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S U M M A R Y
Observations of postglacial rebound (PGR) can provide important constraints on mantle vis-
cosity structure. In this study, we investigate how well PGR observations are able to constrain
the spherically symmetric (1-D) viscosity structure of the Earth. We generate synthetic PGR
data by calculating the response of an earth model with realistic 3-D viscosity. The viscosity
model is constructed starting from seismic tomography models. We generate synthetic PGR
data from this model including relative sea levels, exponential relaxation times, J̇2, polar wan-
der, and GRACE time-variable gravity measurements, where most of the data is concentrated
in the Laurentide region. We then attempt an inversion for a 1-D (spherically symmetric)
viscosity structure based on minimizing the misfit to these PGR data. Using a Monte Carlo
algorithm to invert for two layers of viscosity [upper and lower mantle (UM and LM)], we
obtain well-constrained values which correspond to the two-layer average of the logarithm
of the 3-D viscosity structure in the vicinity of Laurentia. We then attempt to invert for four
layers of viscosity. In this case we find a ‘trade-off effect’ in which neighbouring layers may
have highly variable viscosities while maintaining a constant average between them. Since
the PGR data are insensitive to this trade-off in neighbouring layers, the viscosity of any one
of the four layers cannot be well constrained. By repeating the inversion with synthetic data
derived from an Earth model which itself is 1-D with four viscosity layers, we demonstrate
that it is the insensitivity of the PGR data, not complications due to 3-D structure, that allow
the trade-off effect and the resulting failure of the inversion. We also perform a resolution test
to study the extent of the insensitivity of PGR to these viscosity trade-offs, finding that the
limit of resolution in the UM is about the size of the entire UM, and similarly for the LM. This
reinforces our findings that only two layers are obtainable in an inversion for viscosity from
PGR.
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1 I N T RO D U C T I O N

Mantle viscosity structure, playing an important role in our under-
standing of mantle dynamics, can be inferred from modelling long-
wavelength non-hydrostatic geoid anomalies (Hager 1984; Richards
& Hager 1984) and postglacial rebound (PGR) observations
(Cathles 1975; Peltier 1976, 1998). While geoid modelling indi-
cates that the lower mantle(LM) is significantly more (×30) viscous
than the upper mantle (UM) (Hager & Richards 1989), some PGR
modelling suggests a largely uniform mantle viscosity (e.g. Peltier
1998). However, other PGR modelling and the joint-modelling of
PGR and geoid observations support the mantle viscosity structure
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derived from geoid studies (Lambeck 1995; Forte & Mitrovica 1996;
Mitrovica 1996; Simons & Hager 1997).

In this study, we investigate the use of PGR as a tool for infer-
ring mantle viscosity. Geological evidence, especially relative sea
level (RSL) histories in regions of active surface adjustment, have
long been available and used to this end (e.g. Tushingham & Peltier
1992). There have also been improvements in the measurement of
global PGR signals, including J̇2 (Cox & Chao 2002; Cheng &
Tapley 2004) and true polar wander (McCarthy & Luzum 1996),
which have been exploited for their constraints on mantle viscosity
structure. More recently, anticipation of large amounts of data from
the GRACE mission, detailing secular time-variable gravity change,
has raised hopes that these measurements may further improve the
inference of viscosity structure (Velicogna & Wahr 2002).

With the data available, several attempts at inversion for mantle
viscosity structure have been made. Mitrovica & Peltier (1995) and
Peltier & Jiang (1996) used Bayesian inference procedures which
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begin with a starting viscosity model and iteratively refine it to fit
various PGR data sets. Kaufmann & Lambeck (2002) use a formal
inverse procedure to infer a viscosity profile. These studies have ar-
rived at many-layer viscosity models, implying a high-resolution un-
derstanding of the earth’s 1-D viscosity structure. Similarly, Steffen
& Kaufmann (2005) have performed an inversion from Fennoscan-
dian PGR data that deduces a low-viscosity zone beneath the
Barents Sea, though not beneath Scandinavia. While such mod-
els can undoubtedly reproduce well the observed PGR phenom-
ena, some questions remain as to how well constrained these de-
tailed models are and how 3-D mantle viscosity may influence the
inverted 1-D structure. Kaufmann & Wu (2002) have used syn-
thetic PGR data generated for Fennoscandia to find that an inver-
sion for radial viscosity structure will return the local lithospheric
thickness, but is complicated by lateral variations in athenospheric
viscosity.

Aspects of the influence of 3-D mantle structure have been re-
cently studied in, for example, Kaufmann et al. (2005), Wu & van
der Wal (2003) and Latychev et al. (2005). Lateral variations in
the lithosphere have also been shown to affect PGR observables
(e.g. Martinec et al. 2001; Zhong et al. 2003). Paulson et al. (2005)
have shown that the PGR of a 3-D Earth may be best reproduced
with a 1-D viscosity model which reflects the viscosity structure
beneath the glacial load. Although we see in these studies a mea-
surable impact of 3-D structure on PGR, none of them has directly
addressed the complications that lateral mantle heterogeneities may
introduce in 1-D viscosity inferences.

In this paper, we wish to study how well PGR observations can
constrain 1-D mantle viscosity models. Much of the work on mantle
viscosity inference has sought a 1-D model to explain PGR data,
and then interpreted the result as an average of the entire earth’s
viscosity; we wish to assess the accuracy of such an interpretation.
We do so by first creating a realistic 3-D Earth proxy of known
viscosity structure, computing its PGR response, then using these
synthetic data in a Monte Carlo inversion to attempt to recover the
correct viscosity. Unlike an inversion from actual PGR measure-
ments, such a synthetic study allows us to evaluate the results of
the inversion in terms of the known ‘true’ viscosity structure. We
may ask, for example, what aspects of the true, complex viscos-
ity structure appear in an inversion seeking the best two-layer vis-
cosity model. Additionally, a Monte Carlo approach allows us to
sample many very different viscosity models during the minimiza-
tion of the misfit to PGR observations. Thus, rather than obtain-
ing a single model of minimum misfit, we are able study the en-
semble of viscosity models that sufficiently reproduce the synthetic
data.

Evaluation of how well a particular viscosity model reproduces
the synthetic PGR data is made more useful by considering the
measurement uncertainties associated with the various types of data.
Although the data themselves are produced synthetically, we use
published values for uncertainties in these quantities. We may thus
consider the ensemble of all models that reproduce the PGR within
established measurement uncertainty, rather than simply minimizing
the misfit. Variations in viscosity structure among the models of
such an ensemble give information about how well constrained the
various parameters are.

We begin with a general discussion of the procedures employed
to solve for PGR deformation, and a description of the 3-D viscosity
model we created for generation of the synthetic data. Section 3 then
describes the results of attempts to invert for two or more layers of
viscosity from the synthetic PGR data. Conclusions and discussion
are given in Section 4.

