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[1] Two hypotheses compete to explain the remarkable topography and geoid of the
Tharsis province on Mars: One attributes Tharsis to volcanically constructed surface loads,
whereas the second views it as dynamic effects of single-plume mantle convection. Both
are likely to contribute, so we would like to constrain both. We introduce a method to
invert load structure from geoid and topography of a viscoelastic planetary body. Estimates
of the internal load contribution to Tharsis depend on assumed parameters. Buoyancy of the
internal load estimate increases with increasing lithospheric thickness, crustal density,
and crustal thickness, and load size increases with depth of loading. Despite parameter
uncertainties, we can rule out a predominantly internal load. We cannot reject the
possibility that Tharsis results from surface loading alone. Internal loads contribute at most
35% of the lithospheric force balance, 50% of the topography, and 25% of the geoid at
Tharsis, for load depths �420 km and lithospheric thickness Te � 200 km. A corollary is
that any Te and reference density structure can exactly reproduce the geoid and topography
if internal loading can vary as a function of harmonic degree and order. Hence Te and
density estimates depend on assumptions about internal loading. If surface and internal
loads are approximately uncorrelated, Te is �110 km with crustal density �2600 kg m�3.
Adopting these parameters, internal buoyancy contributes 2.1% of lithospheric loading,
4.2% of topography, and 0.7% of the geoid at Tharsis for a 200 km deep load, or 4.3% of
lithospheric loading, 8.5% of topography, and 2.2% of the geoid for a load at 400 km
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1. Introduction

[2] The Tharsis rise is easily the dominant feature in the
Martian geoid (or areoid), and among topographic features,
Tharsis is rivaled only by the extreme topographic contrast
between northern lowlands and southern highlands [Smith et
al., 1999a, 1999b]. Tharsis occupies about one fifth of the
Martian surface area, with an average elevation of more than
five km (Figure 1). Several of the highest volcanoes in the
solar system are within the Tharsis province, including
Olympus Mons at >21 km summit elevation. The entire
region is surfaced by shield volcanoes, basaltic lava flows
and ignimbrite deposits with ages spanning Noachian to
Amazonian time—effectively, the last 4 Gyr of Martian
history [Tanaka et al., 1992]. Extensional grabens radiate
from the Tharsis rise and from magmatic centers therein, and
contractional wrinkle ridges form concentric patterns around
the rise [Tanaka et al., 1991]. The density and timing of these
features suggests that the associated lithospheric loading
processes peaked in Noachian and generally decreased
through time to theAmazonian epoch [Anderson et al., 2001].

[3] The extensive, long-term stationary volcanic activity
on Tharsis has prompted two end-member hypotheses for
the origins of Tharsis topographic and areoid anomalies.
The first hypothesis proposes that the Tharsis rise formed by
processes of volcanic construction and shallow magmatic
intrusion, and that the areoid and topographic expression
reflect the response of an elastic lithosphere to a voluminous
volcanogenic load [Willemann and Turcotte, 1982; Solomon
and Head, 1982]. Investigators have cited several observa-
tions supporting a predominantly surficial Tharsis in addi-
tion to the topography and areoid. For example, most
Noachian-aged tectonic structures are well-explained by
strain of an elastic lithosphere in response to a Tharsis
surface load [Willemann and Turcotte, 1982; Banerdt and
Golombek, 2000]. Phillips et al. [2001] also relate the
distribution of Martian valley networks to fluvial processes
responding in part to surface loading of Tharsis.
[4] The surface loading hypothesis assumes that the

