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Modelling post-glacial rebound with lateral viscosity variations
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S U M M A R Y
Observations of isostatic adjustment of the Earth’s surface due to glacial loading provide
important constraints on mantle viscosity structure. We solve the forward problem of glacial
isostatic adjustment in two complementary ways: a spectral method for strictly 1-D (spherically
symmetric) earth models, and a finite element method that can accommodate 3-D viscosity
structure. We discuss how each method may be augmented in three ways: to accommodate
motion of the centre of mass, to implement a gravitationally self-consistent ocean load via
the sea level equation and to include the influence of polar wander. With all these effects
implemented, the two methods are benchmarked against each other. We also study the influ-
ence of lateral viscosity variations upon measurements of post-glacial rebound (PGR) in two
ways: first by observing the effect of viscosity perturbations in an idealized model and second
by developing a realistic 3-D viscosity model and comparing it with results of related 1-D
(spherically symmetric) models. The 3-D viscosity structure is derived starting from seismic
tomography models. We conclude from both approaches that PGR observations are sensitive
to both the local viscosity structure and to the viscosity structure beneath the loaded region,
even if it is removed from where the observations are made. In particular, PGR measurements
made at Hudson Bay tend to reflect the local viscosity structure beneath Hudson Bay; PGR
measurements made along the east coast of North America, being sensitive to both the local
(east coast) viscosity structure as well as the loaded (continental) viscosity structure, are not
reproducible with a 1-D viscosity model.

Key words: glacial rebound, lateral heterogeneity, mantle viscosity, polar motion,
viscoelasticity.

1 I N T RO D U C T I O N

Important constraints on mantle viscosity can be made by compar-
ing observations of post-glacial rebound (PGR) with model pre-
dictions of the Earth’s response to deglaciation. Due to the de-
mands of PGR modelling, however, most studies have been re-
stricted to the inference of only 1-D, radially stratified viscosity
structure. Yet we know that lateral variations may be important. So-
lution for viscoelastic deformation has recently become possible on
earth models with a fully 3-D structure (e.g. Kaufmann et al. 2000;
Martinec et al. 2001; Zhong et al. 2003). Though we may now
solve the forward problem given a certain viscosity structure and
loading history, two important problems remain: including in the
model realistic and significant complicating effects (such as a grav-
itationally responsive ocean load and polar wander feedback) and
considering the influence of 3-D viscosity variations on the 1-D in-
verse problem (the inference of 1-D viscosity structure from PGR
observations).

∗Also at: Cooperative Institute for Research in Environmental Sciences,
University of Colorado Boulder, CO, USA.

This paper is structured to meet two distinct goals. One is to thor-
oughly describe the implementation of three effects that make the
PGR modelling more realistic. These effects are: (1) solution of the
Earth’s response at spherical harmonic degree one (or, equivalently,
accommodation of motion of the Earth’s centre of mass); (2) appli-
cation of an ocean load that conserves the mass in the ice sheets
and responds to the evolving topography and geoid; (3) interaction
between motion of the Earth’s rotational pole and deformation via
changes to centrifugal potential. Previous work has considered the
implementation of the sea level equation (e.g. Milne et al. 1999;
Wu & van der Wal 2003) and the influence polar wander on defor-
mation (e.g. Han & Wahr 1989; Mitrovica et al. 2005). Considering
the significant influence of these effects and their mutual interaction,
demonstrated below, a comprehensive PGR model should include
all of them. We present the implementation of each of these effects
separately in two solution methods: a 3-D finite-element method
and a more traditional spectral method.

The second goal is to use our finite-element code to compute
the response of an Earth with fully 3-D viscosity variations. Most
studies concerning the inference of mantle viscosity from PGR mea-
surements are restricted to 1-D, radially stratified models. We are
motivated by the following question: when a 1-D viscosity model is
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derived from PGR observations, how does this viscosity structure
correspond to the 3-D structure of the Earth? For example, if sea level
measurements along a continental coast can tell us about the mantle
viscosity, would it give simply the viscosity beneath the point of mea-
surement or be influenced by viscosity structure in other regions?
Would lateral viscosity variations complicate the inference of a 1-D
viscosity model? Since running a 3-D forward model is computa-
tionally demanding, and since a 3-D structure has far too many de-
grees of freedom, we cannot hope to attempt an inversion for 3-D vis-
cosity structure from PGR data. Instead, in this paper we study the in-
fluence of 3-D viscosity variations in two ways. First, in Section 3.3,
we study the influence of viscosity perturbations in an idealized
model. We map a ‘sensitivity region’ in the mantle where viscosity
perturbations can affect surface deformation. Second, in Section 3.4,
we measure the PGR observables resulting from a realistic 3-D vis-
cosity structure that is derived from seismic tomography models. We
then compare the PGR observations with those computed from 1-D
(spherically symmetric) models, whose viscosity is derived from the
3-D model. We investigate different methods of deriving a 1-D aver-
age viscosity from the 3-D structure, seeking to best reproduce the
PGR observations from the 3-D model. If an optimal method exists,
it could be used to describe how 1-D viscosity structures, derived
from actual PGR observations, relate to the true 3-D viscosity of the
Earth.

2 M O D E L F O R M U L AT I O N A N D
S O L U T I O N P RO C E D U R E S

2.1 Physical model

Our models of viscoelastic deformation assume an incompressible,
self-gravitating Earth. The mantle is treated as a viscoelastic solid
overlying an inviscid core. We solve the governing equations of mass
and momentum conservation, along with gravitational perturbation
via Poisson’s equation (Wu & Peltier 1982):

ui,i = 0, (1)

σi j, j + ρ0φ,i − ρ1gi − (ρ0gur),i = 0, (2)

φ,i i = −4πGρ1, (3)

where the notation A,i represents differentiation of A with respect
to coordinate xi (in a coordinate system with origin at the centre of
figure of the unperturbed Earth), ui is the displacement (u r its radial
component), σ i j is the stress tensor, ρ 0 and ρ 1 are the unperturbed
density and Eulerian density (ρ 1 = −uiρ 0,i ), gi is the gravitational
acceleration,φ is the perturbation of the gravitational potential and G
is the gravitational constant. In this study we consider only uniform
mantle density, ρ 0 = constant, so the Eulerian density perturbation
ρ 1 vanishes from eqs (2) and (3).

The boundary condition at the core–mantle boundary (CMB) is
determined by the continuity of normal stress across the boundary.
Eq. (2) for the fluid core, with σ i j = −Pδ i j (where P is pressure)
gives

σi j n j = (ρcφ − urρcg)ni for r = rb, (4)

where ρ c is the core density (constant throughout the core), r b is the
core radius and ni is a vector normal to the boundary (pointing away
from the core). The boundary condition at the surface is determined
by the ocean and ice loads:

σi j n j = −σapp(θ, ϕ, t)ni for r = rs, (5)
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Figure 1. The ice history used to load the Earth, shown as the total ice
volume in millions of cubic kilometres versus time in kiloyears (before
present). The open circles show the data provided by the ICE-3G deglaciation
model. To this we include a 90 kyr linear glaciation period, and linearly
interpolated ice height between the ICE-3G data.

where σ app is the applied pressure from the loads, r s is the Earth
radius and ni is the surface normal. The applied pressure at the
surface can be written as

σapp(θ, ϕ, t) = ρw L i(θ, ϕ, t) + ρw Lo(θ, ϕ, t), (6)

where L i is the height of the ice and L o is the height of the ocean
water relative to their initial values at the onset of glaciation. Both
the ice and ocean are given the density of water, ρw. The ice load
is based on the ICE-3G deglaciation model (Tushingham & Peltier
1991), which specifies ice height globally at 14 time epochs sep-
arated by 1 kyr intervals. The complete time dependence is made
piecewise-linear by linearly interpolating the ice height between
specified epochs, and providing a 90 kyr linear ramp up to glacial
maximum. The ice-covered area is kept fixed during the 90 kyr ramp.
The resulting total ice volume is shown in Fig. 1. The ocean load is
determined by the sea level equation, discussed in Section 2.2.2

The boundary conditions for eq. (3) are

φ(r+) = φ(r−) for r = rs and r = rb,

niφ,i (r+) + 4πGρ(r+)ni ui (r ) = niφ,i (r−) + 4πGρ(r−)ni ui (r )

for r = rs and r = rb,

where ρ(r+) = 0 at the outer surface.
Treating the mantle as a viscoelastic (Maxwell) incompressible

solid governed by the equations above, the stress tensor σ i j and
strain tensor ε i j are related by

σi j + η

µ
σ̇i j = −

(
P + η

µ
Ṗ

)
δi j + 2ηε̇i j , (7)

where η is the viscosity, µ is the shear modulus, P is the pressure, δ i j

is the Kronecker delta and the dot indicates a time derivative. Both
the surface and CMB are allowed to deform freely as the surface is
subjected to the time-dependent load.