2 C A L C U L AT I O N O F T H E P G R
R E S P O N S E A N D C O N S T RU C T I O N
O F A 3 - D V I S C O S I T Y M O D E L

2.1 Model formulation and solution procedures

Calculation of PGR involves solution of the governing equations
of mass and momentum conservation, along with gravitational per-
turbation via Poisson’s equation (Wu & Peltier 1982). For our cal-
culations we assume an incompressible Earth with self-gravitation,
whose mantle is a Maxwell solid of uniform density overlying an
inviscid core. The solution is obtained by solving the differential
equations in the mantle, with effects of the core coming in through
boundary conditions on the mantle solution. With the assumptions
stated, the governing equations may be expressed as

ui,i = 0, (1)

σi j, j + ρ0φ,i − (ρ0gur ),i = 0, (2)

φ,i i = 0, (3)

where the notation A,i represents differentiation of A with respect
to coordinate xi, ui is the displacement, ur its radial component,
σ i j is the stress tensor, ρ 0 is the unperturbed density, g is the mag-
nitude of the gravitational acceleration, and φ is the perturbation
of the gravitational potential. Note that the Eulerian density ρ 1 =
−(ui ρ 0),i vanishes for the case of an incompressible mantle of
uniform density (e.g. Zhong et al. 2003).

Boundary conditions are provided as follows. At the core–mantle
boundary, r = rb, continuity of normal stress above the fluid core
provides that

σi j n j = (ρcφ − urρcg)ni for r = rb, (4)

where ρ c is the constant core density and ni is an outward-normal
vector to the core–mantle boundary. At the surface, r = rs, spatially
and temporally varying glacial and ocean loads, discussed below,
provide an applied pressure σ app(θ , ϕ, t):

σi j n j = −σapp(θ, ϕ, t)ni for r = rs, (5)

where ni is the surface normal. Finally, eq. (3) has boundary condi-
tions given by

φ(r+) = φ(r−) for r = rs and r = rb,

niφ,i (r+) + 4πGρ(r+)ni ui (r ) = niφ,i (r−) + 4πGρ(r−)ni ui (r )

for r = rs and r = rb,

for a gravitational constant G, where ρ(r+) = 0 at the outer surface.
With the equations above the stress tensor σ i j and strain tensor

ε i j of a Maxwell incompressible solid are related by

σi j + η

µ
σ̇i j = −

(
P + η

µ
Ṗ

)
δi j + 2ηε̇i j , (6)

where η is the viscosity, µ is the shear modulus, P is the pressure, δ i j

is the Kronecker delta, and the dot indicates a time derivative. Other
parameters used for this study are shown in Table 1. Shear modulus
is constant throughout the mantle. The gravitational acceleration is
also approximated by a constant throughout the mantle, but this is
used only for calculations of the pressure provided by surface mass
loads and does not imply a uniform gravitational potential.

The applied surface pressure, σ app(θ , ϕ, t), is provided by changes
in ice and ocean loads over the last glacial cycle. For the ice load, we
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Table 1. Model parameters.

Parameter Value

Radius of Earth, r s 6.3700 × 106 m
Radius of CMB, r b 3.5035 × 106 m
Mantle shear modulus, µ 1.4305 × 1011 Pa
Mantle density, ρo 4400 kg m−3

Density change across CMB, 
ρ 5425 kg m−3

Gravitational acceleration, g 9.8 m s−2

use the ICE-3G deglaciation model (Tushingham & Peltier 1991)
which specifies global ice height at 1 kyr intervals over the last
14 kyr. We linearly interpolate between these times and provide
a 90 kyr linear ramp up to glacial maximum. The ocean load at
any given place and time, L o(θ , ϕ, t), is determined by the PGR-
induced perturbations to the geoid and surface displacement (N and
U , respectively) via the sea level equation (Farrell & Clark 1976):

Lo(θ, ϕ, t) = [N (θ, ϕ, t) − U (θ, ϕ, t) + c(t)]O(θ, ϕ, t), (7)

where O(θ , ϕ, t) is the time-dependent ocean function (1 over ocean,
0 elsewhere) and c is the eustatic sea level change, given by

c(t) = 1

Ao(t)

[
− Mice(t)

ρw
−

∫
(N − U )O d�

]
, (8)

where Ao is the area of the oceans, M ice is the mass of the ice sheets,
ρw is water density, and d� is an element of solid angle.

Calculation of the PGR response also includes the feedback due to
polar wander: perturbations to the Earth’s inertia tensor (by changes
in surface deformation and loading) alter the rotation vector, which
perturbs the centrifugal potential, which in turn affects the defor-
mation (Wu & Peltier 1984). We use the improved formulation of
polar wander feedback described in Mitrovica et al. (2005) and
Paulson et al. (2005), in which the Earth’s initial background oblate-
ness is computed without elastic lithospheric stress, and is amplified
slightly (about 0.8 per cent) to accommodate the Earth’s observed
excess ellipticity. These two corrections, discussed in detail in Mitro-
vica et al. (2005), serve to stabilize and reduce the response of the
rotation axis to deformation and surface load changes.

For this study, the theoretical formulation discussed above is im-
plemented with two separate solution procedures: a spherical finite
element code that can accommodate a realistic 3-D viscosity model,
and a faster spectral code for simpler 1-D viscosity models. The fi-
nite element code CitcomSVE, discussed in detail in Zhong et al.
(2003) and Paulson et al. (2005), is used to generate synthetic data
from earth models with 3-D viscosity. The spectral method is similar
to that of Wu & Peltier (1982) and Wahr et al. (2001)—it computes
deformation via Love numbers in the Laplace transform domain
using the collocation technique (Mitrovica & Peltier 1992). The
spectral method is used to run fast forward models for the Monte
Carlo inversion. Greater detail on these two methods, benchmarks
between them, and implementation of the ocean loading and polar
wander feedback are given in Paulson et al. (2005).

2.2 3-D viscosity model

To make the inversion as realistic as possible, we create an earth
model with plausible viscosity structure for generation of the syn-
thetic PGR data. This is accomplished by conversion of shear wave
velocity models into a global 3-D temperature field, which is then
converted to viscosity. The method is discussed here, with greater
detail provided in Paulson et al. (2005).

We begin with a composite of two shear wave velocity models:
the long-wavelength global model S20RTS (Ritsema et al. 1999),
and the higher resolution model NA00 of van der Lee (2002) be-
neath North America (the latter is included because much of our
work centres on Laurentia). The provided shear velocities are con-
verted to a 3-D temperature structure. This is accomplished by di-
rect conversion based on mineral properties (Shapiro & Ritzwoller
2004) for depths less than 400 km. At greater depths, a constant
conversion to density variation is used (δln ρ/δln Vs = 0.3, Karato
(1993)), the resulting density variation is then multiplied by a depth-
dependent thermal expansivity to obtain 3-D temperature variations
δT (r), which are added to the adiabatic temperature gradient to
obtain a global 3-D temperature field, T(r). (Note, r indicates a
3-D function of position.) The 3-D viscosity η(r) is then computed
with

η(r) = Ao exp

[
γ

Tm(r )

T (r)

]
, (9)

where Tm(r ) is the melting temperature, γ is an activation parame-
ter, and Ao is a coefficient (Yamazaki & Karato (2001) as used in
McNamara et al. (2003)). We may choose γ and the leading con-
stant Ao separately for the UM and LM to obtain a desired viscosity
discontinuity at 670 km depth (for example, a jump by a factor of
30, or a factor of 2). The model’s lithospheric (elastic) thickness is
derived separately, using gravity and topography from sea-mounts
in oceanic regions and from long-term loads and heat-flux in conti-
nental regions (Zhong et al. 2003). The lithospheric thickness used
reflects that of PGR timescales, and is given in the symbol Te for in
this study. The resulting lithosphere varies in thickness from a pre-
scribed minimum of 20 km (near plate boundaries) to a maximum
of about 230 km (in the continental root of North America).

