
Geophys. J. Int. (2003) 155, 679–695

Three-dimensional finite-element modelling of Earth’s viscoelastic
deformation: effects of lateral variations in lithospheric thickness

Shijie Zhong, Archie Paulson and John Wahr∗
Department of Physics, University of Colorado, Boulder, CO 80309, USA. E-mail: szhong@anquetil.colorado.edu

Accepted 2003 July 10. Received 2003 June 25; in original form 2002 July 26

S U M M A R Y
We have developed a 3-D spherical finite-element model to study the dynamic response to
surface loads of a self-gravitating and incompressible Earth with 3-D viscoelastic structure.
We have forced our model with the ICE-3G deglaciation history of Tushingham & Peltier
to study the effects of laterally varying lithospheric thickness on observations of post-glacial
rebound (PGR). The laterally varying lithospheric thicknesses are derived from estimates of
the thermal structure of the oceanic lithosphere and from elastic thicknesses on continents as
estimated from studies of long-term geological loads. Our calculations show that the effects
of lithospheric structure on the relative sea level change (RSLC) depend on the locations of
the observation sites and on the size of loads. The RSLC at the centre of the North American
ice sheet is significantly less sensitive to lithospheric thickness, compared with the RSLC at
the centre of the Fennoscandian ice sheet. At the peripheral bulges the RSLC tends to be more
sensitive to lithospheric thickness. The RSLC is controlled by local lithospheric thickness.
The RSLC at a given location, as predicted using models with laterally varying lithospheric
thickness, can be reproduced using a 1-D model with a uniform lithospheric thickness equal
to the local lithospheric thickness. Coupled with efficient parallel computing, we believe that
the finite-element model that we present here can be used to address a variety of viscoelastic
deformation problems in geodynamics.

Key words: finite-element models, lithospheric thickness variations, mantle viscosity, post-
glacial rebound.

1 I N T RO D U C T I O N

An understanding of mantle viscosity is fundamental to many as-
pects of geodynamics including the thermal evolution of the Earth,
mantle convection and plate tectonics. Over the last three decades,
it has been demonstrated that mantle viscosity can be constrained
by modelling the long-wavelength non-hydrostatic geoid (Hager &
Richards 1989) and post-glacial rebound (referred to as PGR here-
after) data (Cathles 1975; Peltier 1976). Recent studies indicate that
the mantle viscosity structure inferred from modelling the geoid and
PGR are similar, with the lower mantle being perhaps as much as
one to two orders of magnitude more viscous than the upper man-
tle and transition zone (Hager & Richards 1989; Lambeck et al.
1990; Han & Wahr 1995; Forte & Mitrovica 1996; Mitrovica &
Forte 1997; Simons & Hager 1997), although a smaller increase of
viscosity in the lower mantle has also been proposed (Peltier 1998).
This suggests that the mantle responds in a similar fashion to loads
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at different timescales (i.e. ice loads at timescales of ∼104 yr and
mantle convection at timescales >106 yr).

Each of these two methods of constraining the viscosity (i.e. mod-
elling the geoid and using PGR data) has advantages and disadvan-
tages. The rebound signal tends to be somewhat less sensitive to
deep mantle structure than the long-wavelength geoid, due to the
relatively small size of the ice sheets (e.g. Peltier 1998). However,
the geoid can constrain only the relative viscosity structure, because
it does not contain information on the time dependence (Mitrovica
& Forte 1997). The temporal and spatial patterns of PGR, on the
other hand, are sensitive to both the relative viscosity structure and
the absolute value of viscosity.

Constraints on mantle viscosity are obtained by comparing the
PGR observations against model predictions of the Earth’s response
to the ice load removal (i.e. a deglaciation history). At timescales
appropriate for PGR, the Earth responds to loads as a viscoelastic
medium, rather than as a purely viscous body. Using the correspon-
dence principle, classical elastodynamic models can be extended to
determine the viscoelastic response of the Earth to surface loads
(e.g. Peltier 1976). In the usual elastodynamic models for load-
ing of a spherically symmetric Earth, the solution scalars are ex-
panded as sums of spherical harmonics and the radially dependent
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Figure 1. Lithospheric thickness variations on a global scale (a) and for
North America and Europe (b). The solid black lines mark major plate
boundaries. The dashed black lines are contours for 120 km thick lithosphere.
The lithospheric thickness is modified from Watts (2001).

coefficients of the spherical harmonics are determined by solving a
set of ordinary differential equations over radius. This type of anal-
ysis has been used extensively in modelling PGR (e.g. Wu & Peltier
1982; Mitrovica & Peltier 1991; Peltier 1998). However, this is a par-
ticularly useful method only in cases where the Earth’s viscoelastic
structure depends only on the radius, because in that case the differ-
ential equations for different harmonic coefficients are completely
decoupled from one another. When lateral variations in viscoelas-
tic structure are present, the Earth’s response to a single harmonic
load consists of many additional harmonics (e.g. Kaufmann & Wolf
1999; Wu 2002a). This generally precludes the use of this method
for an Earth with a fully 3-D mantle and lithospheric structure (e.g.
Fig. 1 for laterally varying lithospheric thickness). For this reason,
most studies of PGR assume a spherically symmetric (i.e. 1-D) vis-
coelastic structure, including a uniform lithospheric thickness.

A number of methods have been used to model viscoelastic defor-
mation in the presence of lateral viscosity variations. These include
perturbation methods (Tromp & Mitrovica 2000), and numerical
methods (Sabadini et al. 1986; Gasperini & Sabadini 1989; Wu
1992, 1993, 2002b; Wu et al. 1998; Giunchi et al. 1997; Kaufmann
et al. 1997; Kaufmann & Wu 1998, 2002; Martinec 1999, 2000;
Martinec et al. 2001). Among these numerical methods, only Wu
(2002b) with a finite-element method, and Martinec (1999, 2000)
with a spectral method, included a fully 3-D spherical geometry.
The other studies employed Cartesian or axisymmetric models. Wu
(2002b), which is the only study that we are aware of where a fully

3-D method has actually been used to compute the effects of laterally
varying viscosity, adopted a commercial finite-element software for
the PGR studies, which without parallel computing technology is
useful mostly for very long-wavelength problems. Martinec (1999,
2000) presented a spectral finite-difference/finite-element method
but did not investigate the effects of laterally varying structure.

Although the effects of laterally varying viscosity including non-
Newtonian mantle viscosity are not yet well understood, some gen-
eral characteristics have been identified. For example, Sabadini
et al. (1986) showed that the rebound at the margins of a formerly
glaciated area is sensitive to lithospheric thickness variations; much
more so than is the rebound near the centre. With similar 2-D mod-
els, Kaufmann et al. (1997) demonstrated that effects of lithospheric
thickness variations can be resolved with models with different uni-
form lithospheric thicknesses. Gasperini & Sabadini (1989) found
that lateral variations in upper-mantle viscosity of one to two orders
of magnitude and with wavelengths comparable to the horizontal
dimension of ice loads could significantly affect the rebound at the
load centre, consistent with other studies from 2-D and 3-D regional
models (Wu et al. 1998; Kaufmann & Wu 1998; Kaufmann et al.
1997, 2000). Giunchi et al. (1997) suggested that continental roots
and lateral variations in viscosity in the asthenosphere could have
important effects on present-day horizontal surface displacements
(also see Ni & Wu 1998; Martinec et al. 2001). Wu (1992, 1993,
1995, 2002c) examined whether a non-Newtonian mantle rheology
is compatible with PGR data. He concluded that PGR data did not
support a non-Newtonian rheology that would result in much faster
relaxation than the observations for reasonable ambient tectonic
stress.