Unless otherwise noted, density, shear modulus and gravitational
acceleration are constant throughout the mantle. Their values, along
with other parameters used throughout this study, are shown in
Table 1.
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Table 1. Model parameters.

Parameter Value

Radius of Earth, r s 6.3700 × 106 m
Radius of CMB, r b 3.5035 × 106 m
Mantle shear modulus, µ 1.4305 × 1011 Pa
Mantle density, ρo 4400 kg m−3

Density change across CMB, 
ρ 5425 kg m−3

Gravitational acceleration, g 9.8 m s−2

2.2 Solution methods with degree-one deformation, polar
wander and ocean load

For purposes of benchmarking and comparison, the forward prob-
lem is solved with two distinct methods: a spherical finite-element
code that can accommodate 3-D viscosity variations and a semi-
analytical spectral method that can solve for PGR deformation on
spherically symmetric earth models. We use the finite-element code
CitcomSVE to solve the viscoelastic problem in spherical geom-
etry. It was derived from a code developed for viscous mantle
convection (Zhong et al. 2000) by discretizing the time-dependent
rheology, allowing viscous and elastic displacement and strain to
be treated incrementally, and accommodating self-gravitation. The
implementation of the viscoelastic solution in the finite-element
code is discussed in detail in Zhong et al. (2003). The spectral
method, similar to that of Wu & Peltier (1982) and Wahr et al.
(2001), solves the equations in the Laplace transform domain us-
ing the collocation technique (Mitrovica & Peltier 1992). It com-
putes the Love numbers hl(t) and kl(t) for surface vertical dis-
placement and potential, respectively, for each spherical harmonic
degree l.

To make the PGR model more realistic, both computational meth-
ods were augmented to include the effects of centre of mass motion,
gravitationally responsive ocean loading and feedback between de-
formation and the shifting rotation axis of the Earth. This study is the
first to our knowledge to implement these combined effects in a 3-D
numerical model, although they have been previously considered in-
dependently (Wu & van der Wal 2003) and have been incorporated
in spectral methods (Han & Wahr 1989; Mitrovica et al. 2005). We
discuss the implementation of each of these effects, first with some
general comments and then the method-specific details.

2.2.1 Centre of mass motion

Motion of the centre of mass of the Earth, which can be described
with spherical harmonic degree one, is often neglected since it may
be accommodated by a simple shift in the origin of the coordi-
nate system. However, if any processes obtain that couple responses
at different spherical harmonic degrees, explicit calculation of the
degree-one response is required. For example, the degree-one re-
sponse must be considered when implementing the sea level equa-
tion due to the degree-one power in the shape of the oceans. Lateral
variations in viscosity or lithospheric thickness will also couple re-
sponses at different harmonics.

In both computational methods, our goal is to measure the degree-
one deformation with respect to an origin at the centre of mass of
the Earth-plus-load system. In this coordinate system, the reference
frame used for satellite observations, the degree-one component of
the potential outside the Earth is identically zero. Here and below,
‘CM’ refers to the centre of mass of the Earth–load system.

Finite-element method. CitcomSVE provides a coordinate sys-
tem that is fixed at the centre of the initial, spherical Earth (we shall

call this coordinate system the ‘FE frame’). The task is to ensure
that the recorded results are those that would be observed in the CM
coordinate system, whose origin is defined by the centre of mass
of the Earth–load system. This is accomplished by mimicking the
loading as viewed from the CM frame, performing the calculation
of the deformation normally in the FE frame, and then reporting the
results with respect to the CM frame.

As mentioned above, the finite-element code implements the time
dependence incrementally, in a series of ‘time steps’ (each spanning
25 yr during deglaciation and relaxation). At the beginning of each
time step a new incremental load is applied to the Earth’s surface and
CMB, consisting of (1) the incremental deformation of the surface
and CMB from the previous time step and (2) changes in ice and
ocean loads (details of this procedure can be found in Zhong et al.
(2003)). If the centre of mass of this incremental load (with respect
to the FE frame) is rcm, then in the CM frame application of this
load would be accompanied by a simultaneous translation of the rest
of the Earth of −rcm. Thus in order to mimic the state of the loading
as seen from the CM frame, we add an additional surface mass of
−r cm
ρ cos ϑ at the CMB, and −r cmρ o cos ϑ at the outer surface,
where ϑ is the angular distance from the direction defined by rcm

(other symbols from Table 1). These additional loads correspond to
the translation of the sphere of −rcm. The calculation of the Earth’s
deformation in the FE frame then proceeds normally for this time
step, with loads which are identical to those that would be experi-
enced in the CM frame. The computed results only differ from those
in the CM frame by the fact that the latter is displaced by rcm from
the FE coordinate system. Thus, at the end of the time step, rcm

is subtracted from the incremental deformation before recording it.
The net effect is equivalent to what would be observed in the the
CM coordinate system.

It may also be noted here that some formulations of the degree-
one calculation are vulnerable to non-unique solution, since trans-
lation of the entire Earth–load system may occur freely. However,
this issue does not plague the above implementation. This is be-
cause as long as the loading is identical to that viewed from the CM
frame, the degree-one gravitation outside the Earth is cancelled ex-
actly, so there is no force available to initiate a net translation of the
Earth.

Spectral method. Calculation of the Love numbers occurs in a
coordinate system whose origin is already, by design, at the cen-
tre of mass of the Earth–load system. However, naı̈vely applying
the standard propagation-matrix methods to the degree-one Love
numbers results in the attempt to invert a singular matrix. This oc-
curs because of a problem unique to the solution at degree one:
translation of the entire Earth is a solution of the homogeneous
(zero external force) differential equations. We correct for this prob-
lem by removing that part of the degree-one solution that corre-
sponds to whole Earth translation (Farrell 1972); the remaining so-
lution provides the degree-one deformation in the CM reference
frame.

2.2.2 Sea level equation

In addition to the glacial mass, significant surface loading is provided
by the ocean in two forms: increased volume from melted ice and
the response of the fluid ocean to topography and geoid changes.
These effects are included via the sea level equation, which gives the
change in height of the ocean load, L o, since the onset of glaciation
(Farrell & Clark 1976):

Lo(θ, ϕ, t) = [N (θ, ϕ, t) − U (θ, ϕ, t) + c(t)] O(θ, ϕ, t), (8)
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where N and U are the PGR-induced perturbations to the geoid
and surface displacement, O(θ , ϕ) is the ocean function (1 over the
ocean, 0 elsewhere). c is the eustatic sea level, given by

c(t) = 1

Ao(t)

(
− Mice(t)

ρw
−

∫
(N − U ) O d�

)
, (9)

where Ao is the area of the oceans, M ice is the mass of the ice sheets,
ρw is water density and d� is an element of solid angle.

The time dependence of the ocean function comes from shoreline
migration caused by (1) on-lap and off-lap in regions of local sea
level change and (2) ocean influx in regions of retreating marine-
based glaciers (Mitrovica 2003). Kendall et al. (2005) have shown
that in the vicinity of glaciated regions, such as Hudson Bay and
along the east coast of North America, contribution (2) has a much
more significant impact on sea levels than does (1). They have also
shown that the effect of (1) remains localized to very near shorelines.
Since in this study we only consider local measures of PGR near
Hudson Bay, and global measures of PGR of much longer wave-
length than those affected by factor (1) (estimated to be at spherical
harmonic degree 80 and above), we neglect the effect of on- and off-
lap due to local sea level change. However the time dependence of
the ocean function due to water influx, effect (2), is implemented—
as described presently.