For this study, we have chosen a value of Ao = 2 × 109 Pa s in
the UM and Ao = 1.2 × 1013 Pa s in the LM, giving a viscosity
discontinuity of 30× at a depth of 670 km. Fig. 1(a) shows the
resulting vertical structure, with the global average represented by
the black line, and the extent of the lateral variations shown in grey
(more figures of the viscosity model are available in Paulson et al.
2005). Lateral variations at a given depth typically vary by about
two to three orders of magnitude.

We do not claim that this procedure provides a definitive viscos-
ity model of the Earth. However, we consider this model to be a
reasonable proxy for the Earth to generate synthetic PGR data, as
we will do in Sections 3.2 and 3.3. This model exhibits viscosity
variations similar to those described in Ivins & C (1995).

2.3 PGR observations

Postglacial rebound is observable in several geophysical measure-
ments: RSL change, the secular trend of J 2, true polar wander, and
is expected to be observable in GRACE time-variable gravity data.
For this study, we generate synthetic PGR data to investigate the ef-
fectiveness of inversion for viscosity. Thus, in all cases our synthetic
data enjoy the somewhat unrealistic advantage that the entire signal
is due exclusively to the glacial isostatic adjustment to the loads that
we impose. For example, though it has been suggested that the cur-
rent secular rate of change of J 2 may be partially due to present-day
changes in Greenland and Antarctic ice sheets, changes in J 2 in our
synthetic data can only result from PGR. This simplification may
be interpreted as the assumption that for all data used in a viscosity
inversion, one is able to extract the component which is due to PGR.
Although this may seem an overly optimistic assumption, we will
find (Section 4) that it does not alter our basic conclusions.
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Figure 1. (a) A view of the 3-D viscosity model derived from seismic tomography. The lateral variations are shown in grey; the line shows the 1-D global
average of the logarithm of the viscosity. (b) The ICE-3G model at glacial maximum with the site of RSL measurements. White circles are the Hudson Bay
sites (used for calculation of relaxation times), and black circles are the east coast sites.

Although the data are derived synthetically, we use uncertainties
from published measurement errors, as discussed below. Using syn-
thetic data with true measurement error bars will allow us to identify
those 1-D viscosity models which provide PGR measurements suf-
ficiently close to the synthetic data.

The PGR observations we use for the synthetic data are described
here. Some examples derived from the 3-D calculation are shown
in Fig. 2 and discussed below. The viscosity models that are used to
generate the synthetic data for the inversions below are

(1) the 3-D viscosity model derived in the previous section (used
in Sections 3.2 and 3.3),

(2) a four-viscosity-layer model (in Section 3.4) and
(3) a uniform viscosity model (in Section 3.5)—the layered vis-

cosity models are discussed further in those sections.

For six sites along the east coast of North America, shown in
Fig. 1(b) (black circles), our 3-D model provides relative sea level
(RSL) at several times over the last few thousand years. For our
purposes, RSL is defined as the geoid change (representing the
ocean’s surface) minus the topography change due to deformation,
with respect to the present-day values. The synthetic data along
with uncertainties and measurement times for a sample site, Cape
Charles, Virginia, are shown in Fig. 2(a). We use the RSL database
(Tushingham & Peltier 1992) which provides RSL histories and
uncertainties at 392 sites globally extending up to 14 kyr before
present to determine the measurement times and uncertainties for
our synthetic data. This allows us to simulate the amount of PGR
information available for an inversion from true (as opposed to syn-
thetic) data. Thus, the times of measurement (extending, for exam-
ple, back to 15 kyr BP for the site shown in Fig. 2a) are those pro-
vided in the Tushingham & Peliter RSL database, and the errorbars
are the same as those in the database (altered slightly as described
presently).

The uncertainty in the time of an RSL measurement (the horizon-
tal error bars in Fig. 2a) is slightly complicating, since production
of the synthetic data as well as the recording of data from any 1-D
forward model in the Monte Carlo inversion procedure (discussed
later) requires precise times at which to record the RSL for a given
site. That is, since this is a purely synthetic study we must spec-
ify exactly at which times we record our RSL values, leaving no
time-uncertainty in the synthetic data; however, since we would like
to use errorbars on these data that reflect the uncertainty in actual,
available data, we must somehow accommodate the fact that there is
uncertainty in both the sea level height and the time of measurement.
This time-uncertainty slightly increases the spread in data which can
be considered to fit the data. We accommodate this slight increase
by recording the RSL at the ‘best’ times (at the centre of each error
bar) given in the RSL Database, and then amplifying the RSL un-
certainty by an amount that reflects the corresponding uncertainty
in its time of record. Specifically, the RSL error (σ RSL), the time
error (σ t ) and θ , the angle formed by the line between a data point
and its neighbour (relative to horizontal) are combined to form the
new error for the RSL at that time: σ = σRSL

√
1 + (σt tan θ/σRSL)2.

The resulting uncertainties are typically 12 per cent larger than the
original σ RSL.

A similar procedure is used to generate synthetic RSL measure-
ments at eight sites around Hudson Bay (white circles in Fig. 1b).
At each site, the measurement can be closely approximated with a
single, exponentially decaying function of the form a[exp(−t/τ ) −
1]. Note that this is only an approximation due to the multiple modes
of relaxation and to ongoing load changes from changing sea lev-
els, but the approximation appears to be robust (Mitrovica & Peltier
1995). For real data it is usual to determine the best-fitting ‘relax-
ation time’ τ at each site, and to use τ to constrain PGR. This reduces
the dependence of the constraint on the ice model. We adopt this
same procedure for our synthetic data, fitting only back as far as
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Figure 2. Synthetic PGR data used in this study. The data values shown are derived from the 3-D viscosity model. (a) Relative Sea Level (RSL) at Cape
Charles, VA, shown with errorbars. (b) RSL at Richmond Gulf, Quebec, along with the exponential fit, resulting in a relaxation time of 11.67 ± 1.5 kyr.
(c) Secular change in gravity field around Hudson Bay (simulated GRACE data), in m s−2 per year. (d) J̇2 and polar wander rate.

6 kyr BP so as not to include times when glacial ice remained in
Laurentia. Although we do not demonstrate it here, we find that use
of the raw RSL data (as done with the east coast sites) provides
a similar constraint on the inversion as does use of the relaxation
times alone. Uncertainty in the relaxation time for each site is also
derived from the RSL Database by taking the one standard devia-
tion spread in relaxation times in a large random sample of a and τ ,
whose exponential forms fit within one χ 2 of the RSL curve, using
the errorbars provided in the RSL Database. A sample site, at Rich-
mond Gulf, Quebec, is shown in Fig. 2(b), showing the synthetic
RSL data and the exponential fit to it.