contribution from internal mass variations is negligible.
However, one would expect significant internal mass var-
iations given the thermal and chemical processes implicit
for such a large stationary magmagenic system. Conse-
quently, a second hypothesis attributes the Tharsis topogra-
phy and areoid to thermal buoyancy of a stationary plume in
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the mantle beneath Tharsis [Carr, 1974; Kiefer et al., 1996;
Harder and Christensen, 1996; Harder, 2000] and/or chem-
ical buoyancy of the basalt-depleted residuum [Sleep and
Phillips, 1979]. Similar to the surface loading hypothesis,
distributions of tectonic structures have been cited in
support of buoyant internal loading [Carr, 1974; Harder
and Christensen, 1996; Mege and Masson, 1996]. Convec-
tive models of Martian evolution suggest that a single plume
is a natural organizational state given the Martian thermal
and phase structure, and continuing volcanism within the
Tharsis province [Hartmann et al., 1999] supports the
convective modeling conclusion that plume-generated ther-
mal and/or chemical buoyancy is still present today [Harder
and Christensen, 1996; Breuer et al., 1998; Harder, 2000].
[5] Most investigations have examined one hypothesis of

Tharsis formation or the other, but it is quite reasonable to
expect that both surface and internal loading processes
contribute. Synthesis of Tharsis loading studies is compli-
cated by differences in the modeling approaches used to
study surface loading and mantle convection: Studies of
surface loading generally assume an elastic plate over an
inviscid fluid, thus ignoring contributions from the viscous
mantle, whereas mantle flow models typically assume a
viscous lithosphere or ignore the lithosphere altogether.
Zhong [2002] introduced a generalized viscoelastic loading
model capable of simulating both instantaneous viscous

flow and elastic lithospheric responses to surface and
internal loads. Using that model, Zhong [2002] demon-
strated that the areoid expression of plume buoyancy
filtered by an elastic lithosphere is significantly smaller
than that predicted by purely viscous modeling, implying
that surface loading processes must play an important role at
Tharsis. Zhong and Roberts [2003] extended the analysis to
assess possible contributions of a convective thermal plume
to the observed areoid and topography at spherical harmonic
degrees l = 2–3.
[6] Understanding the genesis of Tharsis topography and

areoid is key to interpreting the tectonic, volcanic and
thermal evolution of Mars [Solomon and Head, 1982],
and will factor into understanding the evolution of the
atmosphere, hydrosphere and surface morphology as well
[Phillips et al., 2001]. The distribution of Tharsis mass
remains the largest source of uncertainty in estimates of
Martian moment of inertia [Bills and James, 1999] and
consequently in radii of the core-mantle and crust-mantle
boundaries [Sohl and Spohn, 1997]. As a first step toward
addressing these issues, we introduce a method for inverting
the load structure from geoid and topography of a visco-
elastic planetary body. We apply the method to spherical
harmonic coefficients up to degree and order 60 of the Mars
Global Surveyor/Orbital Laser Altimeter (MGS/MOLA)
areoid and topography fields [Smith et al., 1999a, 1999b].

Figure 1. Topographic expression of the Tharsis rise in shaded relief (2500 m contour interval). The
thick dotted line delimits the region of mass averaging used to assess lithospheric loading of Tharsis.

3 - 2 LOWRY AND ZHONG: LOADING OF THARSIS



The load calculation retains all of the information content
(i.e., signs and amplitudes of each individual coefficient) in
the estimates of loading, and consequently we are able to
examine the loading effects localized to the Tharsis prov-
ince. We examine relative contributions of surface and
internal loading to the Tharsis areoid and topography, and
we also explore the range of possible solutions given
uncertainties in assumed parameters of Martian density
structure and lithospheric thickness.

2. Inverse Modeling of Planetary Loading

[7] In this section, we develop a methodology for sepa-
rating the effects of surface loading and internal mass
anomalies in the areoid and Martian topography. The method
significantly extends an inverse approach previously applied
to the Cordilleran region of the western United States [Lowry
et al., 2000]. We separate the Martian mass structure into
three contributions: surface topographic loads hS, internal
mass anomalies x which also act as loads, and deflection of
the lithosphere w in response to those loads. The three fields
hS, w and x are calculated from equations describing flexural
isostatic response and the areoid. Notation for the develop-
ment that follows is provided in Table 1.