In regions where retreat of the edge of the ice sheet is ac-
companied by an advance of the ocean, the value of the ocean
function must change from 0 to 1. While at each ICE-3G epoch
(the circles in Fig. 1), the ocean function is well defined every-
where to be 1 or 0, at times between these epochs it is allowed to
vary smoothly from 0 up to 1 where the ice is disappearing along
the edge. This treatment prevents the sudden ocean inundation of
deglaciated regions every 1000 yr, it approximates the smooth re-
treat of the edge of the ice sheet and it avoids the unrealistic ef-
fects of a negative near-field ocean load discussed in Milne et al.
(1999). This implementation of the ocean function is easily incor-
porated into the finite-element and spectral methods, as described
below.

Finite-element method. Implementation of the sea level equa-
tion is straightforward in the finite-element code. At each time
step, the ocean load L o is calculated with eqs (8) and (9) using
the current (linearly interpolated) values of ice height and ocean
function. Since N and U depend on the ocean load, in principle
an iterative approach should be used between N , U and L o. For
the first few time steps, full iteration is performed until these fields
cease to change under further iteration (typically four or five iter-
ations are required). However, full iteration is only performed for
the first few time steps; for subsequent time steps we use values
of N and U extrapolated from the previous two time steps. This
significantly improves the computational efficiency. The error in-
troduced with this approximation can be measured by repeating the
calculations with full iteration at every time step, and is found to be
negligible.

Spectral method. Since there is no ‘time stepping’ in the spectral
calculation (time dependence is implicit in the Laplace transform
domain), the spherical harmonic spectrum of a loading history that
is piecewise linear in time need only be specified by giving the spec-
trum at a few designated times (14 1-kyr time intervals, in the case of
ICE-3G)—the linear ramp between these times can be transformed
exactly into the Laplace transform domain. Thus calculation of the
ocean load, eq. (8), need only be performed at these few designated
times. The intermediate values of the ocean function (between 0
and 1) approximate the effect of water influx at a retreating ice
sheet.

Calculation of the ocean load is performed iteratively, beginning
by setting U = N = 0 in eq. (8) for an initial ocean load at each
epoch. The resulting values for topography and geoid are then used
in another calculation of L o, and the forward problem is solved again
with the new load. Iteration continues until there is no appreciable
change in the topography and geoid (we find that this criterion rarely
requires more than two iterations).

Compared with all other calculations performed by the spectral
method, including solution for the Love numbers themselves, the
sea level equation is much more computationally expensive. The
primary reason is the fact that the Earth’s response must be calculated
in the (spherical harmonic) spectral domain, while eq. (8) must be
performed in the spatial domain. This requires the transformation
of N l,m − U l,m to N (θ , ϕ) − U (θ , ϕ), for multiplication with O(θ ,
ϕ) at each ‘time node’ of the piecewise-linear loading, and then
the transformation of the resulting L o (θ , ϕ, t) back to the spectral
domain for use as a new load in the next iteration.

2.2.3 Polar wander

Changes in surface topography, CMB topography and ice and ocean
loading will perturb the Earth’s inertia tensor and consequently the
Earth’s rotation vector. Changes in Earth rotation, in turn, feed back
to deformation via perturbation of the centrifugal potential. To de-
scribe this effect, we write the Earth’s angular velocity asω = �(mx,
my, 1 + m z), where � is its unperturbed magnitude and the mi are the
dimensionless Cartesian components of the perturbation. It will be
convenient to use the complex quantities m± = mx ± imy. Similarly,
for perturbations to the Earth’s inertia tensor (due to deformation
and loads), we use I ± = Ixz ± iIyz. For periods much longer than
the Chandler wobble, Lambeck (1980) shows that

m± = I±
C − A

, (10)

where C and A are the unperturbed principal polar and equatorial
moments of inertia. We may neglect changes in m z , which are much
smaller than changes in mx or my.

Our analysis differs from previous work (for example, Wu &
Peltier 1984; Han & Wahr 1989; Bills & James 1997) by including
the influence of the small non-hydrostatic component of the Earth’s
ellipticity, which serves to stabilize the rotation axis and damp its
response to PGR-induced deformation. Without this contribution,
polar motion can be highly unstable since there is no ‘preferred’ di-
rection for the rotation axis. The influence of this contribution and
a method for including it are discussed in detail by Mitrovica et al.
(2005). Briefly, the denominator in eq. (10) should include a hydro-
static component and a much smaller non-hydrostatic component:
C − A = (C − A)hyd + (C − A)nonhyd. We express this as

m± = I±
(C − A)hyd(1 + δ)

, (11)

where δ is estimated to be about 0.8 per cent and (C − A)hyd de-
scribes purely hydrostatic oblateness in response to rotation. In par-
ticular, (C − A)hyd is derived from the infinite-time response of
the Earth to tidal forcing at spherical harmonic degree two, us-
ing the same Earth model to be used throughout the calculation
(Table 1). Here, the infinite-time limit includes complete relaxation
of a highly viscous lithosphere—such a lithosphere behaves elas-
tically on timescales characteristic of glacial isostatic adjustment.
Such an excess ellipticity is observed in the real Earth (e.g. Munk &
MacDonald 1960), due perhaps to plate tectonics, mantle convection
or a fossil rotational bulge, and its source is long-lived compared
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with the timescales of glacial isostatic adjustment. Thus, once it is
determined, the value (C − A)hyd (1 + δ) remains constant through-
out the calculation.

That such a correction to (C − A)hyd provides rotational stabil-
ity can be demonstrated as follows. Suppose that before the onset
of glaciation, the Earth’s principal moments of inertia, C and A,
were due solely to rotational hydrostatic equilibrium. Then upon
formation of a glacier not exactly on the rotational pole, the ro-
tation axis would begin to shift away from the extra mass, ‘push-
ing’ it outwards towards the rotational equator. Even if the glacier
were to then rapidly ablate, the momentary application of a new
centrifugal potential (due to the new location of the pole) would
cause the Earth’s rotational bulge to partially relax into a new hy-
drostatic equilibrium, such that when all surface mass perturba-
tions are gone there would remain a net permanent shift in the
location of the rotational axis. Suppose, on the other hand, that the
initial ellipticity of the Earth was slightly in excess of pure hydro-
static equilibrium, as described by (C − A)hyd (1 + δ); there would
then exist a preferred direction of the rotation axis. In this case,
after a transient perturbation to the Earth’s inertia tensor—after the
load and any resulting deformation had completely disappeared—
the rotational axis would ultimately relax back to its original con-
figuration, guided by the more permanent non-hydrostatic feature.
Much greater detail on this effect can be found in Mitrovica et al.
(2005).

An important property of the effect of polar wander is that it only
acts directly on the geoid with a Y ±1

2 spherical harmonic angular
dependence. Asymmetries, such as laterally varying viscosity or
the sea level equation, may then couple responses at other degrees.
That the direct influence of a small polar shift m± is restricted to
degree two, order ±1, is due to the fact that it induces a change in
centrifugal potential given by


φc =
√

2π

15
�2r 2

s

(
m−Y 1

2 − m+Y −1
2

)
, (12)

where r s is the Earth’s mean radius (Lambeck 1980). 
φ c, having a
Y ±1

2 spherical harmonic angular dependence, will induce deforma-
tion (and therefore geoid change) only at degree two, order ±1.

The response of the Earth’s rotation to changes in surface mass and
topography feeds back upon surface deformation: the mass changes
alter the Earth’s inertia tensor, which shifts the rotational axis
(eq. 11), which changes the centrifugal potential (eq. 12), which in
turn forces and deforms the Earth. This feedback may be modelled
by an iterative method, as we do in the finite-element implementa-
tion, or may be solved in a closed form, as we do in the spectral
method (Han & Wahr 1989).