Looking ahead, we anticipate the GRACE mission to provide a
significant amount of information relevant to PGR in the form of the
secular change in higher order gravity Stokes coefficients. Use of
this information also requires anticipation of the contamination of
the secular signal by present-day ice mass changes in Antarctica and
Greenland as well as by other signals around the globe that could
appear to be secular when averaged over the nominal 5-yr lifetime of
GRACE (Velicogna & Wahr 2002). Such a signal contamination may
be largely avoided by considering the Stokes coefficients summed
into a gravity field in only the Laurentide region, where the secular
change is expected to be dominated by PGR. We use this approach
in the current study, including spherical harmonic degrees up to 30.
Uncertainties on the secular trend in the GRACE data are taken
from a generalization of the technique used by Wahr et al. (2004),
supposing 5 yr of data collection. This involves taking the ‘calibrated
errors’ in the Stokes coefficients provided by the GRACE project,
δCi

lm and δSi
lm (where i indicates the month, up to N) and computing

the RMS gravity error σ (θ , ϕ) by

σ (θ, ϕ) =
√√√√∑

l,m

(
F2

lm

[
N∑

i=1

(δCi
lm)2

N

]
+ G2

lm

[
N∑

i=1

(
δSi

lm

)2

N

])
,

(10)

where the Flm and Glm are the functions (proportional to the spherical
harmonic functions) that provide the spatial gravity field g(θ , ϕ)
from the Stokes coefficients via

g(θ, ϕ) =
∑
l,m

[FlmClm + Glm Slm] . (11)

Finally, the error in the secular signal can be reduced by fitting the
secular trend to the N months of data (in this case, N = 60 months);
this reduction is given by

σ → 12σ
√

12/ [(N − 1) N (N + 1)] (12)

(Wahr et al. 2000). The resulting spatial error field is a uniform
increase in error with decreasing latitude.

The GRACE data (in the form of secular Stokes coefficients to a
gravity field) are summed to produce the gravity field. This has the
advantage of slightly emphasizing the shorter wavelengths (com-
pared to the geoid) with a factor of (l + 1). The reason for using
a gravity sum rather than geoid is twofold: to exploit the shorter-
wavelength information which would be small compared to the long-
wavelength geoid signal, and to prevent some of the long-wavelength
leakage from the nearby mass change in the Greenland ice sheets.
The resulting (synthetic) secular rate of change of gravity in the
region of interest is shown in Fig. 2(c).
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To compare the GRACE data between models, the computed
gravity rate is summed onto a grid of 120 points, distributed for
equal area per point, within the 1.5 µgal yr−1 contour in Fig. 2(c).
Misfit to the GRACE data is then computed with

χ 2
GRACE = 1

M

M∑
j=1

(
gdata

j − gmodel
j

σ j

)2

, (13)

where M = 120 and the σ j are from eq. (12). Since the model
gravity fields are relatively smooth (Fig. 2c) their average χ2 is
fairly independent of M , the number of points used in the summed
field.

Finally, we consider two long-wavelength signatures of PGR: J̇2

and the rate of polar wander. The error bars on both are taken from
just the measurement uncertainty, thus we implicitly assume that
we are considering only the PGR component of these quantities.
The secular rate of J 2 has been estimated to be 2.75 × 10−11 yr−1

by Cox & Chao (2002) and to be 1.96 × 10−11 yr−1 by Cheng
& Tapley (2004). We take half the difference between these two
estimates for the uncertainty on this datum (Fig. 2d). Uncertainty
for the polar wander rate is obtained from McCarthy & Luzum
(1996), who give the present day rate to be 0.925 ± 0.022 degrees
Myr−1 in the direction of 75.0 ± 1.1 degrees West. As before, we
take the uncertainties from these measurements and put them on our
synthetically generated data. The results for the 3-D viscosity model
are shown in Fig. 2(d), where the polar wander uncertainty is shown
as the small black ellipse. Note that the observed values quoted here
are not shown in Fig. 2 (the values shown are the generated synthetic
data), but the errorbars on those values are taken from the published
data.

3 M O N T E C A R L O I N V E R S I O N

3.1 Method

The inversion for viscosity is accomplished by a Monte Carlo
method employing a χ 2 (chi-squared) measure of misfit and a sim-
ulated annealing method of parameter search (Sambridge 1999;
Agostinetti et al. 2004). As mentioned, the synthetic PGR data
(RSLs, GRACE gravity field, J̇2, and polar wander rate) are gen-
erated from the ‘true’ earth model. The term ‘true’ viscosity, for
purposes of this study, refers to the viscosity model which provides
the synthetic data; in most cases it is the model with the 3-D viscos-
ity derived in Section 2.2 and run with the spherical finite element
method (Zhong et al. 2003; Paulson et al. 2005). The goal is to re-
construct as much of the ‘true’ viscosity as possible using only PGR
data. To do this, we run an ensemble of forward models with 1-D
viscosity structures (for example, models with two layers of viscos-
ity) using the spectral method (Wu & Peltier 1984; Wahr et al. 2001;
Paulson et al. 2005), then record the resulting PGR observables and
compare them to the synthetic data.

For comparison of the results of a given 1-D forward run to the
synthetic data we require a single measure of misfit to all the PGR
data discussed in Section 2.3. Knowing the uncertainties (σ i ) in the
synthetic data it is natural to use a χ 2 measure of misfit:

misfit = χ2 = 1

n

n∑
i=1

wi

(
mi − si

σi

)2

, (14)

where the mi are the PGR measurements for a given forward model,
si are the corresponding synthetic data, wi are relative weights (with∑

i wi = 1), and n is the total number of measured values. Note
that every recorded number (e.g. every RSL at every time for the

east coast data) is considered one of the mi. Although not presented
here, we experimented with a variety of weighting schemes and
found little change to our conclusions (presented below). For the
present study, we choose the weights wi such that the following are
true:

(a) the east coast RSL data, the Hudson Bay relaxation time data,
the GRACE data, and the combined J̇2 and polar wander rate each
share one quarter weight in the total misfit;

(b) all east coast RSL sites have equal weights;
(c) all Hudson Bay relaxation times have equal weights;
(d) GRACE data have a uniform weight per area
(e) the magnitude of J̇2, the direction of polar wander, and the

magnitude of the polar wander rate are all equally weighted.

With such a misfit measure, we may judge whether a set of PGR
observations is generally within measurement uncertainty of the
synthetic data (χ 2 < 1) or lies mostly outside the errorbars (χ2 >

1).
The inversion involves running thousands of forward models,

searching for those which minimize misfit to the PGR data. All for-
ward runs have the same ice model as used for the generation of
synthetic data (ICE-3G as described in Section 2.1). For a two-layer
inversion, we choose a lithospheric thickness and allow two layers
of the mantle to vary their viscosity independently. In this case, the
parameter space one must search through is only 2-D and so we
perform a straightforward gridsearch of all reasonable parameter
values. For more than two layers of viscosity, the increased dimen-
sionality requires a Monte Carlo approach to sample the parameter
space—we employ a simulated annealing algorithm enhanced by
the neighbourhood algorithm (Sambridge 1999). This method sam-
ples the parameter space randomly at first, and then concentrates
the sampling closer to the models of lower misfit. The rate at which
the algorithm converges to a particular neighbourhood of parameter
space can be slowed to allow a very broad sampling of parameter
space. As we find in Section 3.3, a broad sampling of models where
χ 2 < 1 is important to identify those well-fit models which are
far away in parameter space from the single best-fitting model. Al-
though searching only in the near vicinity of the current best-fitting
model will find a model of small misfit, this tends to miss regions
of parameter space which also have misfits of χ2 < 1. We will be
interested not so much in the model of minimum misfit as in the
entire ensemble of models that can be considered to fit the data.