We have formulated a robust and efficient 3-D spherical finite-
element model for studies of viscoelastic deformation for Earth with
3-D viscoelastic structure. With this new finite-element model, we
have investigated the effects of laterally varying mantle and litho-
spheric structure on the PGR. In this paper we will present our
numerical formulation and benchmarks. We will focus on the role
of laterally varying lithospheric thickness, while the effects of lat-
eral variations in mantle viscosity will be presented in other papers.
At the current stage, we do not intend to invert for 3-D viscosity
structure with PGR observations. Our general philosophy is to un-
derstand the effects of laterally varying structure on the observables
and to examine to what extent PGR from 3-D mantle structure can
be modelled with 1-D mantle structure.

We organize the paper as follows. First, we define the mathe-
matical models that describe viscoelastic deformation of an Earth
with a fully 3-D structure. Secondly, we describe numerical meth-
ods that are employed to solve the equations of motion. Thirdly, we
demonstrate the accuracy of our numerical methods by comparing
our solutions against semi-analytic solutions. Fourthly, we examine
the effects of lateral variations in lithospheric thickness. The final
section includes a discussion and conclusions.

2 P H Y S I C A L M O D E L S F O R
V I S C O E L A S T I C D E F O R M AT I O N

2.1 Governing equations

We assume an incompressible Earth with self-gravitation. Our mod-
els only include a viscoelastic mantle (Fig. 2a) that overlies an invis-
cid fluid core. The response of a self-gravitating and incompressible
mantle to surface loads can be described by the governing equa-
tions of mass and momentum and the equation for the gravitational
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Figure 2. Finite element grids for a 3-D view (a) and a plan view (b).

perturbation (Wu & Peltier 1982):

ui,i = 0, (1)

σi j, j + ρ0φ,i − ρ1gi − (ρ0gur ),i = 0, (2)

φ,i i = −4πGρ1, (3)

where ui is the displacement, σ i j is the stress tensor, ρ0 and gi are
the unperturbed density and gravitational acceleration with mag-
nitude of g = √

gi gi , ur is the radial component of the displace-
ment, φ is the perturbation of the gravitational potential and G is
the gravitational constant. We use a notation such that A,i repre-
sents the derivative of variable A with respect to xi, and repeated
indices indicate summation over those indices. ρ1 in eqs (2) and (3)
is the Eulerian density perturbation (Wu & Peltier 1982; Tromp &
Mitrovica 1999), and given by ρ1 = −uiρ0,i in an incompressible
medium.

2.2 Boundary conditions

We consider surface loads that produce pressure σ (t , θ , ϕ) on the
surface. The surface loads may depend on time t, colatitude θ and

longitude ϕ (e.g. a model of glaciation history). The boundary con-
ditions on surface traction at the surface and core–mantle boundary
(CMB) are given by

σi j n j = −σ (t, θ, ϕ)ni , for r = rs, (4)

σi j n j = (−ρcφ + urρcg)ni , for r = rb, (5)

where ρc is the core density that we assume to be uniform through-
out the core, and r s and r b are the radii of the surface and CMB,
respectively; ni represents the normal vector of the surface or CMB,
and σ i j is the stress tensor on the mantle side of the boundary. The
boundary condition (5) is derived from the requirement that the nor-
mal stress be continuous across the CMB, and applying the equation
of motion (2) to the core and using the fact that σ i j = −Pδi j in a
fluid. Neither the surface nor CMB supports shear stress. The radial
stress at the CMB results from self-gravitation. With these boundary
conditions, both the surface and CMB can deform dynamically.

The boundary conditions for eq. (3) are given by

φ(r+) = φ(r−), for r = rs and r = rb, (6)

niφ,i (r+) + 4πGρ(r+)ni ui (r ) = niφ,i (r−)

+ 4πGρ(r−)ni ui (r ), for r = rs and r = rb, (7)

where ρ(r+) = 0 at the outer surface.

2.3 Mechanical properties

The rheological equations for an incompressible viscoelastic
medium (i.e. a Maxwell body) can be written in terms of viscous
and elastic deformation,

ε̇v
i j = 1

2η
(σi j + Pδi j ), (8)

εe
i j = 1

2µ
(σi j + Pδi j ), (9)

where µ and η are the shear modulus and viscosity, respectively,
P is the pressure, εv

i j and εe
i j are the strain tensors for viscous and

elastic deformation, δi j is the Kronecker delta; and the dot over εv
i j

denotes the time derivative. We define the total strain tensor as

εi j = εv
i j + εe

i j =
(

∂ui

∂x j
+ ∂u j

∂xi

) /
2. (10)

Adding eq. (8) to the time derivatives of eq. (9) leads to

σi j + η

µ
σ̇i j = −

(
P + η

µ
Ṗ

)
δi j + 2ηε̇i j . (11)

Our models may include fully 3-D structure for the shear modu-
lus µ and viscosity η, but we will consider only layered density
structures in which the density is constant within each layer. In this
study, we will assume a uniform mantle density ρ0 = constant. With
this assumption, the Eulerian density perturbation ρ1 vanishes from
eqs (2) and (3).

3 N U M E R I C A L A N A LY S I S O F
V I S C O E L A S T I C D E F O R M AT I O N

Given that we have previously developed spherical finite-element
models for purely viscous mantle flows (Zhong et al. 2000), our
basic strategy here is to reformulate our viscoelastic problem so
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that it is similar to those encountered in studies of mantle con-
vection. The resulting equations can then be solved with similar
finite-element methods. The key difference between viscous defor-
mation and viscoelastic deformation is that the rheological equa-
tion depends on time for viscoelastic deformation (e.g. eq. 11)
but not for viscous deformation. Other significant differences in-
clude the full coupling between boundary deformation and self-
gravitation (i.e. eqs 3 and 7). As a result of these differences, some
special numerical treatments are required, and we discuss them as
follows.

3.1 An incremental displacement formulation

The equations in Section 2 use total displacements ui and strains εi j .
However, it is more convenient to use a formulation with incremental
displacements and strains, which will be clear after we discretize
the rheological equation in the next subsection. Let un

i and un−1
i

be displacements at times t and t − �t , respectively, where the
superscripts n and n − 1 are for time steps corresponding to times t
and t − �t . An incremental displacement vn

i and incremental strain
�εn

i j may be defined as

vn
i = un

i − un−1
i , (12)

�εn
i j =

(
∂vn

i

∂x j
+ ∂vn

j

∂xi

) /
2. (13)

With incremental displacements, eq. (1) can be expressed as

vi,i = 0, (14)

where the time step index has been dropped, implying that incom-
pressibility is maintained at all times.