Finite-element method. In the spatial domain of the finite-
element method, the implementation is straightforward: every time
the code calculates the potential, an extra step is performed that adds
in the perturbed centrifugal potential. The only required change to
the code is this addition to the self-gravitational potential of a cen-
trifugal potential at degree two, order ±1, which then feeds back
upon deformation only by the normal reaction of the solid Earth to
gravitational forcing. Calculation of this extra contribution to the
potential proceeds as follows.

At the beginning of each time step, the change to the inertia
tensor, I ±, is calculated from changes in boundary deformation and
surface ice and ocean loads. With I ±, eq. (11) is used to obtain the
new rotation axis in the form of m±. From this, the first-order change
in centrifugal potential is given by eq. (12), which is added to the
gravitational potential. As with the sea level equation, the potential
calculation is performed iteratively for the first few time steps: the

incremental potential forces the Earth, and the resulting deformation
gives a slightly different gravitational potential, so the new potential
is used to force the Earth. The iteration for this time step ceases when
deformation converges. Subsequent time steps use an extrapolated
estimate of the potential, including the centrifugal contribution. As
before, the error of this approximation is negligible, as determined
by comparison with cases in which full iteration occurs at every time
step.

Spectral method. In the Laplace transform domain, the interde-
pendent relation between deformation and centrifugal potential may
be solved in a closed form and expressed as a single Love number
that includes the polar wander feedback (Han & Wahr 1989; Mitro-
vica et al. 2005). Since the rotational effects only appear at spherical
harmonic degree two, order ±1, we calculate special forms for the
h±1

2 and k±1
2 Love numbers, which give the vertical displacement

and surface potential, respectively. In the Laplace transform do-
main, these are

k±1
2 = kL

2 + kT
2

(
1 + kL

2

kf − kT
2

)
, (13)

h±1
2 = hL

2 + hT
2

(
1 + kL

2

kf − kT
2

)
, (14)

where the superscripts L and T designate the load and tide Love
numbers, respectively. The quantity k f is called the fluid Love num-
ber, as it represents the fluid limit (i.e. s → 0 or t → ∞) of kT

2 .
We modify the value k f in a way physically equivalent to eq. 11,

as discussed in Mitrovica et al. (2005), letting

kf = (1 + δ)kT
2 (s = 0), (15)

where δ = 0.008, as before. The s → 0 limit of kT
2 should include

relaxation of all stresses in the lithosphere. To ensure this, the earth
model uses a lithosphere of very high viscosity, 1025 Pa s, which
behaves elastically in the timescales of glacial isostatic adjustment,
but holds no stress in the s → 0 limit.

The modification expressed in eq. (15) avoids the instability in
the rotational feedback (which can be seen in the form of a zero de-
nominator in eqs (13) and (14) in the limit s → 0), while accounting
for the effect of non-hydrostatic contributions to the Earth’s ellip-
ticity. With the modification in eq. (15), the Love numbers given in
eqs (13) and (14) may be used to calculate the l = 2, m = ±1
response, corrected for polar wander.

2.3 Derivation of a 3-D viscosity model

A 3-D mantle viscosity model is needed to examine the effects of
laterally varying viscosity on PGR. Here we describe the derivation
of the viscosity model, using seismic structure, thermodynamics
and rheological equations. Greater detail is given in Appendix A.

We begin with a composite of two different shear wave mantle
models: the long-wavelength global model S20RTS (Ritsema et al.
1999) and the higher-resolution model NA00 of van der Lee (2002)
beneath North America. The reason for using a special model for
North America is that much of our work centres on Laurentia. The
shear velocities are converted to a 3-D temperature structure. For
depths less than 400 km this is accomplished by a direct conver-
sion based on mineral properties (Shapiro & Ritzwoller 2004). At
greater depths, a constant conversion to density variation is used
(δln ρ/δln Vs = 0.3, Karato 1993). The density variation may then
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Figure 2. Two views of the 3-D viscosity model: (a) at a depth of 230 km, (b) a slice under Churchill (on the western shore of Hudson Bay) and Boston.

be multiplied by a depth-dependent thermal expansivity to obtain
3-D temperature variations δT (r). The latter is added to the adia-
batic temperature gradient to obtain a global 3-D temperature field,
T(r). The 3-D viscosity η(r) is then computed with

η(r) = A0 exp

(
γ

Tm(r )

T (r)

)
, (16)

where T m(r ) is the melting temperature, γ is an activation parameter
and A0 is a coefficient. We may choose γ and the leading constant
A0 separately for the upper and lower mantle to obtain a desired
viscosity discontinuity at 670 km depth (for example, a jump by a
factor of 30, or a factor of 2).

The resulting 3-D viscosity model is shown in Fig. 2(a) at a depth
of 230 km, and in Fig. 2(b) as a cross-section under Hudson Bay and
Boston. For this particular model, we have chosen a value of A0 =
2 × 109 Pa s in the upper mantle and A0 = 1.2 × 1013 Pa s in
the lower mantle, giving a viscosity discontinuity of 30× at a depth
of 670 km. Lateral variations of about one order of magnitude are
typical, with minimum and maximum viscosities at a given depth
typically two to three orders of magnitude apart (grey region of
Fig. 3). The higher resolution used around North America is also
visible in Fig. 2(a).

For another view of the 3-D structure, 1-D (spherically symmet-
ric) models are formed from weighted averages of the lateral viscos-
ity variations of the 3-D model. All viscosity averages are actually
averages of the logarithm of the viscosity. The averaging includes
an arbitrary weighting function, w(θ , ϕ), and treats the elastic litho-
sphere specially—it is described fully in Appendix B. These 1-D
derivatives of the 3-D model show the local structure in sites of in-
terest, as well as globally averaged structure; they will also be used
later in Section 3.4.

Fig. 3 shows four such 1-D models: a ‘global’ average (w = 1 ev-
erywhere), an ‘ice-weighted’ average (w proportional to the height
of the ice at the last glacial maximum), a ‘Hudson Bay’ average
(w = 1 around Hudson Bay, within 100 km of the coastline, and w

= 0 elsewhere), and an ‘east coast’ average (w = 1 along the east
coast of North America between Newfoundland and Virginia, within
100 km of the coastline, and w = 0 elsewhere). The ice-weighted
model takes its viscosity primarily from Laurentia, Scandinavia and
Antarctica. It and the Hudson Bay average both reflect mostly conti-
nental structure, with a thicker lithosphere and higher upper mantle
viscosity. The east coast average, taken from the continental margin,
has a thinner lithosphere. Also shown in Fig. 3 by the grey region is
the full range of the lateral variations of the 3-D model.
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Figure 3. Four 1-D averages of the 3-D viscosity model, defined by different
weighting functions w: a ‘global’ average (w = 1 everywhere), an ‘ice-
weighted’ average (w proportional to the glacier height at the last glacial
maximum), a ‘Hudson Bay’ average (w = 1 around Hudson Bay, within 100
km of the coastline and w = 0 elsewhere), and an ‘east coast’ average (w = 1
along the east coast of North America between Newfoundland and Virginia,
within 100 km of the coastline and w = 0 elsewhere). The grey region shows
the extent of the full lateral variations of the 3-D model.

3 R E S U LT S

3.1 Benchmarks

When the earth model used to calculate viscoelastic response is 1-D
(spherically symmetric), the results of the finite-element and spectral
methods may be benchmarked against each other. In this section we
present how the two methods compare globally in topography and
geoid solutions.

For the benchmarks, we use an earth model with the properties
shown in Table 1. The mantle viscosity is set to 2 × 1021 Pa s
below 670 km depth, and 1021 Pa s in the upper mantle. The litho-
sphere is given a thickness of 120 km. Surface loading is provided
by the modified ICE-3G model discussed in Section 2.1, and in-
cludes the ocean load only in the cases that implement the sea level
equation.

