightly to 23.2, 40 and 48.2 per cent, for
f = 0.4, 0.2 and 0.1 respectively. This indicates that although when
Pf is reduced from 0.05 to 0.001 the count of plumes may increase
by ∼30 per cent, the plume heat flux from these weak plumes is
rather insignificant.

4 D I S C U S S I O N

An important question that we want to address in this paper is how
plume number and plume spacing depend on the vigour of con-
vection or Ra. Our results for isoviscous and basal heating thermal
convection indicate that plume number may not have a monotonic
dependence on Ra. At relatively small Ra, as Ra increases, the in-
creased plume velocity is sufficient to compensate for the effects of
decreased plume area and to maintain the increased heat flux with
Ra (heat flux or Nu ∼ Ra1/3) with no change in plume number. At
moderately large Ra (3 × 106 to 3 × 107) our results indicate that
plume number scales as Ra0.31 and that plume spacing λ ∼ Ra−0.16 ∼
δ1/2 (note that δ ∼ Ra−1/3 for our models). However, at relatively
large Ra (∼108), plume number does not increase with Ra.

This result on plume number scaling is different from previous
studies that suggested a monotonic increase of plume number with
Ra (e.g. Solomatov 2004; Parmentier & Sotin 2000). Using a scaling

Figure 8. Temperature and flow fields (stream function) for a 2-D isoviscous and basal heating convection calculation at Ra = 108 in a box with an aspect
ratio of 3 and the same boundary and initial conditions as in the 3-D case 14. For this calculation, 128 and 576 elements are used in vertical and horizontal
directions, respectively, and grid refinement is applied to the bottom and top boundaries. Negative stream functions (dashed lines) are for clockwise circulation,
while positive stream functions (solid lines) are for counter-clockwise circulation.

analysis and 3-D numerical simulations, Parmentier & Sotin (2000)
suggested that for an entirely internal heating convection the num-
ber of downwelling plumes scales with Ra1/4 and the plume scaling
λ ∼ Ra−1/8 ∼ δ1/2 for Ra varying from 3 × 106 to 3 × 109 (note
δ ∼ Ra−1/4 for internal heating convection). Although we also found
that λ ∼ δ1/2, it only holds for Ra between 3 × 106 and 3 × 107.
The difference between our results and those of Parmentier & Sotin
(2000) may result from the difference in our convection models (i.e.
basal heating versus internal heating). Another difference is that we
counted plumes at the mid-depth of the box while Parmentier &
Sotin (2000) counted plumes right below the TBL. Weak plumes
may dissipate away or merge together to form stronger ones as they
descend (ascend) after they are derived from the top (bottom) TBL
(Vincent & Yuen 1988; Parmentier & Sotin 2000; Labrosse 2002).
This effect can be best seen in 2-D thermal convection with a high
Ra (see Fig. 8 for a basal heating and isoviscous calculation with
Ra = 108 with more details in the figure caption). This snapshot
of temperature and flow field is representative of the statistically
steady state for this case. Although plumes (or sheets) develop fre-
quently from both the top and bottom TBLs, most of them merge
into three plumes (one upwelling and two downwelling plumes) that
are capable of passing through the mid-depth of the box (Fig. 8).
The large-scale flow structure is controlled by these three plumes,
and the other weak plumes only have secondary effects (Fig. 8).

In this study, because we are interested in the number of upwelling
plumes that may reach the surface, it is more appropriate for us to
count the plumes at the mid-depth of the box. Because our plumes
are directly related to global flow field and heat transfer, this enables
us to compare plume number from our numerical models with the
prediction from our scaling analyses that are based on global phys-
ical quantities including Nu and ub (i.e. eq. 6: n = 4β − 2v, where
n, β and v are the scaling exponents for plume number, Nu and ub,
respectively). In particular, our analyses suggest that if v = 2β, then
plume number is independent of Ra (i.e. n = 0). For n > 0 or when
plume number increases with Ra, v must be smaller than 2β. Our
results also show that n has significant effects on how the vertical
velocity and cross-sectional area of plumes scale with Ra (eqs 11
and 12).