3.2 Discretization of the rheological equation

We may discretize the rheological eq. (11) by integrating it over a
time increment �t from t − �t to t with the second-order accurate
trapezoid rule,

σ n
i j = −Pnδi j + 2η

α + �t/2
�εn

i j + α − �t/2

α + �t/2

(
σ n−1

i j + Pn−1δi j

)
,

(15)

where superscripts n and n − 1 indicate the time steps, and α =
η/µ. The total strains are no longer present in eq. (15), which in-
cludes only the incremental strain �εn

i j . The last term in eq. (15) is
associated with stresses from the previous time step, and reflects the
dependence of the deformation on its history. We use the stresses at
time step n − 1 to define the pre-stress

τ
pre
i j = α − �t/2

α + �t/2

(
σ n−1

i j + Pn−1δi j

)
. (16)

Because τ
pre
i j depends on the sum of total stress and pressure, eq. (15)

implies that τ
pre
i j depends only on deviatoric stresses. eq. (16) also

suggests that to adequately account for the effects of the pre-stress
�t cannot be too large. For example, for �t = 2α, the pre-stress
terms are uniformly zero, implying that no pre-stress effects are
considered. With the pre-stress, we may rewrite eq. (15) as

σi j = −Pδi j + 2η̃�εi j + τ
pre
i j , (17)

where we have omitted the time step indices, and η̃ = η/(α+�t/2).
Eq. (17) is identical to rheological equations used for viscous flow
except for the pre-stress term.

3.2.1 Solutions for the perturbed gravitational potential

Because our models assume a constant density within the mantle,
only three sources of mass anomalies contribute to the perturbed
gravitational potential φ. They are associated with surface loads and
topographic variations at the surface and CMB. Let �ρb and �ρs

be the density increases across the CMB and surface, respectively,
ub

lm(t) and us
lm(t) be the time-dependent radial displacements at these

two boundaries, and σ lm(t)/g be the surface mass density associated
with surface loads at spherical harmonic degree l and order m. With
the radial displacements and surface mass density represented in a
spherical harmonic domain, the solution to eq. (3) can be expressed
as

φlm(r, t) = 4πG

2l + 1

{
rb

(rb

r

)l+1
�ρbub

lm(t)

+ rs

(
r

rs

)l [
�ρsu

s
lm(t) + σlm(t)

g

] } (18)

for every l and m.
Note that radial displacements ub

lm(t) and us
lm(t) in eq. (18) are

solutions from eqs (1) and (2) that in turn depend on φ in eq. (18). For
any given time t, we may introduce incremental radial displacements
vb

lm = ub
lm(t) − U b

lm and vs
lm = us

lm(t) − U s
lm, where U s

lm and Ub
lm are

the surface and CMB radial displacements at time t − �t . Eq. (18)
may be rewritten as

φlm(r, t) = 4πG

2l + 1

{
rb

(rb

r

)l+1
�ρb

(
vb

lm + U b
lm

)

+ rs

(
r

rs

)l [
�ρs(v

s
lm + U s

lm) + σlm(t)

g

] }
. (19)

In eq. (19), the unknowns that the potential φlm depends on at time t
are the incremental displacements vs

lm and vb
lm . We recover the poten-

tial φ(r , θ , ϕ, t) in the spatial domain by adding up the contributions
φlm, from all the harmonics. We express φ(r , θ , ϕ, t) as

φ(r, θ, ϕ, t) = �(r, θ, ϕ) + δφ(vrs, vrb), (20)

where �(r , θ , ϕ) represents the potential from radial displacements
at the density interfaces from the previous time step and surface
loads, and δφ(vrs, vrb) is the potential from the unknown incremental
displacements at the current time step.

3.3 Discretization of the momentum equation

We use a primitive variable formulation that solves for the pressure
and incremental displacement. With a vanishing Eulerian density
perturbation, we may rewrite the momentum equation as

(σi j + ρ0φδi j − ρ0gurδi j ), j = 0. (21)

Multiplying eq. (21) by a displacement weighting function wi, inte-
grating over a volume (e.g. the mantle) V that is bounded by surface
S (Hughes 1987), and substituting the rheological eq. (17) into the
integral, lead to∫

V
wi, j [−(P − ρ0φ + ρ0gur )δi j + η̃(vi, j + v j,i )] dV

= −
∫

V
wi, jτ

pre
i j dV +

∫
S
wi (σi j + ρ0φδi j − ρ0gurδi j )n j d S,

(22)

where nj represents the normal vector of surface S. We define an
effective pressure P̃ = P − ρ0φ + ρ0gur and use it, instead of
P, as an unknown variable in our solution. Substituting boundary
conditions (4) and (5) and the perturbed potential (20) into eq. (22),
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Table 1. Model parameters.

Parameter Value

Radius of Earth, r s 6.3700 × 106 m
Radius of CMB, rb 3.5035 × 106 m
Mantle shear modulus, µ 1.4305 × 1011 Pa
Mantle density†, ρ0 5500 kg m−3 (4400 kg m−3 )
Density difference across CMB, �ρb 5425 kg m−3

Gravitational acceleration, g 9.8 m s−2

†Mantle density for the Heaviside loading models is different from
that for the models with ICE-3G loads, and the latter is in
parentheses.

and separating S into Ss and Sb where Ss and Sb represent the surface
and CMB, we have∫

V
wi, j [−P̃δi j + η̃(vi, j + v j,i )] dV +

∫
Ss

wi�ρsgvrδir d S

+
∫

Sb

wi�ρbgvrδir d S

= −
∫

wi, jτ
pre
i j dV +

∫
Ss

wi (ρ0� − �ρsgUrs − σ )δir d S

+
∫

Sb

wi (�ρb� − �ρbgUrb)δir d S +
∫

Ss

wiρ0δφδir d S

+
∫

Sb

wi�ρbδφδir d S, (23)

where Urs and Urb are the radial displacements at the surface and
CMB at the previous time step.

For a given finite-element grid, the momentum and continuity
equations (i.e. eqs 23 and 14) may be written as a system of matrix
equations for P̃ and vi (Hughes 1987). We use brick elements each
with a constant pressure node at its centre and eight nodes at its cor-

Table 2. Amplitude and dispersion errors for cases with heaviside function loading.

Surface CMB

Case Vis† (l, m) �t‡ SG∗ εa (per cent) εd (per cent) εa (per cent) εd (per cent)

A1 I (2,0) 0.2 1 0.07 0.03 0.07 0.04
A2 I (4, 0) 0.2 1 0.14 0.14 0.24 0.29
A3 I (8, 0) 0.2 1 0.59 0.08 1.47 1.15
A4 W (2, 0) 0.2 3 0.21 0.05 0.39 0.06
A5 W (4, 0) 0.2 3 0.29 0.18 0.72 0.46
A6 W (8, 0) 0.2 3 0.41 0.17 0.16 1.46
A7 I (2, 0) 0.2 2 1.12 0.05 1.44 0.07
A8 I (4, 0) 0.2 2 0.52 0.17 0.46 0.29
A9 I (8, 0) 0.2 2 0.85 0.12 1.56 1.18
A10 I (2, 0) 0.2 3 0.21 0.03 0.22 0.05
A11 I (4, 0) 0.2 3 0.12 0.17 0.31 0.29
A12 I (8, 0) 0.2 3 0.63 0.12 1.30 1.15
A13 I (2, 0) 0.1 3 0.08 0.03 0.13 0.05
A14 I (2, 0) 0.4 3 0.50 0.04 0.62 0.06
A15 I (2, 1) 0.2 3 0.18 0.03 0.21 0.04
A16 I (4, 2) 0.2 3 0.11 0.07 0.24 0.06
A17 I (8, 4) 0.2 3 0.61 0.09 1.32 2.33