For all finite-element calculations in this study (with the exception
only of the resolution convergence tests, mentioned below), we use
the highest resolution available to us computationally. This highest
resolution has 76 800 elements laterally (across the entire sphere),
and 48 elements vertically (between the surface and the core–mantle
boundary). The average element spans about 80 km laterally and

Table 2. Benchmark comparisons between finite-element and spectral
methods.

Field Time D1 SLE PW SLEPW

Topo. −28 kyr 0.758 1.140 0.893 1.149
−10 kyr 0.882 1.371 1.135 1.378
Present 1.796 4.129 3.336 3.841

Topo. rate −28 kyr 0.732 1.230 1.007 1.240
−10 kyr 0.634 0.870 0.606 0.895
Present 1.727 2.044 1.581 2.059

Geoid −28 kyr 0.990 0.993 0.248 0.903
−10 kyr 0.738 1.162 1.034 1.589
Present 0.812 1.623 0.954 1.257

Geoid rate −28 kyr 1.960 2.045 0.321 0.824
−10 kyr 1.060 1.082 0.479 0.837
Present 0.816 1.007 0.805 1.231

20–110 km vertically, with the finest resolution in the upper mantle.
The time steps are 200 yr in length during the ramp up to glacial
maximum, and 25 yr in length thereafter (see Fig. 1), with a total
of 1170 time steps. The finite-element calculation of the potential
is performed up to spherical harmonic degree and order 32.

The fields we compare are topography, rate of change of topog-
raphy, geoid and rate of change of geoid, and are measured at three
times: −28 kyr (near the end of the ramp up to glacial maximum),
−10 kyr (during deglaciation) and the present (Fig. 1). We express
the field of interest at a given time t0 by f FE(θ , ϕ, t 0) and f S(θ ,
ϕ, t 0) for the finite-element and spectral methods, respectively. The
difference in the two fields is then measured by

ε =
√∫

( fFE − fS)2 d A∫
f 2
S d A

, (17)

where the integral is over the entire Earth’s surface. Table 2 shows
the dimensionless percentage difference for four cases implement-
ing the various effects described in Section 2.2. All cases imple-
ment the degree-one response (centre of mass motion) described in
Section 2.2.1

Case ‘D1’ is only different from the previously published bench-
mark by Zhong et al. (2003) in its implementation of the degree-one
response (no ocean load nor polar wander). For this case the agree-
ment between the finite-element and spectral methods is generally
very good, always below 2 per cent. Case ‘SLE’ includes effects of
the ocean load via the sea level equation; it does not include the polar
wander effect but it does include the degree-one response (which
is necessary due to the degree-one power in the ocean load). Here,
except for a 4 per cent difference in present-day global topography,
the agreement for all fields and times is about 1–2 per cent. Case
‘PW’ includes the effects of polar wander; it includes no ocean load
but does include the degree-one effect, whose independent bench-
mark demonstrated very close agreement. Agreement for this case
is nearly the same as for case ‘D1’ in all fields except present-day
topography (3.3 per cent). Case ‘SLEPW’ includes the sea level
equation, polar wander and, as in all cases, the degree-one effect.
Agreement here closely follows results for case ‘SLE’. Our imple-
mentation of the sea level equation appears to introduce slightly
more error than does that of polar wander. In all cases, the most
sensitive field and time is present-day global topography. This is
partially due to the smaller magnitude of present-day topography
after completion of much of the isostatic adjustment (thus a smaller
denominator in eq. 17). The geoid fields tend to agree better because
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Figure 4. Convergence of finite element results to spectral results with
increased resolution in the finite element code (a) temporally and (b) spatially.
The figures show the percent misfit of two fields: the rate of change of present-
day global topography (solid line) and the rate of change of present-day geoid
(dashed line). On the abscissa is the total number of time steps (a) and total
number of global surface elements (b) used in the finite element calculation.
The case compared is ‘SLEPW’, including all effects described in Sec-
tion 2.2. The remaining misfit in the highest resolution case (corresponding
those in Table 2) appear to be primarily limited by spatial resolution.

the finite-element code can reproduce the long-wavelength signals
well.

Fig. 4 demonstrates the convergence of the finite element results
to those of the spectral method for the case ‘SLEPW’ for the rate
of change of present-day global topography and the rate of change
of present-day geoid. Fig. 4(a) shows the improved agreement as
the time resolution is increased from a total number of 117 time
steps (250 yr step during deglaciation) to 1170 time steps (25 yr
step). It is apparent that significant improvement cannot be gained
by increasing the time resolution. Fig. 4(b) shows the convergence
of the finite-element result to the spectral result as the lateral spatial
resolution is increased from 19 200 surface elements (about 160 km
span) to 76 800 surface elements (80 km), the maximum available to
us. Although agreement with the spectral solution, already reduced
to a few per cent, may apparently be further improved with greater
spatial resolution, the computational demands on memory make this
currently unavailable to us. Note that the highest resolution results
in Fig. 4 correspond to those values given in Table 2.

The agreement between the spectral and finite-element methods
may be compared visually for a few of the long-wavelength com-
ponents of the global relative sea level (RSL). We define RSL as
simply topography minus geoid, where both topography and geoid
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Figure 5. Relative sea level (RSL) at spherical harmonic degrees 1, 2, 4,
8 and 16. Finite-element results use the solid line; the spectral method uses
the dashed line (which may not be visible due to overlap with the solid line).

are measured relative to their pre-glaciation values. Fig. 5 shows the
time dependence of RSL at spherical harmonic degrees 1, 2, 4, 8
and 16. The case shown is ‘SLEPW’, which includes the sea level
equation and polar wander effects. The value shown for spherical
harmonic degree l, called gl(t) here, is a composite measure of all
spherical harmonic orders (m) for that degree, given by

gl (t) =
√√√√ 1

l + 1

l∑
m=0

∣∣g̃l,m(t)
∣∣2

, (18)

where the g̃l,m(t) represent the complex spherical harmonic coeffi-
cients of the RSL response. For these long-wavelength signals, the
comparison between the finite-element and spectral method solu-
tions (the solid and dashed lines, respectively) shows no discernible
difference. The small differences expressed in Table 2 are too small
to be seen here.

Fig. 6(a) shows RSL at spherical harmonic degree two, order 1,
where the polar wander feedback is acting directly. The cases shown
are ‘SLEPW’ (labelled ‘including polar wander’) and ‘SLE’ (la-
belled ‘no polar wander’). Again, the finite-element (solid lines)
and spectral method (dashed lines) agree very well.

3.2 Effects of degree-one deformation, sea level equation
and polar wander

To demonstrate the contributions of the processes described in
Section 2.2, we present some visual comparisons of changes in rel-
ative sea level (RSL) upon introduction of each effect.

Fig. 5 shows the time dependence of RSL at spherical harmonic
degrees 1, 2, 4, 8 and 16 for case ‘SLEPW’ (including the sea
level equation and polar wander effects). The response at degree
one is roughly equal in magnitude to the response at the other long
wavelengths, demonstrating its important contribution to the total
RSL signal.

Fig. 6(a) shows the influence of the polar wander feedback on
RSL at spherical harmonic degree two, order 1. Including the polar
wander feedback tends to reduce the topography response (Han &
Wahr 1989). As shown, the RSL history for case ‘SLEPW’ is about
half that of case ‘SLE’, which is identical except for the absence
of this effect. Fig. 6(b) shows the rate of true polar wander over
the past 100 kyr for the same two cases. Whether or not the polar
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Figure 6. (a) RSL at spherical harmonic degree two, order 1, with and without the polar wander feedback. (b) Motion of the pole since the onset of glaciation.
The two cases shown are ‘SLEPW’ (includes polar wander) and ‘SLE’ (without polar wander feedback). In (a) agreement between the two methods may be
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wander feedback is included, the position of the rotational axis can
be computed from eq. (11) and from MacCullagh’s formula, which
relates the inertia tensor to the l = 2 components of the Earth’s grav-
itational potential (Lambeck 1980, eq. 2.4.5). As the figure shows,
including the polar wander feedback greatly increases the motion
of the rotational axis.