That the plume spacing λ has a lower bound (or plume number
has an upper bound) as Ra increases suggests that the box depth is
an important length scale that limits the plume spacing and number.
Although this was suggested by Davies (1998), our numerical ex-
periments provide direct support for it. A simple physical argument
may be made on the basis of viscous dissipation: when λ gets much
smaller than the box depth, this would lead to too great a viscous
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dissipation, i.e. inefficient heat transfer. This result on the scaling
of plume spacing has implications for studies of plume dynamics.

If plume number does not increase indefinitely with Ra, as our
results suggest, then we should probably not expect thousands of
upwelling plumes in the mantle that display a power-law relation-
ship between plume number and the plume heat flux, as suggested
by Malamud & Turcotte (1999). This also suggests that the plume
heat flux constrained by the hotspot swell topography and gravity
anomalies (Davies 1988; Sleep 1990) may reflect the true heat flux
carried by mantle plumes. However, to what extent this plume heat
flux represents the heat flux from the core or the bottom layer of a
layered mantle is an open question. Our models for basal heating
and isoviscous convection show that the heat flux from upwelling
plumes only accounts for 50 per cent of the bottom heat flux, inde-
pendent of Ra. This is consistent with the work of Labrosse (2002)
who examined the plume heat flux for isoviscous thermal convection
with a mixed heating mode.

There are a number of aspects of this study that need more work.
First, it would be useful to perform more calculations with Ra higher
than 108 to further examine the dependence of plume number on Ra.
Second, we should consider the effects of temperature-dependent
viscosity and internal heating. These calculations are rather expen-
sive at the moment, as they need even higher resolutions and en-
compass more parameters (e.g. internal heating rate and activation
energy). However, with the rapid improvement in computational
power, these calculations will become feasible in the near future.
Third, although it is found that thermal convection with surface
mobile plates often displays similar heat transfer characteristics to
isoviscous thermal convection (Gurnis 1989) it is unclear to what ex-
tent our results on plume dynamics from isoviscous thermal convec-
tion are influenced by surface plates (Jellinek et al. 2003; Gonner-
mann et al. 2004). It is important to examine such effects in future
work.

5 C O N C L U S I O N S

With numerical modelling and scaling analyses we investigated the
effects of Ra on the dynamics of thermal plumes including plume
number, plume spacing, plume vertical velocity and plume radius
in 3-D isoviscous and basal heating thermal convection. Our results
can be summarized as follows:

(1) The scaling exponents for plume number, n, heat flux or Nu,
β and average horizontal velocity on the bottom boundary, v, satisfy
n = 4β − 2v.

(2) At relatively small Ra (≤106), plume number is insensitive
to Ra. For 3 × 106 ≤ Ra ≤ 3 × 107 it is found that plume number
scales as Ra0.31 and plume spacing λ scales as Ra−0.16 or δ1/2, where
δ is the boundary layer thickness. However, for larger Ra (∼108)
plume number and plume spacing become insensitive to Ra again.
This indicates that plume number does not increase with Ra mono-
tonically and that the box depth poses an important limit on plume
spacing at very large Ra.

(3) Our scaling analyses indicate that vertical velocity in up-
welling plumes V up ∼ Ra2(1−n+β/2)/3 and that plume radius Rup ∼
Ra(β−1−n/2)/3.

(4) For relatively small Ra (≤106), with n = 0 and β = 1/3, the
scaling analyses lead to V up ∼ Ra7/9 ∼ Ra0.778 and Rup ∼ Ra−2/9 ∼
Ra−0.222, both of which differ from the scalings for the bottom bound-
ary velocity and boundary layer thickness. These scaling relation-
ships can be compared with those from numerical models: V up ∼
Ra0.777 and Rup ∼ Ra−0.250.

(5) For 3 × 106 ≤ Ra ≤ 3 × 107, with β = 0.326 and n = 0.31,
the scaling analysis leads to V up ∼ Ra0.570 and Rup ∼ Ra−0.276, in
comparison with the scaling from numerical models: V up ∼ Ra0.597

and Rup ∼ Ra−0.322.
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