†Models I and W are for an isoviscous mantle and for a mantle with a weak upper mantle (3 per cent),
respectively. Both types of models have a 100 km thick elastic plate.
‡The time step, �t , for the numerical models is measured with Maxwell time η/µ, where η is the lower mantle
viscosity.
∗Three implementation strategies for including the incremental potential are used. Type 1 uses the full iterative
approach, while in types 2 and 3 the incremental potential is taken from the last time step and interpolated from
the last two time steps, respectively.

ners for displacement (e.g. Moresi & Gurnis 1996), and the same
finite-element grid as in Zhong et al. (2000) for the mantle (Fig. 2).
The second and third integrals on the left-hand side of eq. (23) repre-
sent additional terms to the ordinary stiffness matrix. The first three
integrals on the right-hand side of eq. (23) are known through either
boundary conditions (e.g. surface loads σ ) or calculations from pre-
vious time steps (e.g. �, τ

pre
i j , Urs and Urb). However, the last two

integrals are associated with the incremental potential δφ, which
depends on the unknown incremental displacements, as indicated in
eq. (20). The next subsection discusses the strategy we employ to
overcome this difficulty.

3.4 Matrix equations and their solutions

The matrix equations for P̃ and vi from eqs (14) and (23) can be
written as (Hughes 1987; Moresi & Solomatov 1995)

ATV = 0, (24)

K V + AP = F0 + F(V ), (25)

where K is the stiffness matrix, A is the gradient matrix, the su-
perscript T represents the transpose, V and P are vectors for the
unknowns vi and P̃ , respectively, F0 is the force vector that is de-
rived from the first three integrals of the right-hand side of (23); and
F(V ) is derived from the last two integrals of eq. (23). F(V ) depends
on the incremental potential δφ and is therefore dependent on the
incremental displacement vector V .

For force terms with no dependence on V , matrix eqs (24) and
(25) can be solved with the Uzawa algorithm coupled with multigrid
based methods (e.g. Moresi & Solomatov 1995; Zhong et al. 2000).
For F(V ), we introduce iterative procedures summarized as follows.
For a given time step, (1) make a guess for V = V 0 and compute
F(V 0); (2) solve eqs (24) and (25) with the guessed force terms for
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Figure 3. Time-dependent vertical displacement from semi-analytic solu-
tions (dashed lines) and from the finite-element method (solid lines), for an
isoviscous mantle (a), and for a stratified mantle with a weak upper mantle
(b), in response to single harmonic (l0 = 2, 4 and 8) Heaviside function loads.
Error analyses are presented in Table 2. U norm represents the displacement
normalized by 1/(ρ0g).

Table 3. Comparisons for cases with the ICE-3G.

Case Vis† Grid‡ �t∗ (yr) Time (ka) εrslc
# (per cent) εrate (per cent) εdisp (per cent)

0 5.37 5.69 6.49
B1 U 48 × 48 × 48 200 (100) −10 4.30 3.05 3.21

−28 2.95 2.30 2.52
0 4.38 4.67 6.52

B2 U 48 × 48 × 48 100 (50) −10 3.53 1.95 2.68
−28 2.99 2.34 2.38

0 3.42 3.38 4.95
B3 U 80 × 80 × 40 200 (100) −10 3.32 1.94 2.20

−28 1.30 0.61 0.64
0 1.49 1.74 3.38

B4 U 80 × 80 × 40 200 (25) −10 2.43 0.70 0.85
−28 1.30 0.61 0.64

0 0.68 0.80 1.30
B5 W 80 × 80 × 40 200 (25) −10 2.86 1.44 0.63

−28 1.39 0.69 0.78

†Two types of viscosity structures, U and W. For type U, viscosities in the upper and lower mantles are 1021 Pa s
and 2 × 1021 Pa s, respectively. For type W, viscosities in the upper and lower mantles are 3 × 1020 and 1022 Pa
s, respectively. For both types, a 120 km thick lithosphere is included.
‡Grid for each of the 12 blocks that divide the mantle (Fig. 2a). The last number is the number of elements in the
radial direction, and the vertical resolution is refined in the upper mantle and lithosphere.
∗Time increment during glaciation is larger than that for post-glaciation. The numbers in parentheses are for
post-glaciation.
#Errors are computed globally for RSLC, vertical rate, and vertical displacement for each of three time steps: t =
0 (i.e. present day), t = −10 and −28 ka.

V n and Pn; (3) let V = V n and repeat steps (1) and (2) until V n and
Pn converge. (4) V = V n and P = Pn are the solutions for this time
step.

This iterative method is computationally expensive. An alter-
native approach is to linearize this procedure by simply using V
from the previous time step or by interpolating V from the previous
two time steps. The linearized approach requires full iteration only
for the first one or two time steps.

4 C O M PA R I S O N S W I T H
S E M I - A N A LY T I C S O L U T I O N S

To assess the performance of our numerical algorithm, we use it
to generate solutions for spherically symmetric Earth models, and
compare them with predictions from standard semi-analytic meth-
ods commonly used to address spherically symmetric problems.
Comparisons are presented here for two types of problems. One uses
simple loads (i.e. a single harmonic load with a Heaviside function
loading history), and the other uses the realistic ice loading model
ICE-3G (Tushingham & Peltier 1991).

4.1 Single harmonic loads with heaviside
function loading history

We use unit surface loads

σ (t, θ, ϕ) = H (t)Yl0m0 (θ, ϕ), (26)

where H(t) is the Heaviside function (i.e. H(t) is 1 for t ≥ 0 and 0
for t < 0); Y l0m0 (θ , ϕ) is the spherical harmonic function for degree
l0 and order m0.

The unperturbed density, shear modulus and gravitational ac-
celeration throughout the mantle are each assumed to be uniform
(Table 1). Mantle viscosity is assumed to depend only on radius.
Two viscosity structures are investigated: (1) a 100 km thick plate
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overlying a constant viscosity mantle and (2) a 100 km thick plate
overlying an upper mantle with a viscosity that is 3 per cent of that
for the lower mantle.

For viscoelastic loading problems with such mechanical struc-
tures, semi-analytic solutions can be obtained. Our semi-analytic
solutions are obtained from methods developed in Zhong & Zuber
(2000) and Wahr et al. (2001). The analytic method by Zhong &
Zuber (2000) is based on an Eulerian formulation solved using the
Laplacian transform techniques, while Wahr et al. (2001) use the
classical approach utilizing the correspondence principle. These two
methods produce identical solutions.

For a Heaviside function loading on a viscoelastic medium, the
initial response is purely elastic, and includes displacements at the
surface and CMB and stress in the mantle. Subsequently, the man-
tle stress relaxes through viscous deformation. As the mantle stress
relaxes with time, the surface loads with fixed amplitude (i.e. the
Heaviside function loading) are increasingly supported by the sur-
face and this causes the surface displacement to increase with time.
The CMB displacement in general decreases with time. Eventually
as the mantle stress relaxes completely, the surface must support
the entire load. The time-dependent stress evolution has been well
studied with various semi-analytic methods (e.g. Zhong & Zuber
2000).