As discussed earlier (eq. 12), the polar wander feedback acts di-
rectly only on the degree two, order ±1 potential. However, certain
model asymmetries can couple responses at spherical harmonics
of different degrees; in these cases introduction of the polar wan-
der effect will also indirectly affect the potential and topography at
other angular degrees. In this paper we consider two such asymme-
tries: lateral variation of mantle viscosity, and the sea level equation.
To demonstrate this coupling, Fig. 7 shows the per cent change in
present-day surface potential at spherical harmonic degrees up to 20
upon introduction of the polar wander effect for each of the coupling
cases: 3-D viscosity variations (using the model shown in Fig. 2) and

the sea level equation. The value shown, a composite measure of all
spherical harmonic orders (m) for each degree (l) given by eq. (18),
compares a case that implements the polar wander feedback with an
otherwise identical case without it. Degree two order 1 is omitted
in the composite value for l = 2; the difference at this harmonic
is about 80 per cent. The black bars compare spherical harmonic
components of surface potential for the 3-D earth model (shown in
Fig. 2) with no sea level equation, to isolate the coupling effects of
lateral viscosity variations. The grey bars compare two 1-D viscos-
ity models that implement the sea level equation, cases ‘SLE’ and
‘SLEPW’. We see that lateral viscosity variations (black bars) cou-
ple different harmonics to the l = 2, m = 1 harmonic much more
strongly than the sea level equation does (grey bars). Still, those
other harmonics change by only a fraction of 1 per cent. Note that
this small value of 1 per cent is only a measure of how the l = 2,
m = 1 potential couples to the potential at other harmonics; the total
influence of lateral viscosity variations or the sea level equation is
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a combined effect of intercoupling between all harmonics, and is
much more pronounced (see below).

Finally, the influence of ocean loading via the sea level equation
may be seen in Fig. 8. This figure shows the absolute value of the
difference in present-day RSL when the ocean load is added (i.e.
RSL from case ‘SLEPW’ minus that from case ‘PW’). Including
the ocean load adds about 10 m depth to Hudson Bay and 4 m depth
to the Baltic Sea, each corresponding to about 25 per cent change.
There is also a noticeable change along global coastlines due to the
eustatic sea level change.

3.3 Effects of 3-D viscosity variations: a sensitivity study

The finite-element code CitcomSVE allows us to calculate the vis-
coelastic response of an Earth with 3-D viscosity structure. In this

0 2 4 6 8 10 12

RSL difference (meters)

Figure 8. Influence of the ocean load, calculated by the sea level equation. Shown is the absolute value of the difference in present-day RSL between cases
‘SLEPW’ and ‘PW’.

section and the next we use this ability to show that PGR observa-
tions are particularly sensitive to viscosity variations within certain
regions of the underlying mantle.

In this section we use a simplified, idealized PGR model to map
out the regions in the mantle where viscosity perturbations may af-
fect surface uplift measurements. The loading is point-like in space
(i.e. no ice or ocean loads), and simply has Heaviside (step function)
time dependence. Because of the large number of 3-D calculations
necessary, we omit the polar wander feedback for simplicity and
speed. The earth model we consider first has a uniform mantle vis-
cosity of 2 × 1021 Pa s, and a 100 km thick elastic lithosphere (other
parameters are given in Table 1).

The point load is applied and maintained at the North Pole, while
uplift (or subsidence) rates are recorded at angular distances of 0◦,
10◦, 20◦, 30◦, 40◦ and 50◦ away from the load—these will be called
the observation points. We then introduce into the mantle a small
block of high viscosity, 50 times greater than the background viscos-
ity, with a size of 200 km vertically and 200 km in radius laterally.
The location of this viscosity anomaly is allowed to roam throughout
the mantle. For each case, with the viscosity anomaly at a certain
location, we use CitcomSVE to compute the resulting deformation
for 60 Maxwell times, and the resulting uplift rate versus time is
recorded at the same six observation points. The uplift rate at a cer-
tain observation point is compared with the rate for a case without
the viscosity anomaly by computing a difference between the two
curves given by

ε =
∫ |ui(t) − ua(t)| dt∫ |ui(t)| dt

, (19)

where u i is the isoviscous (no anomaly) uplift rate and u a is the
rate at the same observation point with a viscosity anomaly at a
certain location in the mantle. The integral is over 60 Maxwell times
(∼27 kyr).

The results are displayed in Fig. 9 in a fashion intended to il-
lustrate a ‘sensitivity region’ in the mantle. Each plot (a–f) has
a particular configuration of loading point (shown by the arrow)
and observation point (shown by the eye), and represents 120 sepa-
rate 3-D calculations. The shade of a certain location in the mantle
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Figure 9. Illustration of the sensitivity of uplift rates to the location of a viscosity anomaly in the mantle. Each plot (a–f) has a particular configuration of load
(arrow) and observation point (eye). The darkness of a certain location in the mantle for a given plot represents the difference in uplift rates (as measured by
eq. 19) when a small high-viscosity anomaly is placed at that location, all else being unchanged. Beside each cross-section is shown the lateral structure of the
sensitivity region at shallow depth.

represents the difference in uplift rates (recorded at the observation
point, the eye symbol) when the small high-viscosity anomaly is
placed at that location, everything else being unchanged. The values
are computed by eq. (19), and expressed in per cent. Beside each
cross-section is a surface plot of the sensitivity region at shallow
depth, showing its lateral extent.

In each plot of Fig. 9 we see that PGR is particularly sensitive to
viscosity structure both beneath the point of measured topography
change and beneath the load. Even at great distances from the load
(plot f), uplift rates are as sensitive to viscosity perturbations beneath
the load as they are to local perturbations. These figures may be inter-
preted as identifying, with increased colouration, which regions of
the mantle are ‘sampled’ when deformation is measured. They im-
ply that if one infers a mantle viscosity from a measurement of PGR
deformation (at least for the type of loading discussed here), one is
only gaining knowledge of the viscosity within the sensitivity region
shown. Although this is an idealized study of simple point-loading,
and although the deformation is known to depend non-linearly on
the configuration of an extended load, the sensitivity regions shown
suggest a strong dependence on the viscosity immediately below the
observation point as well as that beneath the load. The deformation
rates also tend to ‘sample’ the viscosity structure between these two
points, and to greater depth when the points are farther apart. This is
particularly noticeable in plots (d) and (e), where the sensitivity re-
gion forms a sort of bridge between the points of greatest sensitivity,
at the load and observation. It is also notable that there is virtually no
sensitivity to viscosity perturbation outside of the corridor between
these two points.

The same study was repeated with two variations. In the first,
we used an anomaly with a viscosity 50 times smaller than the
uniform background viscosity of 2 × 1021 Pa s. In the second, we
used an anomaly also with 50× greater viscosity than background,
but with a background viscosity consisting of two layers: 1022 Pa s

in the lower mantle and 3 × 1020 Pa s in the upper mantle. In both
variations, the sensitivity region of the mantle was not significantly
different from that seen in Fig. 9.

3.4 Effects on PGR of realistic 3-D viscosity

In this section we approach the question of the influence of 3-D
viscosity variations by comparing the PGR response of 1-D viscosity
and 3-D viscosity derived from seismic models (Section 2.3). The
1-D structures are derived by averaging over lateral variations in
the 3-D model. The intention is to compare methods of deriving
a 1-D average from the 3-D structure to best reproduce the PGR
observations from the 3-D model. If an optimal method exists, it
could be used to describe how 1-D viscosity structures, derived
from actual PGR observations, relate to the true 3-D viscosity of
the Earth.

For this comparison, we force the Earth with the glacial load
described in Section 2.1, and include the effects of polar wander
feedback and ocean loading via the sea level equation. We study
two 3-D viscosity models that differ only in that one is chosen to
have a viscosity discontinuity at 670 km depth of about a factor of 30
(this is the model shown in Section 2.3) and the other has a factor of
two discontinuity. These two models are derived identically, except
for the choices for the values of A0 in eq. (16). We concern ourselves
first with the model having a factor of 30 viscosity jump.