3.2 two-layer inversion from 3-D Earth

With the synthetic PGR data derived from the 3-D viscosity model,
as discussed above, we first search for the two-layer viscosity model
that best reproduces that data. The two layers represent the UM and
LM, divided at 670 km depth. The depth of the division was chosen
to correspond to the discontinuity known to exist in the 3-D model
(seen in Fig. 1a). We perform a two-parameter gridsearch, running
models at all viscosity combinations in uniform steps of 0.05 in
base-10 logarithm of viscosity in Pa s.

To set the elastic lithospheric thickness for the two-layer models, a
preliminary inversion run was performed with three parameters: UM
viscosity, LM viscosity and Te, the elastic lithospheric thickness. The
Te of best fit was determined to be 150 km (this is approximately
the elastic thickness in the vicinity of Laurentia in the 3-D model).
We use Te = 150 km for the two-layer gridsearch runs.

Results of the gridsearch are shown in Fig. 3(a), showing the χ2

misfit of the two-layer models to the 3-D model results (i.e. the

C© 2007 The Authors, GJI, 168, 1195–1209

Journal compilation C© 2007 RAS



Inverting for viscosity from PGR 1201

20

21

22

23

20

21

22

23

20 21 22 23

20 21 22 23

0 2 4 6 8 10

χ2 

log10ηLM

lo
g 1

0η
U

M

log
10 η

U
M

log10ηLM

 2500

 2000

 1500

 1000

 500

 0

 19  20  21  22  23  24  25
log10η

de
pt

h 
(k

m
)

Hudson Bay average
3D variations

best-fitting 2-layer models

(a) (b)

Figure 3. (a) The χ2 misfit of the two-layer models run in a gridsearch, with UM viscosity on the vertical axis and LM viscosity on the horizontal axis. Contour
lines are shown at χ2 = 2 and 5. The triangle indicates the two-layer average of the 3-D model in the vicinity of Hudson Bay—it also corresponds to the point
of smallest misfit, at χ2 = 1.45. The circle shows the global two-layer average. (b) The ensemble of best-fitting two-layer models (i.e. those with χ2 < 1.5),
shown in the black region. Also shown are the lateral variations in the 3-D viscosity model (grey) and the 1-D average of the viscosity in the Hudson Bay
region (dashed line). The models shown are taken from those run in the gridsearch (Fig. 3), along with additional runs from the Monte Carlo algorithm. A large
number of models, those with χ2 > 1.5, are not shown on the plot.

synthetic data). The figure shows the models with layer viscosities
between 1020 and 1023 Pa s, with contours at χ 2 = 2 and 5. The inver-
sion clearly favours particular values for the UM and LM viscosities:
ηUM = 1.00 × 1021 Pa s and ηLM = 7.08 × 1021 Pa s. However, as
seen from the lowest χ 2 misfit at 1.45, even this best two-layer model
cannot fit all the PGR data to within the data uncertainties.

The PGR observations for the lowest misfit model are shown in
Fig. 4, along with its itemized (per observation) χ2 misfits. The east
coast RSL data are fit quite well (χ 2 = 0.25 average for all sites).
Fig. 4(a) shows the site at Cape Charles, Virginia, which lies nearly
at the 1σ level. The eight relaxation times together give χ2 = 1.08
(the site at Richmond Gulf is shown in Fig. 4b). The GRACE data
are shown as a map of the χ 2 values in Fig. 4(c); they average to
χ 2 = 2.36. J̇2 lies within the error bars: χ 2 = 0.36 (Fig. 4d). The
true polar wander rate falls outside the error ellipse by more than
1σ : χ 2 = 2.36 (Fig. 4d).

For a synthetic study such as this, we know the ‘true’ viscosity of
the Earth and can investigate how the best two-layer model compares
to it. We find that the viscosity model of lowest misfit corresponds
well to an average over the Laurentide region into two layers of the
logarithm of the ‘true’ 3-D viscosity. This average model is shown
with the triangle in Fig. 3(a)—it has viscosities ηUM = 1.10 ×
1021 Pa s and ηLM = 7.09 × 1021 Pa s. Note that a direct averaging
of local viscosity (i.e. averaging the viscosities, not their logarithm)
would provide very different values, ηUM = 6.8 × 1021 Pa s and
ηLM = 9.3 × 1021 Pa s, and yield a much larger misfit at χ2 = 7.43.
We conclude from this that inversion for viscosity from PGR data
will recover the log-average of the Earth’s viscosity. Furthermore, the
log-average recovered by the two-layer inversion is that of the local
viscosity structure—this means only the viscosities beneath Hudson
Bay are averaged together (in particular, beneath Hudson Bay and the
regions within 100 km of its coastline). For comparison, a global log-
average yields ηUM = 6.02 × 1020 Pa s and ηLM = 5.75 × 1021 Pa s;
this viscosity and the resulting misfit are shown in Fig. 3(a) with

a circle. The two-layer inversion, then, yields the local viscosity
structure rather than a global average (the triangle and circle in
Fig. 3(a), respectively). The ensemble of two-layer models with
χ 2 < 1.5 are shown in Fig. 3(b), together with the extent of the
lateral viscosity variations of the ‘true’ Earth (grey).

Another way to visualize the inversion results is with Fig. 5(a).
Here, for every forward run in the inversion, we place a point mark-
ing its χ2 misfit on the horizontal axis, and on the vertical axis a
measure of the average viscosity difference between that two-layer
model and the true 3-D viscosity. The average viscosity difference is
computed by differencing the logarithm of the viscosities of the two
models, then averaging (as rms) those differences in the region be-
neath Hudson Bay (the same region as that described in the previous
paragraph). This difference (
) may be expressed as


 = 〈log10 η3D(r, θ, ϕ) − log10 η2L(r )〉HB (15)

where 〈. . .〉HB indicates a rms average over Hudson Bay (and within
100 km of its coastline), η3D is the ‘true’ 3-D viscosity and η2L is a
two-layer model. The average is performed over lateral and vertical
dimensions, where the latter has is weighted by r 2 . 
 will thus have
units of log10(Pa s), with smaller values representing better recovery
of the true local viscosity structure. The dashed horizontal line in
the figure represents the smallest viscosity difference possible for a
two-layer model. The fact that the lowest misfit runs also have the
best viscosity recovery demonstrates that the inversion is working:
as the inversion works its way towards the left on this diagram,
minimizing the misfit, it will also be approaching the actual two-
layer average of the viscosity beneath Hudson Bay (the inversion has
no knowledge of the viscosity recovery, the vertical axis, only the
misfit to PGR data). The narrow tail on the left edge of the cluster
of points is also significant, indicating that all models of small PGR
misfit have similar viscosity structure; the viscosities returned by the
inversion are well-constrained. Though this may be as expected, the
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Figure 4. The PGR observations (Fig. 2) for the best-fitting two-layer model. (a) RSL at Cape Charles, VA. The errorbars show the synthetic data and the solid
line is from the two-layer run. The average misfit for all east coast RSL sites is χ2 = 0.25. (b) Exponential fit to RSL at Richmond Gulf, Quebec. Average misfit
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conclusion will not hold in the following sections when we attempt
to invert for a greater number of viscosity layers.