Because the Earth is assumed to be spherically symmetric, the ra-
dial displacement at each boundary and over every shell of constant
radius inside the Earth should have the same angular dependence as
the load. This is a fundamental characteristic of the semi-analytic
solutions. Therefore, the two measures we have adopted for assess-
ing the numerical solutions in the case of Y l0m0 (θ , ϕ) forcing are: (1)
whether the l0 and m0 components of the numerical solutions agree
with the same l0 and m0 components predicted by the semi-analytic
method and (2) whether the other spherical harmonic components
in the numerical solution are all close to zero. We have performed
error analyses for our numerical solutions by comparing with semi-
analytic solutions for 17 cases with different mantle viscosity struc-
ture and loading wavelengths, and the results are summarized in
Table 2.

Our finite-element models use 483 elements for each of the 12
caps that dissect the spherical shell for the mantle (Zhong et al.
2000). Our numerical solutions agree with the semi-analytic solu-
tions excellently for models with constant mantle viscosity and for
models with a weak upper mantle, for three different wavelengths
(l0 = 2, m0 = 0; l0 = 4, m0 = 0; l0 = 8, m0 = 0). Fig. 3, for
example, compares the displacement fields from the numerical and
semi-analytic solutions for the same harmonic degree and order used
in the surface load. Table 2, cases A1–A6, summarizes the accuracy
of the numerical solutions by showing the relative amplitude and
dispersion errors. The amplitude error εa measures the deviation
of the finite-element solution from the semi-analytic solution at the
same harmonic of the loading l0 and m0. The dispersion error εd

measures the maximum amplitude of the other harmonics. These
errors are defined as

εa = 1

T

∫ T

0

|Sg(l0, m0, t) − Sn(l0, m0, t)|
|Sg(l0, m0, t)| dt, (27)

εd = max
l,m,t

[ |Sg(l0, m0, t) − Sn(l, m, t)|
|Sg(l0, m0, t)|

]
,

for l �= l0 and m �= m0, (28)

where Sg(l, m, t) and Sn(l, m, t) are the response at the harmonics
l and m from the semi-analytic and finite-element methods, respec-
tively, and T is the time duration for which we compute the errors

and is taken as 20τ 0 for all the cases (τ 0 = η/µ is the Maxwell time
and η here is the lower mantle viscosity).

The focus of these error analyses is to investigate the influence of
the time increment �t and of different treatments of the incremental
gravitational potential, δφ, when solving eqs (24) and (25). With
the iterative approach for δφ, as in cases A1–A3, the errors for
the surface deformation are consistently smaller than 0.6 per cent
(Table 2). However, if δφ is taken directly from the previous time
step without iterations, a method that is computationally much more
economic, the errors are markedly larger, especially at degree 2 for
which self-gravitation is important (cases A7–A9 in Table 2). A
good compromise is to take the interpolated δφ based on those
from the previous two time steps as the current δφ in eq. (23). This
interpolation method produces significantly better results without
significantly increasing the computational cost (Table 2 for cases
A10–A12).

For cases with the time increment �t as large as 0.4τ 0 (cases A10,
A13 and A14 in Table 2), the errors are consistently small. However,
it seems that the effects of �t depend on loading functions, as we
will see in the next section. We have also computed cases with a
longitudinal dependence (i.e. m �= 0). The errors are consistent with
the corresponding cases with m = 0 (compare cases A7–A9 with
cases A15–A17 in Table 2). The errors for CMB displacement are
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Figure 4. Present-day RSLC (a) and surface displacement (b) from case
B4. The dashed contours are for negative values.
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generally similar to those for surface displacement except for degree
8 loading (Table 2). The errors for degree 8 loading are primarily
controlled by grid size.

4.2 ICE-3G loading model

We now compare the predicted vertical displacement (i.e. the dis-
placement with respect to that at the beginning of the loading) and
the vertical displacement rate at the surface, as well as the relative
sea level change (i.e. RLSC), in response to the ICE-3G loading
from our numerical models, with those predicted using a Green’s
function method (Wahr et al. 2001). Error analyses are performed
for five cases with different mantle viscosity structure and temporal
and spatial resolutions. The results are given in Table 3.

The ICE-3G model describes the temporal and spatial distribution
of ice on the Earth’s surface during the last 18 ka (Tushingham &
Peltier 1991). We add a 90 ka, linearly increasing glaciation phase,
to grow the ice sheets to their ICE-3G starting values. We expand
the ice distribution as a sum of spherical harmonic components at
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Figure 5. Responses from the finite-element method (solid lines) and the semi-analytic solutions (dashed lines) for case B4 along two profiles at two different
times. Profiles along 270◦ longitude for the present day (a), 55◦ northern latitude for the present day (b), 270◦ longitude for t = −10 ka (c), and 55◦ northern
latitude for t = −10 ka (d). In each of Figs 5(a)–(d), RSLC, vertical rate, and vertical displacement are shown in the top, middle and bottom panels, respectively.
The results agree so well that the lines cannot be easily distinguished in most cases.

every time step, and use all terms with angular degree l ≤ 100 (Wahr
et al. 2001).

The RLSC is defined as the difference between the rate of change
of the geoid and the rate of surface deformation (e.g. Peltier 1998).
Although we consider the first 100 angular degrees for the ice loads,
we only compute the geoid (or gravitational potential) up to degree
and order 20 in the numerical models. Because the potential is com-
puted in the spectral domain (see eq. 19) and because there are 2l +
1 spherical harmonic coefficients for every l, the computational cost
for the potential increases rapidly with the number of harmonics.
The Green’s function solutions for the potential, however, include
all spherical harmonics up to l = 100.

Among the five cases in this section, cases B1–B4 include a
120 km thick elastic plate, an upper mantle with a viscosity of 1021

Pa s, and a lower mantle with a viscosity of 2 × 1021 Pa s. This vis-
cosity structure was originally used by Tushingham & Peltier (1991)
for the ICE-3G. In case B5, the viscosity contrast between the upper
and lower mantle is larger (Table 3). The mantle density and shear
modulus are 4400 kg m−3 and 1.4305 × 1011 Pa (Table 1). The
incremental potential is computed using the interpolation method.
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Cases with different temporal and spatial resolutions are computed
to investigate their effects on the accuracy of our numerical models.
Here we compute the global errors for vertical displacement, ver-
tical displacement rate and RSLC at a given time t0. For example,
the error for RSLC is

εrslc =
√∫

A [Sg(θ, ϕ, t0) − Sn(θ, ϕ, t0)]2 d A∫
A [Sg(θ, ϕ, t0)]2 d A

, (29)

where Sg(θ , ϕ, t0) and Sn(θ , ϕ, t0) are the solutions from the Green’s
function and finite-element methods, respectively, and the integra-
tion is over the entire surface.