From the 3-D model we derive a suite of 1-D models by later-
ally averaging the logarithm of the viscosity, subject to a weighting
function w(θ , ϕ). The precise averaging procedure is described in
Appendix B. We consider the four 1-D models discussed in Section
2.3 and shown in Fig. 3: a uniform ‘global’ average, a global ‘ice-
weighted’ average, a local ‘Hudson Bay’ average and a local ‘east
coast’ average.
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Figure 10. Illustration of the calculation of a relaxation time. The grey line
is the RSL at Churchill, Canada (on the west shore of Hudson Bay) relative
to its present-day value. Twenty-five samples of this curve (circles) are used
to fit a function of the form a[exp(−t/T ) − 1], where T is the relaxation
time. The best fit to these points, at a = −14.0 m and T = 3.4 kyr, is shown
as the dashed line.

After computing the Earth’s complete response for each model
(using CitcomSVE and the spectral method for the 3-D and 1-D
models, respectively), we record several PGR-related phenomena
for comparison. These include ‘relaxation times’ for several sites
around Hudson Bay, computed from the time dependence of rela-
tive sea level (RSL) over the last 6 kyr (i.e. since the disappearance
of the Laurentide ice sheet). The relaxation time T is computed by
fitting a curve of the form a[exp (−t/T ) − 1] to 25 points of the
RSL relative to today over the last 6 kyr (i.e. we find the values a and
T that minimize the χ2 residual for the sampled RSL points). This
is demonstrated in Fig. 10. For several sites along the east coast
of North America we consider RSL histories over the last 6 kyr,
relative to the present day. We cannot use relaxation times at these
sites because the deformation is not even approximately exponential
in time. We also record the maximum present-day free-air gravity
anomaly, gFA, which occurs near James Bay at the southern end of
Hudson Bay. These results, relaxation times, RSL curves and gFA,
may all be considered local to the Laurentide region. In addition, we
consider three measurements of global present-day PGR: J̇2, the rate
of true polar wander and the rate of change of higher-order gravity
Stokes coefficients (data anticipated from the GRACE mission). It
should be mentioned that although these quantities have been inter-
preted as PGR signals in previous studies, there is some ambiguity
in their interpretation; for our models, however, their change is due
entirely to PGR.

We use these data as follows. For a given 1-D model, for each
PGR observation, we compute a misfit to the corresponding result
from the 3-D Earth. In the case of the east coast RSL curves, the
misfit is the difference measured by eq. (19), where u(t) is taken
to mean the RSL relative to today, and the integral is over the last
6 kyr. The RSL misfits are then combined by rms average. In the
case of the GRACE Stokes coefficients, the per cent difference is
computed for each coefficient up to spherical harmonic degree 10,
and then averaged together, being weighted by the reciprocal of the
estimated errors on the GRACE Cm

l , Sm
l coefficients (Velicogna et al.

2005). For the remaining PGR observations that are simply scalars,
the misfit is just the per cent difference in the absolute value of the
result.
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Figure 11. Per cent misfit between PGR observations from the 3-D earth
model and those from three 1-D viscosity models: the global average (grey),
the Hudson Bay average (white) and the east coast average (black). The
three observation sets are relaxation times at several sites around Hudson
Bay (left), RSL at several sites along the east coast of North America (centre)
and the present-day free-air gravity anomaly over James Bay (right).

In computing these misfits, we are interested in which 1-D model
can best reproduce the PGR of the 3-D model. First we consider
how the two local viscosity models (the ‘Hudson Bay’ average and
the ‘east coast’ average) reproduce the local PGR observations (re-
laxation times at the Hudson Bay sites, RSL at the east coast sites
and gFA over James Bay). Fig. 11 shows the misfit of the 1-D re-
sults to the ‘true’ (synthetic) data from the 3-D Earth. The results
of the global average 1-D model are also included for comparison.
The model that best reproduces the 3-D results overall is the one
taken from Hudson Bay (white bars). This echoes an observation
of the previous section that topography change is sensitive to the
viscosity under the loading, even when it is distant from the loaded
region. Measurements of RSL along the east coast, which is some-
what removed from the ice-loaded region, turn out to be difficult to
reproduce with any of these 1-D viscosity models. This may be due
to the sensitivity of these RSL measurements to both of the rather
different 1-D structures: the local ‘east coast’ structure as well as
the ‘Hudson Bay’ (beneath load) structure. Relaxation times around
Hudson Bay and gFA at James Bay are both best reproduced with
the local viscosity structure.

In an expanded search for 1-D models that might reproduce the
east coast RSL data from the 3-D Earth, we also consider a variety
of weighting functions w(θ , ϕ) including combining Hudson Bay
and east coast viscosity structures, or using a broader or narrower
region over which to average. We find, however, that none of the
1-D models can reproduce the east coast RSL of the 3-D Earth
significantly better than the misfits shown in Fig. 11.

To consider the global measures of PGR (present-day J̇2, po-
lar wander rate and GRACE gravity coefficients), we compare the
global average viscosity and the ice-weighted viscosity. The misfits
of the 1-D model results to those from the 3-D Earth are shown
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Figure 12. Per cent misfit between PGR observations from the 3-D earth
model and those from two 1-D viscosity models: the global average (grey)
and the ice-weighted average (black). The three observations are present-day
˙J2 (left), polar wander rate (centre) and GRACE gravity coefficients (right).

in Fig. 12. For each observation, the ice-weighted average is closer
to the 3-D result than the global average. This is again reminiscent
of a conclusion of the previous section: that the viscosity structure
beneath the loading will affect PGR everywhere. In this case there
is no localized point of measurement since these observables are all
global in scale, thus the viscosity beneath all the ice-loaded regions
of the Earth contributes most to the result.

The results in Fig. 12 for the polar wander rate show rather large
misfits and unusually large sensitivity to differences between the
1-D models. However, this is mostly due to a coincidence of this
particular 3-D model, which has the polar wander rate crossing
zero at nearly the present day—this makes comparisons of per cent
difference rather less stable. This difficulty is removed if we consider
a slightly different viscosity structure, without this coincidental zero
crossing at the present day, which we consider next.

As mentioned earlier, we have also created a different 3-D viscos-
ity model with a factor of two viscosity discontinuity at the 670 km
discontinuity. The experiment is repeated with this 3-D model and
with the same 1-D averages derived from it. Comparing the PGR
results as before, the conclusions drawn above remain the same. We
find again that the viscosity beneath Laurentia best reproduced the
Hudson Bay data and gFA, while east coast RSL was difficult to ob-
tain with our 1-D structures. Also, the 1-D structure derived from an
ice-weighted average reproduced all global measures of PGR better
than a full global average. The misfit values shown in Figs 11 and
12 are similar for this case, except for the polar wander rates. In
the case of the polar wander calculations, the global average has a
17.8 per cent misfit and the ice-weighted average has a 16.3 per cent
misfit.

It is notable that, despite substantial variations in upper mantle
viscosity and lithospheric thickness (Fig. 3), most of the misfits
discussed above and shown in Figs 11 and 12 do not differ greatly
from each other—an important exception being the comparison of
relaxation times at Hudson Bay. This is not for lack of variety in the

production of 1-D models, as many different weighting functions
were considered in producing 1-D averages (with similar results).
Further, it appears that the 1-D models, in general, have difficulty
reproducing the PGR results of the 3-D viscosity model to better
than about 10 per cent. This suggests that a significant contribution
to the misfit values may be due to the complicating effects of the
3-D viscosity structure. A similar sensitivity (to lithospheric and
asthenospheric lateral variations) was also noted by Martinec et al.
(2001). Only when the most local features of the 3-D model are
being probed, by making local observations in the previously loaded
region, is there an unambiguously preferred 1-D viscosity structure.