With a similar plot we may demonstrate the influence of per-
forming an inversion with uncertainty in the glaciation model. For
this purpose, we use the same synthetic PGR data described above
(Section 2.3), but run the 1-D models in the inversion with the ICE-
4G deglaciation model (Peltier 1994). The latter model differs from
ICE-3G by having about 20 per cent more ice over Hudson Bay at
glacial maximum and deglaciating with a slightly different spatial
dependence; both ice models have zero ice mass change in North
America after 4 kyr before present. The resulting plot of misfit ver-
sus viscosity difference (
) is shown in Fig. 5(b). The misfits are
now much greater, due largely to the greater mass of ice used in the
inversion runs. However, the fact that the models of lowest misfit
also have the smallest difference with respect to the local two-layer
log-average of the 3-D structure (i.e. the lowest values of 
) shows
that the preferred two-layer structure is the same as that from the
previous inversion. Thus uncertainties of this sort in the ice model,
though they may increase the misfit to PGR data, may not hinder
the inversion’s ability to find the correct two-layer structure.

3.3 Four-layer inversion from 3-D Earth

We next seek a greater amount of information from the inversion,
attempting to invert for four layers of mantle viscosity. The four
layers are those obtained by simply dividing in half each of the two

layers considered above. The elastic lithospheric thickness, Te, is
again set to 150 km. The inversion proceeds by a simulated annealing
algorithm which samples the 4-D parameter space in search of the
model of lowest misfit to the synthetic PGR data. We are careful
not to allow the sampling algorithm to focus in on one region of the
parameter space too rapidly, so that samples are still spread broadly
in parameter space in search of other misfit minima.

Since we cannot visualize the 4-D parameter space, we present
the inversion results in the form of the scatter plot discussed for the
two-layer case (Fig. 6a): each four-layer model has a point at its av-
erage difference from the true viscosity (
, vertical axis) versus its
misfit value (χ 2, horizontal axis). The results are dramatically dif-
ferent from the two-layer inversion. The most obvious change is that
the lowest misfit models (on the left edge) now have a large range of
average viscosity difference with respect to the true 3-D viscosity.
Although the lowest misfit, χ2 = 0.61, is now significantly lower
than the best two-layer model misfit, there are a large number of
four-layer models that fit the synthetic PGR data nearly equally well
but with substantially different viscosity structures. If one considers
all the four-layer models that fit the PGR data to within measurement
uncertainty (roughly χ 2 ≤ 1), one finds models near the top of the
diagram that may differ from the 3-D viscosity structure by nearly
one order of magnitude on average (i.e. a log-average viscosity dif-
ference near one). Again, the dashed line near the bottom of Fig. 6(a)
represents the best possible viscosity recovery by a four-layer model
of the 3-D structure (naturally less than that for two-layer models).
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Figure 5. (a) A plot of some of the two-layer runs, placing a circle at each
model’s viscosity difference (with respect to the 3-D viscosity), 
, versus
its χ2 misfit. The value 
 is computed with eq. (15). The dashed line near
the bottom of the plot indicates the smallest possible viscosity difference be-
tween a two-layer model and the 3-D structure. The narrow tail at low misfit
indicates that the inversion produces well-constrained values of viscosity.
(b) A new two-layer inversion testing the effects of uncertainty in the glacia-
tion model. The synthetic data are generated using ICE-3G, while the in-
version models were run with ICE-4G. The two-layer local log-average of
the 3-D viscosity is again the best-fitting model; this is demonstrated by the
fact that the models of lowest misfit are also of lowest difference with the
‘true’ model. The misfits are much higher than in the previous inversion,
due largely to the ∼20 per cent larger ice mass in ICE-4G.

The wide variety of models with low misfit suggests that an in-
version with a smaller focus in parameter space may arrive at any of
the models near the left edge, failing to detect the other models of
significantly different viscosity structure that may also yield a low
misfit. This could be the case, for example, for a simulated anneal-
ing algorithm with faster ‘cooling’, or by incrementally tweaking a
starting model in directions that lower the misfit.

To understand Fig. 6(a) better, we select two models near the left
edge, but at different ends of the vertical scale, labeled ‘I’ and ‘II’
in the figure. These two viscosity models are shown in Fig. 7. It
is evident that model I (χ2 = 0.61) has a good viscosity recovery,
while model II (χ 2 = 0.67) has a poor viscosity recovery (small and
large values of 
, respectively). However the two models differ in
a systematic way: compared to model I, model II appears to have
compensated for a lower viscosity in the uppermost layer with a
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Figure 6. (a) The four-layer runs of lower misfit, placing a circle at each
model’s viscosity difference with respect to the 3-D viscosity, 
, versus
its χ2 misfit. Only the models with χ2 < 4 are shown. The dashed line
indicates the smallest possible 
 for a four-layer model. For this inversion
there are many different models with a viscosity difference as high as 0.9
that fit the PGR data to within χ2 < 1, indicating highly variable viscosity
values. Two models of low misfit (I and II) are marked in the plot, the former
with good viscosity recovery and the latter with poor viscosity recovery. (b)
When the four-layer viscosity models (from Fig. 6a) are averaged into two-
layer models, the viscosity difference (
) values are replotted as shown here.
Misfit values are unchanged. The inversion is now much better constrained,
indicating that the trade-off effect was responsible for the poor constraints
of the four-layer inversion.

correspondingly higher viscosity in the adjacent layer, and a similar
trade-off appears in the two LM layers. Further investigation of the
low misfit models demonstrate that this relationship is not coinci-
dental, but is the primary source of the large variability in viscosity
structures among well-fitting models. It should be noted here that, al-
though Fig. 6(a) appears densely populated, this does not imply that
any four-layer viscosity model with an average viscosity difference
up to 0.9 will fit the PGR data well, but that there are many different
models that can. In fact these well-fitting models are related in a sys-
tematic way, involving viscosity trade-offs in neighbouring layers, as
discussed below. Future studies are needed to examine whether this
type of trade-off can be removed with additional constraints such as
the long-wavelength geoid (Hager & Richards 1989; Mitrovica &
Forte 2004) and mineralogical data (e.g. Ivins et al. 1993).
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Figure 7. Models I and II from the inversion (identified in Fig. 6) are shown
together with the 3-D variations (grey) and the Hudson Bay 1-D structure
(thin line). While both models have a good fit to the PGR data, model I
has a better recovery of the local viscosity structure. Model II exhibits the
trade-off effect, where a lower viscosity in a given layer can be compensated
by a higher viscosity in the neighbouring layer.

To demonstrate that the two models shown in Fig. 7 do indeed
fit the synthetic PGR data, we refer to Fig. 8. Fig. 8(a) shows that
RSL curves for this east coast site obtained from models I and II,
although different, remain within or nearly within the errorbars.
Fig. 8(b) demonstrates that both four-layer models have a nearly
identical relaxation times, relative to the size of the uncertainty in
these values. Fig. 8(c) shows two maps of the χ2 values for the
regional GRACE data, yielding average misfits of 1.59 and 1.73.
Fig. 8(d) shows that their J̇2 and polar wander values are similar to
each other, and are within the measurement uncertainties.