The RSLC, vertical rate and vertical displacement predicted from
both the finite-element models and the Green’s function methods
show that the present-day RSLC is ∼10 mm yr−1 (in our notation, a
positive RSLC is for a falling sea level, which makes the comparison
with vertical rates easier) for North America and Fennoscandia and
∼20 mm yr−1 for the Antarctic (Fig. 4a). The predicted present-day
vertical displacement for North America and Antarctica are ∼50
and 100 m, respectively (Fig. 4b). Finite-element solutions generally
agree with the Green’s function solutions (Table 3). For case B1 with
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Figure 6. Time-dependent RSLC from the finite-element method (solid lines) and semi-analytic solutions (dashed lines) for the last 60 ka at six different sites
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a horizontal resolution of ∼135 km, a vertical resolution of ∼70 km
(the grid is refined in the upper mantle and lithosphere), and �t
of 200 and 100 yr for the glaciation (i.e. the first 90 ka) and post-
glaciation periods, respectively, the numerical errors are ∼5–6 per
cent for present-day RSLC, vertical rate and displacement, and are
slightly smaller (∼3 per cent) for 10 and 28 ka ago (Table 3). Note
that 28 ka ago is in the glaciation period where we assumed a simple
linear loading time function and that the errors tend to be smaller
during this period.

Case B2 uses the same spatial resolution but a doubled tempo-
ral resolution, compared with case B1 (Table 3). The errors remain
about the same in the glaciation period (i.e. at t = −28 ka) but
are reduced in the post-glaciation period (at t = −10 and 0 ka)
(Table 3). This suggests that increasing temporal resolution is only
important for the post-glacial period during which the rather rapid
changes in ice distribution in the ICE-3G require high temporal
resolution. Case B3 with the same temporal resolution but higher
spatial resolution in comparison with case B1 shows that spatial
resolution is important for reducing the errors during the glaciation
period (Table 3). The errors for the vertical rate and the displace-
ment at t = −28 ka are reduced to ∼0.6 per cent for case B3 from
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∼2.3 per cent in case B1 (Table 3). For case B3, the error for RSLC at
t = −28 ka is about twice of that for the vertical rate (Table 3). This
arises mainly because we only use the first 20 spherical harmonics
in the calculation of the gravitational potential. When there is still
ice present (i.e. until 5 ka ago in ICE-3G), the contribution to the
RSLC from the relatively short-wavelength (>degree 20) potential
of the ice distribution may not be accurately described in our finite-
element calculation. Although this effect exists for all the cases in
Table 3, our numerical experiments show that the predicted RSLC
is sufficiently accurate. For case B3, the errors for t = 0 and −10
ka are also reduced compared with case B1, but not as dramatically
as for t = −28 ka.

In case B4, time increments are 200 and 25 yr for the glaciation
and post-glaciation periods, respectively, and the spatial resolution
is the same as in case B3 (Table 3). Now we also observe significant
reduction of errors for the post-glaciation period (e.g. the present-
day RSLC error is 1.49 per cent) (Table 3). However, the error for
the present-day total displacement is still ∼3.4 per cent (Table 3). In
Fig. 5, we present the RSLC, vertical rate and displacement for the
present day and 10 ka ago along two profiles (270◦ longitude passing
through North America and Antarctica and 55◦ northern latitude
passing through North America). In Figs 6(a) and (b) we show the
time-dependent RSLC in the last 60 ka for six different sites in North
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Figure 7. RSLC for North America and Fennoscandia from case C1 with variable lithospheric thickness at t = 0 (a) and t = −10 ka (b) and a case with
uniform 105 km thick lithosphere at t = 0 (c) and t = −10 ka (d). Dashed contours are for negative values.

America (Churchill, Ungava and Boston) and Fennoscandia and its
surrounding region (Helsinki, Stockholm and Arnprior of Scotland)
from both finite-element (solid lines in these figures) and Green’s
function (dashed lines) methods (coordinates for these sites are given
in the caption for Fig. 6). Our finite-element method reproduces
the Green’s function solutions almost exactly except for Arnprior of
Scotland where the finite-element method underestimates the RSLC
around t = −12 ka (Fig. 6b).

We have also computed a case with a much weaker upper mantle
(case B5 with 3 × 1020 and 1022 Pa s viscosity for the upper mantle
and lower mantle, respectively). The difference in mantle viscosity
is the only difference between cases B5 and B4. The errors for
this case with larger variations in mantle viscosity are similarly
small (Table 3 and Figs 6c and d). That the errors for cases B4 and
B5 are small indicates that we can use our finite-element model
to examine the effects of laterally varying structures, including the
variable lithospheric thickness considered in the next section.

5 E F F E C T S O F VA R I A B L E
L I T H O S P H E R I C T H I C K N E S S

We now apply our finite-element model to study the effects of lat-
erally varying structure on the PGR. The focus in this paper is
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on the effects of variable lithospheric thickness (Fig. 1), while the
influence of laterally varying mantle viscosity will be discussed in
future papers. Our goal is to examine to what extent the response
of an Earth with a lithosphere of laterally varying thickness can be
modelled by assuming a lithosphere of constant thickness.

5.1 Distribution of lithospheric thickness

The lithospheric thickness in Fig. 1 is derived from a compilation
of elastic plate thicknesses from Watts (2001). For oceanic regions,
the elastic thickness as constrained from observed topography and
gravity at seamounts is controlled by the ∼500◦ C geotherm (Watts
et al. 1980). Since younger seafloor leads to shallower depth for 500
◦C, younger seafloor tends to have smaller elastic thickness. How-
ever, a more reasonable mechanical model for the oceanic mantle
employs a viscoelastic rheology that indicates that on a timescale of
∼100 ka the apparent elastic thickness should be significantly larger
than that derived from the long-term seamount loads (e.g. Watts &
Zhong 2000). For this reason, we use the 750 ◦C geotherm to define
the oceanic lithospheric thickness for our PGR calculations. With
lithospheric thermal structure determined from a half-space cooling
for a given seafloor age, the oceanic lithospheric thickness may vary
from a few kilometres at spreading centres to ∼80 km at old ocean
basins (e.g. in the western Pacific).

Lithospheric thickness variations on continents are more com-
plicated because of their complicated tectonic history. In general,
old continental cratons and shields have considerably larger elastic
thickness (e.g. >100 km for the eastern US and Canadian shields)
than young tectonically active areas (e.g. ∼10 km for the western
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US), as constrained by studies of long-term loads (e.g. Bechtel et al.
1990; Zuber et al. 1989; Simons et al. 2000). The distribution of
continental elastic thickness is generally consistent with observa-
tions of heat flux (Jaupart et al. 1998) and the upper-mantle seismic
structure (e.g. Grand 1994; Ritzwoller & Lavely 1995; van der Lee
& Nolet 1997). For our PGR studies, to consider possible relax-
ation effects we take the continental lithospheric thickness to be 1.6
times that of the elastic thickness estimated from loading studies
and from heat flux observations. Admittedly, there are some uncer-
tainties with our lithospheric thickness model in Fig. 1, particularly
for continental regions. However, we think that its general pattern
is robust.