4 D I S C U S S I O N A N D C O N C L U S I O N

We have used two complementary methods to solve the forward
problem of glacial isostatic adjustment: a spectral method for strictly
1-D (spherically symmetric) earth models and a finite-element
method for models with 3-D viscosity structure. We have augmented
both methods by implementing three additional effects: solution for
the response at spherical harmonic degree one (or centre of mass
motion), a gravitationally self-consistent ocean load via the sea level
equation, and the influence of polar wander feedback. Each of these
effects is found to have a significant influence on PGR observables
such as relative sea level. The strength of the degree-one signal is
of the same order of magnitude as the other longest wavelengths.
Application of an ocean load significantly changes sea levels, espe-
cially in regions of marine-based ice sheets. The feedback of polar
wander upon potential and deformation substantially changes the
signal at spherical harmonic degree two, order ±1, and may influ-
ence other harmonics if a coupling mechanism exists (though by
less than 2 per cent).

With all these effects implemented in both the finite-element and
the spectral methods, the two methods were benchmarked against
each other, differing in global topography and geoid by typically
less than 2 per cent.

We also examined the influence of lateral viscosity variations
upon measurements of post-glacial rebound in two ways. First, we
used a simplified, idealized PGR model to map out the regions in the
mantle where viscosity perturbations may affect surface uplift mea-
surements. One may think of this as a ‘sensitivity region,’ describing
where in the mantle the deformation measurement is sensitive to vis-
cosity perturbations. The regions of greatest sensitivity are beneath
the loading and beneath the point of measurement. The sensitivity
region generally extends in a corridor between these two points and
disappears rapidly outside it.

As a second approach to study the influence of lateral viscos-
ity variations, we constructed a realistic 3-D viscosity model from
seismic tomography models. We recorded the resulting PGR ob-
servables such as relaxation times, relative sea level, gravity and
polar wander rate, and compared them with similar observations
on a 1-D (spherically symmetric) viscosity model that was derived
from a suitable average of the 3-D structure. We found results that
corresponded consistently with our conclusions from the sensitivity
study. Namely, that PGR observations tend to depend on the viscos-
ity structure beneath the ice load, whether or not the observation is
made there. For observations made at the same location as the load-
ing, such as the relaxation time of the uplift of Hudson Bay, results
of the 3-D model agreed well with a 1-D model whose viscosity
was that beneath Hudson Bay. This suggests that local observations
at the loaded region can give information about the local viscos-
ity structure. Global PGR measurements ( J̇2, polar wander rate and
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GRACE gravity coefficients) for which there is no ‘local’ region,
tend to reflect the viscosity structure beneath the ice-loaded regions
of the Earth. These results suggest that a 1-D viscosity structure
derived from global PGR observations will most closely resemble
not a global lateral average of the Earth’s viscosity, but an average
that heavily weights the viscosity structure beneath the loaded re-
gion. For local PGR observations away from the loading (sea levels
along the North American east coast) none of our 1-D models could
reproduce well the results of the calculation with 3-D viscosity. In
this case, PGR is sensitive to both the local viscosity structure and
the substantially different structure beneath the loaded regions. The
nature of this problem is essentially 3-D, so we cannot expect simi-
lar deformation from any 1-D viscosity model. Finally, for all cases
except those where local observations are made at the location of the
loading, 1-D models have difficulty reproducing the PGR observa-
tions of the 3-D viscosity model—further evidence of the influence
of lateral viscosity variations in these PGR data.
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A P P E N D I X A : D E TA I L E D P RO C E D U R E
F O R D E R I VAT I O N O F T H E 3 - D
V I S C O S I T Y M O D E L

The detailed procedure for deriving the 3-D viscosity model is
given here. The seismic tomography models used are the following:
S20RTS (Ritsema et al. 1999) gives global shear velocity perturba-
tions relative to PREM; NA00 van der Lee (2002) gives absolute
shear wave velocities down to 670 km and Moho depth beneath
North America; CUB2.0 (Shapiro & Ritzwoller 2002) provides a
1-D velocity structure down to 400 km depth. We distinguish be-
tween 3-D and 1-D (radially dependent) functions by showing the
dependent variable as r and r, respectively.

(1) Set the global shear wave velocity structure. For conversion
purposes, we need absolute shear wave velocities, Vs (r), above 400
km depth, and velocity perturbations, (δVs/Vs)(r), below 400 km.

(a) Get global velocity perturbations, (δVs/Vs)(r), from the
model S20RTS. Above 400 km, add the 1-D velocity structure
(provided by CUB2.0) to obtain absolute shear wave velocity,
Vs (r).

(b) Use the higher-resolution NA00 velocity model under North
America. For regions within the NA00 model domain but below
400 km depth, convert the NA00 absolute velocity to velocity
perturbation (δVs/Vs)(r) using the NA00 average.
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(2) Convert velocities to temperature, T (r).

(a) Above 400 km depth, directly convert Vs (r) → T(r), based
on laboratory-measured material properties. We use the method
of Shapiro & Ritzwoller (2004).

(b) Below 400 km, use a proportionality constant of 0.3 to con-
vert velocity perturbation to density perturbation (Karato 1993):
(δρ/ρ)(r) = (0.3δVs/Vs)(r). Divide this by a depth-dependent
thermal expansivity, α(r ), to obtain temperature variations,
δT (r). We use α(r ) = [r ′ + 3(1 − r ′)] × 10−5, where the depth
r ′ = r/r b where r b is the depth of the CMB. To the temper-
ature variations, add the 1-D adiabatic temperature for a 3-D
temperature field: T (r) = T ad (r ) + δT (r).

(3) Convert temperature to viscosity, η(r).

(a) Obtain a depth-dependent melting temperature, T m(r ). We
use T m(r ) = 2100 + 1.4848r − (5 × 10−4 r 2) in the upper
mantle, and T m(r ) = 2916 + 1.25r − (1.65 × 10−4 r 2) in the
lower mantle, where r is the depth in kilometres (Yamazaki &
Karato 2001) (as used in McNamara et al. 2003).

(b) Use the relation η(r) = A0 exp[γ T m (r )/T (r)], with γ = 17
in the upper mantle and γ = 10 in the lower mantle (Yamazaki
& Karato 2001) (as used in McNamara et al. 2003). The leading
constant A0 is chosen for the upper and lower mantle to roughly
set the magnitudes there. For the case shown in Fig. 2, we use
A0 = 2 × 109 Pa s in the upper mantle and A0 = 1.2 × 1013 Pa
s in the lower mantle. For comparison, we also consider a case
with A0 = 2 × 1012 Pa s in the lower mantle, giving about a
factor of 2 viscosity discontinuity at 670 km depth.

(4) Set the elastic lithosphere thickness, T e (θ , ϕ).

(a) Assemble a reasonable model of elastic thickness from stud-
ies of loading and heat flux. We use the model discussed in
Zhong et al. (2003, section 5.1).

(b) Set viscosity within the lithosphere to 1025 Pa s.

A P P E N D I X B : C O M P U T I N G AV E R A G E
V I S C O S I T Y

Starting with a 3-D viscosity structure, η3 (θ , ϕ, r ), and a weighting
function w(θ , ϕ), we perform a lateral average of viscosity to obtain
a 1-D, spherically symmetric structure, η1(r ). This is accomplished
as follows:

(1) Define the effective (elastic) lithospheric thickness T e(θ , ϕ)
by the depth at which the viscosity η3 falls below a chosen cut-off
value (we use 1025 Pa s).

(2) Find the average lithospheric thickness, weighted appropri-
ately: 〈Te〉 = ∫

wTe d�/
∫

w d�. Set the 1-D viscosity above this
radius to a be very high: η1(r ) = 1025 Pa s for depths <〈T e〉.

(3) At each depth specified by the 3-D viscosity model, we find
the weighted average of the logarithm of the viscosity in all non-
lithospheric regions. The non-lithospheric region, N , is defined by
those regions at the specified depth with viscosity less than the
chosen elastic cut-off (1025 Pa s). For depths greater than 〈T e〉, the
1-D viscosity is given by

η1(r ) = exp

(∫
N w ln η3 d�∫

N w d�

)
for depths > 〈Te〉 .
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