The ‘trade-off’ effect discussed above suggests that, while vis-
cosities of the individual layers in the four-layer inversion are not
well constrained, their whole upper- and whole lower-mantle aver-
age may be well constrained. This is also suggested by the well-
constrained two-layer inversion of the previous section. To investi-
gate this we average the upper two layers together and assign that
average viscosity to the entire UM, and do the same for the lower two
layers. The viscosity recovery scatter plot then becomes Fig. 6(b),
where we have recomputed 
 for each of the these two-layer aver-
ages, but have not changed the χ2 misfit. As before, the average is
actually an average of the logarithms of the viscosities. Although
the best viscosity recovery is now slightly larger than that of the
two-layer models in Fig. 5(a), the cluster of low-misfit models do
not now exhibit the highly variable values of 
—we see the thin

tail at the lowest misfits. This demonstrates that the large variability
of viscosity structure observed in Fig. 6(a) was predominantly due
to variations whose average remained constant, referred to above
as the trade-off effect. Careful inspection shows that the thin tail of
lowest misfit models in Fig. 6(b) is not as thin as that in Fig. 5(a).
This is due in part to the trade-offs that may also occur between the
two central layers, although these two layers are slightly de-coupled
by the discontinuity between them in the true viscosity structure (at
670 km depth).

3.4 Four-layer inversion from four-layer Earth

It is natural to ask if the insensitivity of the PGR observations to
viscosity trade-offs in neighbouring layers could be due to the fact
that we are attempting to reproduce with a simple 1-D structure the
synthetic data obtained from a much more complicated 3-D viscosity
structure. To consider this we run another four-layer inversion, but
this time use synthetic data generated from a four-layer 1-D model—
the same four layers to be used in the forward models of the inversion.
Thus we are asking: if the Earth’s mantle viscosity were truly 1-D
with just four layers, could an inversion from PGR data recover the
correct values?

Taking the ‘true’ Earth viscosity shown in Fig. 7 (dotted line)
and using the same uncertainties as before, we re-run the four-layer
inversion. The resulting scatter plot of average viscosity difference
versus PGR data misfit is shown in Fig. 9(a). As expected, there are
some models that have near-zero viscosity difference to the ‘true’
earth structure, and produce the same PGR data as the synthetic data,
yielding near-zero misfit as well. These models create the small tail
which touches the origin of the plot.

Since the entire tail exists at small χ2, however, it is misleading
to consider this tail as success of the inversion. This is because the
inversion has not considered the effects of noise in the synthetic data.
To demonstrate this, in Fig. 9(b) we show the data from Fig. 9(a)
when random noise (within the observational uncertainties) is added
to the synthetic data and the misfits are recalculated. Now it is clear
that taking the single model of lowest misfit will not return the
correct viscosity structure.

Consideration of all models in Fig. 9(a) that fit the PGR to within
uncertainties (roughly those points where χ2 ≤ 1) still shows a wide
variation in viscosity structures. Two points with misfits near 0.5 are
labelled ‘III’ and ‘IV’ in the figure: one with high and one with low
average viscosity difference to the ‘true’ model. Viscosity models
III and IV are shown in Fig. 10. Again the trade-off effect is apparent,
as model III closely follows the ‘true’ viscosities (shown in black)
and model IV alternates about them while maintaining apparently
constant averages for the entirety of the UM and LM.

To demonstrate that these two significantly different models are
both reproducing the PGR data, we show these data in Fig. 11. In
this figure the synthetic data are now different from those of Figs 4
and 8, since it is generated by a four-layer model rather than the full
3-D viscosity model. Though the PGR results for models III and
IV are different from each other, they remain generally within the
errorbars.

Thus even if the true viscosity of the Earth were as simple as
a 1-D four-layer model, an inversion for this structure would still
fail since the PGR data from four-layer models are insensitive to
viscosity trade-offs between neighbouring layers. Although the in-
version produces a single ideal model (at 
 = 0 and χ 2 = 0), an
inversion from real data would include noise which would make
all models of about χ2 ≤ 1 indistinguishable. The difficulties in
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Figure 8. Demonstration that models I and II (from Figs 6 and 7) fit the PGR data about equally well. χ2 misfit values are shown for the same PGR observations
as in Fig. 4.

inverting for a realistic viscosity structure (Fig. 6a) are, therefore, not
due to under-parametrization of the forward runs or to 3-D effects,
but rather to the poor constraining power of the PGR observations
themselves.

3.5 A resolution test

We take another look at this trade-off effect in a manner that yields
a measure of the vertical resolution power of the PGR data. We per-
form a 20-layer inversion with the synthetic PGR data generated by
a model with homogeneous mantle viscosity and elastic lithosphere.
The aim is to find the vertical length scale over which these trade-
offs may occur, which may be considered as the resolving power of
such an inversion.

Fig. 12(a) illustrates the model that generates the synthetic data
(the dashed line at 1021 Pa s), and an example of a 20-layer model
used in the inversion. The method of inversion is as before, where
all layers are allowed to vary randomly and independently until the
sampling algorithm (simulated annealing augmented by the neigh-
bourhood algorithm) begins to focus more closely on those models
of low χ 2 misfit. We use the identical set of PGR data as in all pre-
vious sections. Since the model that generates the synthetic data is
itself a member of the parameter space being searched (i.e. all 20
layers at 1021 Pa s), the inversion eventually finds this model with
zero misfit. However it is the ensemble of models with χ2 ≤ 1 that
is of present interest.

To convert the inversion results to a measure of vertical reso-
lution, we proceed as follows, using only those models for which

χ 2 ≤ 1. Choose any starting layer n, where 1 ≤ n ≤ 20. Among these
models, the average of log10 ηn (where ηn is the viscosity in Pa s
of layer n) will tend to be close to 21.0; the spread in the values of
log10 ηn is defined to be one-half of its maximum minus minimum
values, and labeled sn(1). Thus the nth layer of all models will tend to
have log10-viscosities in the range 21 ± sn(1). The values of the sn(1)
tend to be large—generally greater than 0.5, which indicates a vis-
cosity uncertainty of one order of magnitude. Next, average together
the values log10 ηn and log10 ηn+1 for each model, and then average
all models together to obtain viscosities in the range of 21.0 ±
sn(2), where (2) represents the number of neighbouring layers aver-
aged together. Proceeding in this way, the series sn(z) is constructed
where z is the number of layers averaged together, and where the
layer n is at the centre of those averaged layers (to the degree it is
possible to be at the centre).

Results of this procedure are shown in Fig. 12(b), which shows
the series sn for layers n = 3 (centred at 380 km depth) and n = 17
(centred at 2260 km depth). In the figure, z, the number of layers
averaged together, is replaced by the total thickness of the region
averaged together; it is shown on the horizontal axis. For both s3

and s17, the greater the thickness of the region we average over, the
more tightly constrained are the viscosities among the models that
reasonably fit the PGR data (i.e. the values sn are decreasing). We
also see that s3, with the shallower averaging centre, levels off more
rapidly than s17, at the deeper averaging centre. This suggests that
the viscosity trade-offs which are responsible for the large spread in
viscosities (among models that fit the PGR data) occur over shorter
distances in the UM (n = 3) than they do in the LM (n = 17).
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Figure 9. (a) Results of the four-layer inversion when the synthetic data are
generated by a 1-D, four-layer Earth. Although there is a tail in the lower
left corner of well-constrained viscosity, considering the ensemble of all
well-fit models (χ2 ≤ 1) yields a large variability in acceptable viscosities.
As before, two models of low misfit (III and IV) are marked in the plot,
the former with good viscosity recovery and the latter with poor viscosity
recovery. (b) The misfits from Fig. 9(a) are recalculated, now with random
noise in the synthetic data. Now it is clear that there remains a large am-
biguity in those models of χ2 ≤ 1. With some noise those models become
indistinguishable.