There are significant lateral variations in lithospheric thickness in
the regions surrounding the locations of the major ice sheets includ-
ing in North America and Fennoscandia. The North American ice
sheets existed in a region where the lithospheric thickness is as large
as 200 km, but the surrounding regions, including the western US
and the northwest Atlantic Ocean, have a much thinner lithosphere
(Fig. 1). The Fennoscandian ice sheets were located where there
is a significant increase in lithospheric thickness toward the east
(Fig. 1). We have computed averaged lithospheric thickness in these
formerly glaciated regions. The averaging is done over regions with
different radii from the centres of the ice sheets. For North Amer-
ica, the averaged lithospheric thicknesses over 15◦, 30◦ and 45◦ radii
from the Hudson Bay with latitude N59◦ and longitude E271◦ are
140, 105 and 83 km, respectively. For Fennoscandia, the averaged
lithospheric thicknesses over 9.5◦, 19◦ and 28.5◦ radii from latitude
N63◦ and longitude E21.5◦ are 70, 73 and 74 km, respectively. For
comparison, the globally averaged lithospheric thickness is 56 km.
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5.2 Calculations with variable lithospheric thickness

We now examine the effects of laterally varying lithospheric thick-
ness on the PGR observations of RSLC. We first present case C1 that
includes the lithospheric structure in Fig. 1 and the same viscosity
structure as in case B4 (i.e. viscosities in the upper mantle and lower
mantle are 1021 and 2 × 1021 Pa s, respectively; see Table 3). Case
C1 uses the same spatial and temporal resolutions as those in case
B4 that have been demonstrated to adequately resolve the solutions
in the spherically symmetric case. For comparison, we also compute
results for spherically symmetric cases that have the same mantle
viscosity profiles as case B4, but have different uniform lithospheric
thicknesses ranging from 45 to 200 km.

Fig. 7 shows the predicted RSLC for North America and
Fennoscandia at t = 0 and −10 ka for case C1, and for a case
with a uniform 105 km thick lithosphere. The RSLC at t = −10
ka from these two cases is broadly similar (Figs 7b and d), but for
the present-day RSLC case C1 generally predicts larger spatial vari-
ability (Figs 7a and c). More specifically, case C1 predicts larger
rates of present-day sea level rise in Davis Strait, Baffin Bay, the
Atlantic coasts north of N60◦, and western Canada, and larger rates
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of sea level fall in Fennoscandia and Greenland, than the case with
a uniform 105 km thick lithosphere. Since 105 km is the averaged
thickness within 15◦ (∼1670 km) of the centre of Hudson Bay (see
Section 5.1), this uniform lithospheric thickness case may be rele-
vant only for North America. It is therefore important to examine
predictions from cases with other uniform lithospheric thicknesses.

The RSLC for t = 0 and −10 ka from case C1 and cases with
different uniform lithospheric thicknesses along profiles N60◦ for
North America, N65◦ for Fennoscandia and N75◦ for Greenland
show that the RSLC may be sensitive only to the local lithospheric
thickness (Fig. 8). At t = −10 ka, while models with different litho-
spheric structure produce rather similar RSLC (middle panels in
Fig. 8), noticeable differences occur among these models at 275◦

longitude on the North American profile and 32◦ longitude on the
Fennoscandian profile. At these locations, lithospheric thicknesses
are greater than 100 km (bottom panels in Fig. 8), and the uniform
thickness cases with small lithospheric thickness show larger devi-
ations from case C1 than do cases where the uniform lithospheric
thickness is similar to the large values at those locations in case C1.

That the local lithospheric thickness has significant controls on
RSLC can be seen more clearly from the present-day RSLC, where
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the differences between different models are relatively large (top
panels in Fig. 8). For example, in the North American profile
(Fig. 8a), while all the uniform lithospheric thickness cases except
the 55 km case reproduce the results from case C1 well at the centre
of the formerly glaciated region (at ∼270◦ longitude), cases with
large uniform lithospheric thickness (e.g. 140 and 105 km) fail to re-
produce case C1 on either side of the ice centre at 300◦ longitude (i.e.
Davis Strait) and 225◦ longitude (i.e. western Canada). However, in
Davis Strait and western Canada, the results obtained assuming rela-
tively small uniform lithospheric thicknesses (e.g. 55 km) agree well
with case C1. In Davis Strait and western Canada lithospheric thick-
nesses are ∼50 km, significantly smaller than that at the ice centre
(Fig. 1 and bottom panel of Fig. 8a). The relatively thin lithosphere
allows deformation at short wavelengths that may be impossible for
thicker lithospheres. For the Fennoscandian profile, the lithosphere
thickens from west to east, and cases with thick (thin) lithosphere
(e.g. 105 km) agree with case C1 well on the eastern (western)
portion of the profile (Fig. 8b). Similar results can be seen for the
Greenland profile (Fig. 8c).

To examine the full time dependence, we compute the RSLC his-
tory at eight different sites in North America (Churchill, Ungava,
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Figure 10. Relative difference of the RSLC at eight different sites over the last 20 ka, between case C1 and cases with different uniform lithospheric thicknesses
(a), and the optimal (circles) and actual (diamonds) lithospheric thickness at each site (b). The shaded bar in (b) indicates the range of lithospheric thicknesses
that leads to relative differences within 1 per cent of the minimum relative difference. Parts (c) and (d) are the same as (a) and (b) but for case C2.

St Georges Bay and Boston) and Fennoscandia and its surrounding
regions (Helsinki, Stockholm, Edgeoya and Arnprior). For the four
North American sites, the RSLC does not show a significant de-
pendence on the lithospheric thickness (Fig. 9a). However, different
lithospheric structure results in a significant difference at Helsinki,
Edgeoya and Arnprior (Fig. 9b). For these three sites, case C1 with
laterally varying lithospheric thickness is best reproduced by uni-
form lithospheric thickness cases in which the thickness is similar to
the local lithospheric thickness in case C1. For example, at Helsinki
where the lithospheric thickness is 76 km according to Fig. 1, the
RSLC from case C1 is well reproduced by the case with uniform
lithospheric thickness of 75 km. Models with a thinner (thicker)
lithosphere may underestimate (overestimate) the RSLC.

To further examine the dependence of the RSLC on lithospheric
thickness, we compute the relative difference in the RSLC over the
last 20 ka at those eight different sites between case C1 and cases
with uniform lithospheric thickness ranging from 45 to 200 km.
The relative differences at Churchill and Ungava are <10 per cent
for all the lithospheric thicknesses (Fig. 10a), However, at Arnprior,
Edgeoya and Helsinki, the relative differences show larger varia-
tions with the lithospheric thickness (Fig. 10a). This indicates that

C© 2003 RAS, GJI, 155, 679–695



692 S. Zhong, A. Paulson and J. Wahr

-10

0

10

m
m

 y
r−1

t=0

0

40

80

m
m

 y
r−1

t=-10 ka

0

100

200

km

200 240 280 320

Longitude

t=0

t=-10 ka

0 20 40

Longitude

t=0

t=-10 ka

0
220 260 300 340

Longitude

Churchill Ungava

(a) Along N60o latitude (c) Along N75o latitude(b) Along N65o latitude

140 
105 
85 
55 

3D 

Te Te Te

105 

70 
55 

3D 

75 
70 

105 
85 

55 

3D 

Figure 11. Same as Fig. 8 but for case C2, and for uniform lithospheric thickness cases where the mantle viscosity is same as that in case C2.

the RSLC shows different sensitivity to the lithospheric thickness,
depending on the sites. In general, sites at the centre of a large ice
sheet (e.g. North American) are less sensitive to the lithospheric
thickness than sites at the periphery bulge or near a small ice sheet.