To compile the results further, we pick a value of sn that repre-
sents a threshold: below this value we consider the average to have
a spread small enough to represent a well-constrained inversion.
We may then identify the averaging length required to drop below
this threshold as an estimate of the length scale over which these
trade-offs may occur. In this sense, we are estimating the resolving
power of the inversion at various depths. Choosing a value of sn =
0.25 (units of log10 Pa s) as such a limit, the resolution lengths at
various depths are computed and shown as vertical bars in Fig. 13.
(Other threshold values could be chosen, but the results would ex-
hibit the same depth-dependence.) Also shown in the figure are the
3-D viscosity variations strictly as a visual guide. The resolution
length increases with depth and has the best resolution in the UM,
although the length there is about the size of the UM itself. This
agrees with the observations of the previous section: although a
single viscosity value for the entire UM is well-constrained in the
inversion, dividing it into two layers allows it to exhibit the trade-off
problems apparent in Fig. 7.
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Figure 10. Models III and IV from the inversion (identified in Fig. 9) are
shown together with the four-layer model that generated the synthetic data.
Both models have a good fit to the PGR data, but model IV is able to do so
without having a viscosity structure similar to the structure that generated
the PGR data. The reason is a viscosity trade-off in neighbouring layers.

Although the resolution length in the LM is less than the height
of that layer, it is not short enough to accommodate two well-
constrained layers in the LM. So we are left with only two viscosity
values, which may correspond to those of the entire upper and lower
mantle, for which we may invert without suffering from the trade-
offs in neighbouring layers. Fig. 13 may suggest that three layers
of viscosity could be well-constrained, but it should be noted that
this is truly only a test of the vertical resolution with respect to the
‘trade-off’ effect—it is highly idealized in the sense that the mantle
is considered to be of homogeneous viscosity, and thus any further
complications (such as a more complicated ‘true’ viscosity struc-
ture) would confound an inversion for three layers (such a three-layer
inversion is mentioned briefly in the next section).

4 D I S C U S S I O N A N D C O N C L U S I O N

In a search for the greatest amount of information about mantle
viscosity that may be extracted from an inversion based on PGR
data, we find that only two viscosity layers can be well-constrained.
Since we have a natural boundary at 670 km depth, these layers may
be taken to be the entire UM and the entire LM.

The PGR data are taken from a synthetic 3-D viscosity model
derived from shear wave seismic tomography models. We con-
sider RSL history for several sites along the North American east
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Figure 11. Demonstration that models III and IV (from Figs 9 and 10) fit the PGR about equally well. χ2 misfit values are shown for the same PGR observations
as in Fig. 4.

coast, exponential relaxation time of RSL for several sites around
Hudson Bay, J̇2, polar wander rate, and anticipated GRACE data.
We attach errorbars to these data from uncertainty values taken from
published measurements so that we may consider the ensemble of all
models that produce PGR data within the measurement uncertainty.
Although the uncertainties on J̇2 and polar wander rate may be op-
timistically small (because we assume that the PGR contribution
to these measurements is known precisely), we find that the PGR
data remain unable to constrain multiple viscosity layers within the
upper and LMs.

Although no two-layer model can fit all the PGR data within un-
certainties, the models which fit the synthetic data best are those with
viscosities corresponding to the two-layer average of the logarithm
of the 3-D viscosity in the vicinity of Hudson Bay. Furthermore, all
models with the smallest misfit to the PGR data have similar vis-
cosity structures. We conclude from this that the inversion produces
well-constrained values for the two viscosity layers. These findings
remain true even when the inversion uses the incorrect deglacia-
tion model, with differences similar to those between ICE-3G and
ICE-4G.

Further dividing these two layers introduces degrees of freedom
which the PGR data are unable to constrain. This manifests itself
in a trade-off effect, in which neighbouring layers can vary greatly
in viscosity provided their log-average is approximately constant.
Thus, in an inversion for four layers of viscosity we find that models
which maintain the correct average UM and average lower-mantle

values can nevertheless vary greatly in their individual-layer viscosi-
ties. These large variations in viscosity models do not greatly affect
the misfit to the PGR phenomena that we consider, at least not to an
extent greater than the data uncertainties, and therefore, we cannot
discriminate between them for purposes of inversion. The fact that
it is the effect of viscosity trade-offs which confounds the inversion
is demonstrated by the observation that when the upper two layers
are (log-) averaged together, the result is well-constrained; the same
is true for averaging the bottom two layers.

The trade-off effect persists even when the synthetic data, which
the inversion attempts to reproduce, are generated by an earth model
that itself is 1-D and has only four viscosity layers. We conclude
that the trade-offs are due to the fact that the PGR data are simply
insensitive to such a viscosity adjustment. Although it is natural
to assume that an inversion for 1-D structure may be complicated
by the true 3-D nature of the Earth’s viscosity, it appears that the
insensitivity of PGR to viscosity trade-offs in neighbouring layers
may offer an even greater difficulty to the inversion.

We also attempt an inversion for three viscosity layers, in which
either the UM or LM was divided in two. Although the results are
not shown here, they simply repeat the conclusions stated above:
dividing one of the initial two layers further will allow for viscosity
trade-offs between the two divisions, preventing a well-constrained
viscosity in the finer-resolution model.

Finally, in a more general test of the extent of the insensitivity to
viscosity trade-offs, we perform a 20-layer inversion using synthetic
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Figure 12. (a) A model from the 20-layer inversion shown as an example
along side the homogeneous viscosity structure (at 1021 Pa s) which gen-
erates the synthetic data for this inversion. (b) The reduction in the spread
of a viscosity average (sn), as the average is taken over greater depth inter-
vals. When the average is taken about a shallow centre (n = 3, solid line),
the spread is smaller, indicating a shorter distance over which viscosity
trade-offs may occur. A deeper averaging centre (n = 17, dashed line) re-
quires a greater averaging length before the average log-viscosity converges
to 21.

data from an Earth of homogeneous viscosity. By averaging the
neighbouring layers together, we find that averages over a sufficiently
thick region begin to produce well-constrained results. The thickness
of that region can be considered a measure of the scale of resolution
of the inversion, since over shorter distances layers may exchange
viscosity without significantly altering the resulting PGR data. The
size of these regions are on the order of the sizes of the UM and
LM.

Although we have considered a number of PGR observables, we
have not included horizontal motions. It therefore remains pos-
sible, due to the distinct constraints that such data may provide
(as seen in, for example, Milne et al. 2004), that horizontal mo-
tions may offer hope for an improved inference of mantle viscosity
structure.
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Figure 13. The averaging lengths (vertical bars) required for the spread
in viscosity averages, sn, to fall below the cut-off of 0.25. The bars are
offset in the horizontal direction to make them easier to identify; there is
no significance in their horizontal coordinates. The size of a bar is a rough
measure of the resolution length of the inversion for the depth at which it is
displayed, since it reflects the distance over which viscosity trade-offs may
occur. The bars in the UM are about the size of the entire UM, and the bars
in the LM are about the size of the LM. This indicates that an inversion for
viscosity from PGR data can only provide two layers.
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