We may determine an optimal lithospheric thickness at each site
from the minimum relative difference. Fig. 10(b) shows these op-
timal thicknesses (circles) along with the actual lithospheric thick-
nesses (diamonds) at each site. The optimal and actual lithospheric
thicknesses are generally similar except at Churchill, Ungava and
Boston (Fig. 10b). Since the RSLC at some sites is relatively insensi-
tive to lithospheric thickness, a large range of lithospheric thickness
may lead to similarly small relative differences (e.g. for Churchill
in Fig. 10a). For this reason, we also show in Fig. 10(b) the range of
lithospheric thickness (shaded bars) that yields relative differences
within 1 per cent of the minimum relative differences. At Churchill
and Ungava the actual lithospheric thickness falls in this range, but
at Boston and Arnprior the actual lithospheric thickness is outside
of this range by ∼10 km (Fig. 10b). These anomalies at Boston and
Arnprior may be related to the fact that these two sites are both close
to the peripheral bulges of the rebound patterns. However, we also
recognize that these anomalies may be related to our rather arbitrary
choice of designating 1 per cent of the minimum relative difference
to determine the range of lithospheric thickness. In general, though,
these results do tend to confirm the influence of local lithospheric
thickness on the RSLC.

We now present results for a case (case C2) that differs from
case C1 only in the viscosity structure of the mantle (3 × 1020 and
1022 Pa s for the upper and lower mantle, respectively). For this vis-
cosity structure, we also compute cases with different uniform litho-
spheric thicknesses, to compare with the variable thickness case.
Now the differences in the predicted RSLC among cases with dif-

ferent lithospheric structure are much more significant at t = −10 ka
than that for the present day (Fig. 11). In general, when a significant
difference occurs at a certain location among different cases, it is
always the uniform lithospheric thickness case where the thickness
is similar to the local lithospheric thickness that best reproduces the
RSLC from case C2. This is consistent with the results from the
case C1 viscosity profile (e.g. Fig. 8). For example, for the North
American profile at t = −10 ka, significant differences can be seen
at longitudes 228◦, 248◦ and 275◦ (Fig. 11a). At longitude 228◦,
the lithospheric thickness is <50 km and the case with a uniform
lithospheric thickness of 55 km best reproduces case C2. At longi-
tudes 248◦ and 275◦ where lithospheric thicknesses are ∼100 km or
larger, the cases with 105 and 140 km uniform lithospheric thick-
ness reproduce case C2 well. Similar trends can be seen along the
Fennoscandian and Greenland profiles (Figs 11b and c).

The time-dependent RSLC at individual sites from case C2 and
other uniform lithospheric thickness cases confirms the effects of
local lithospheric thickness. At Churchill and Ungava, the RSLC
is not very sensitive to lithospheric structure. At St Georges Bay
and Boston, significant differences occur around t = −10 ka among
the different cases. However, cases with uniform lithospheric thick-
ness that are similar to the local thickness reproduce case C2 well
(Fig. 12a). For Helsinki, Edgeoya and Arnprior, the RSLC is very
sensitive to the lithospheric thickness around t = −10 ka. Again, the
local lithospheric thickness controls the RSLC (Fig. 12b). We have
also computed the relative difference in the RSLC at these eight sites
between case C2 and various uniform lithospheric thickness cases
(Fig. 10c). At each site, the actual lithospheric thickness falls within
or close to the range of lithospheric thicknesses (Fig. 10d) where
there is a good agreement between the uniform thickness models
and case C2.
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6 C O N C L U S I O N S A N D D I S C U S S I O N S

We have developed a 3-D spherical finite-element model for the
Earth’s viscoelastic deformation in response to surface loads. Our
model includes self-gravitation effects. The mantle in our model is
assumed to be incompressible but it can have a fully 3-D viscosity
structure. Benchmarks against Green’s function solutions for load-
ing problems with 1-D mantle structure demonstrate the accuracy
of our finite-element model in predicting the time-dependent sur-
face deformation rate, displacement and relative sea level changes
(RSLC). Coupled with efficient parallel computing, we believe that
the finite-element model that we present here can be used to address
a variety of viscoelastic deformation in geodynamics.

We have applied our finite-element model, forced with the ICE-
3G deglaciation model of Tushingham & Peltier (1991), to study the
effects of laterally varying lithospheric thickness on observations
(e.g. surface deformation rates and RSLC) of post-glacial rebound.
The laterally varying lithospheric thicknesses are derived from es-
timates of the thermal structure of oceanic lithosphere and from
elastic thicknesses on continents as estimated from studies of long-
term geological loads (e.g. mountains and sediments) (Watts 2001).
Our calculations show that the effects of lithospheric structure on
the RSLC depend on the locations of the observation sites and on the

size of ice sheets. The RSLC near the centre of the North American
ice sheet is much less sensitive to lithospheric thickness than the
RSLC at the centre of the Fennoscandian ice sheet, consistent with
a previous suggestion (e.g. Tushingham & Peltier 1991). Outside
the loads and at the peripheral bulges the RSLC tends to be more
sensitive to lithospheric thickness. Our results show that the RSLC
is mainly controlled by local lithospheric thickness. The RSLC at
a given location, as predicted using models with laterally varying
lithospheric thickness, can be reproduced using a 1-D model with a
uniform lithospheric thickness equal to the local lithospheric thick-
ness. This conclusion is generally consistent with that from 2-D
model calculations by Kaufmann et al. (1997).

Our results have implications for PGR studies, especially for those
on a global scale. Because models with 3-D structures are computa-
tionally significantly more expensive than those with 1-D structures,
our results may provide useful guidance in improving the 1-D mod-
els. As we have demonstrated, for a given 1-D mantle viscosity struc-
ture and ice model the RSLC predicted for an Earth with laterally
varying lithospheric thickness can be best modelled using the litho-
spheric thickness at each local site. PGR studies often use a single
lithospheric thickness that best characterizes formerly glaciated re-
gions to model the RSLC or other PGR observations at any location,
in both regional (e.g. Nakada & Lambeck 1989) and global models

C© 2003 RAS, GJI, 155, 679–695



694 S. Zhong, A. Paulson and J. Wahr

(e.g. Peltier 1998). Our results indicate that although this approach
should work well for the RSLC near the centre of formerly glaciated
regions, it may not be adequate outside of formerly glaciated regions
if these regions have a significantly different lithospheric thickness
from that at the centres of ice sheets as they often do (e.g. along the
edges of the North American continent). Our results suggest that it is
more appropriate to compute uniform lithospheric thickness models
with a range of lithospheric thicknesses and to use the PGR signals
predicted from the model with a thickness that is similar to that at
each observation site. For ice sheets with a large horizontal extent
(e.g. in North America), because the PGR signals near the centres
of ice sheets are relatively insensitive to lithospheric thickness, we
may use the characteristic lithospheric thickness for observational
sites outside the ice sheets, instead of that for the formerly glaciated
regions, in models with 1-D structures.

We believe that this study represents an important step towards
understanding the effects of laterally varying structure on the PGR
signals. With parallel computing technology and advanced numeri-
cal techniques, the computational tools that we present here enable
us to simulate the PGR signals at high resolutions for an Earth with
3-D structures in response to realistic ice models. In future studies,
we will focus on the effects of laterally varying viscosity on the PGR
signals, and we will also include the compressibility.
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