2.1. Generalized Thin-Plate Flexure

[8] Following Turcotte et al. [1981], we assume a thin
spherical elastic shell with outer (planetary) radius Rp and
thickness Te. However, we generalize the Turcotte et al.
[1981] formulation slightly to include the effects of internal
loading, and we assume the lithosphere surrounds a viscous
(rather than inviscid) fluid. The flexural displacement
w (positive upward) in response to an applied vertical stress
p (positive downward) is governed by [Turcotte et al., 1981;
Willemann and Turcotte, 1982]

Dr6 þ 4D r4 þr2
� �

þ ETeR
2
p r2 þ 2
� �h i

w

¼ �R4
p r2 þ 1� n
� �

p; ð1Þ

in which D = ETe
3/[12(1 � n2)] is flexural rigidity, E is

Young’s modulus, and n Poisson’s ratio.
[9] The final topography h, flexure w and areoid N result

from a combination of surface topographic loading with
thickness hS = h � w and a mass anomaly at the radius of
internal loading RI which has mass per unit area x. Coupling
between deep internal loads and the elastic lithosphere
attenuates with depth below the lithosphere according to
the response kernel a(RI) for surface deformation relative to
the areoid. The response kernel, examples of which are
shown in Figure 2, is calculated assuming an incompress-
ible flow approximation of a spherically-symmetric, viscous
planetary body [Hager and Richards, 1989]. Then the thin
plate approximation to the vertical load stress is given by

p ¼ g r0h
S þ ax� r1N þ r1w

� �
: ð2Þ

Here, the crust has constant density r0 and the mantle r1,
and g is gravitational acceleration. Turcotte et al. [1981]
define the dimensionless parameters

t 	 ETe

R2
pg r1 � r0ð Þ ; ð3Þ

describing the shell’s resistance to deflection due to
membrane stress, and

s 	 D

R4
pg r1 � r0ð Þ ; ð4Þ

describing the bending stress resistance. For convenience of
notation, we define t0 and s0 to be the parameters (3) and
(4), respectively, multiplied by r1 � r0. Then equations (1)
and (2) become

s0 r6 þ 4r4 þ 4r2
� �

þ t0 r2 þ 2
� �� �

w

¼ � r2 þ 1� n
� �

r0h
S þ ax� r1 N � wð Þ

� �
: ð5Þ

We express the spatially varying fields in equation (5) in the
spherical harmonic domain where, for example,

h q;fð Þ

w q;fð Þ

N q;fð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

¼

P
i;l;m hilmYilm q;fð Þ

P
i;l;m wilmYilm q;fð Þ

P
i;l;m NilmYilm q;fð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

ð6Þ

Table 1. Notation Used in This Paper

Symbol Description

a surface deformation response kernel
Bl

2 areoid uncertainty degree variance
C load amplification test criterion
D elastic shell flexural rigidity
E Young’s modulus
F I resolved force of internal loading
F S resolved force of surface loading
g acceleration of gravity
gl spherical Laplacian operator
g
2 global coherence of load fields

h surface topography
hS surface load thickness
i spherical harmonic sin/cos index
{ imaginary number
l spherical harmonic degree
L load amplification limit criterion
m spherical harmonic order
N areoid
n Poisson’s ratio
� polygonal region area
Plm Legendre polynomials
p lithospheric load stress
f longitude
R1 radius of crust/mantle boundary
RI radius of internal loading
Rp mean planetary radius
r0 crustal density
r1 mantle density
S load projection scaling factor
S�1 inverse load projection scaling
s elastic shell bending resistance
Tc crustal thickness
Te elastic shell thickness
t elastic shell membrane resistance
q colatitude
� polar coordinate of load projection
w flexural deflection
x internal load mass density
Y spherical harmonics
z polygonal region function
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in which q is colatitude, f is longitude,

Yilm q;fð Þ ¼ Plm cos qð Þ
cosmf; i ¼ 1

sinmf; i ¼ 2

8<
:

9=
;; ð7Þ

Plm are the Legendre and associated Legendre polynomials
normalized to 4p (geodesy normalization), and hilm, wilm

and Nilm are the spherical harmonic coefficients of the
topography, flexural deflection and areoid respectively. In
the spherical harmonic domain, the Laplacian operator r2

acts on Yilm as

r2Yilmðq;fÞ ¼ �glYilm q;fð Þ: ð8Þ

in which gl 	 l(l + 1). Substituting, the flexural relation
becomes

� s0 g3l � 4g2l þ 4gl
� �

þ t0 gl � 2½ � þ r1 gl � 1� nð Þ½ �
� �

wilm

¼ gl � 1� nð Þ½ � r0hSilm þ alxilm � r1Nilm

� �
: ð9Þ

2.2. Finite-Amplitude Areoid Response

[10] The areoid height N due to a finite amplitude
topography H on some interface with density change �r
can be expressed as [Wieczorek and Phillips, 1998]

N q;fð Þ ¼ 2pG
X
i;l;m

r

Rp

� �lþ1
2r�r

g 2l þ 1ð Þ

� Hilm þ
Xlþ3

n¼2

Hn
ilm

Qn
j¼2 l þ 4� jð Þ
rn�1n!

" #
Yilm q;fð Þ ð10Þ

in which G is the gravitational constant, r is the reference
radius of the topography, and Hilm

n are the spherical
harmonic coefficients of the topography raised to the nth

power, Hn(q, f). Here we have adopted the separation of the
areoid equation into linear and nonlinear (i.e., higher order
in the Taylor series) terms, as suggested by McKenzie et al.

[2002]. Equation (10) differs from that of McKenzie et al.
[2002] by a factor of r1�n in the higher-order terms,
correcting an apparent typographical error therein.

2.3. Load Deconvolution

[11] Equations (9) and (10), coupled with the definition of
the surface load hS 	 h � w, comprise a system of three
equations in the three unknowns hS, x and w. The areoid
calculation depends nonlinearly on both the observed sur-
face topography h and the unknown flexure w, so we write
these equations with the higher order terms in w placed on
the right-hand side as

1 1 0

0 C2 C3

r0K1 K2 alK1

2
66664

3
77775

hSilm

wilm

xilm

2
66664

3
77775 ¼

hilm

Nilm � C1hilm �
Xlþ3

n¼2
Cn
1h

n
ilm þ Cn

2w
n
ilm

� �
r1K1Nilm

2
66664

3
77775: ð11Þ

Here we have defined

C1 ¼
4pGRpr0
g 2l þ 1ð Þ ; ð12Þ

Cn
1 ¼ C1

Qn
j¼2 l þ 4� jð Þ
Rn�1
p n!

; ð13Þ

C2 ¼
4pGR1 r1 � r0ð Þ

g 2l þ 1ð Þ
R1

Rp

� �lþ1

; ð14Þ

Cn
2 ¼ C2

Qn
j¼2 l þ 4� jð Þ
Rn�1
1 n!

; ð15Þ

C3 ¼
4pGRI

g 2l þ 1ð Þ
RI

Rp

� �lþ1

; ð16Þ

K1 ¼ gl � 1� nð Þ; ð17Þ

K2 ¼ s0 g3l � 4g2l þ 4gl
� �

þ t0 gl � 2½ � þ r1K1

� �
; ð18Þ

and R1 is the mean radius of the crust/mantle boundary.
Equations (11) are solved iteratively for each coefficient
(i, l, m). During the first iteration the higher-order terms in w
on the right-hand side are set to zero, and these terms are
updated at each subsequent iteration until a convergence
criterion is achieved. In calculations presented here, we
consider the solution converged when the average percen-
tage change in areoid coefficients is less than 0.1%. Given
the observed topography and areoid, and assuming a

Figure 2. Example surface deformation response kernels
al(RI) relative to the areoid for a unit internal load, using
model parameters in Table 2.
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‘‘known’’ density structure, lithospheric thickness and
internal loading depth, we can uniquely solve equations
(11) for the unknown surface load thickness hS, internal load
mass x, and lithospheric flexure w.

2.4. Singularity

[12] Solution of the system of equations (11) converges
within one to three iterations so long as the linear system is
not close to singular for any l � 60. Setting the determinant
of the sensitivity matrix in (11) equal to zero and solving,
one finds that a singular load deconvolution matrix results if
the internal load radius

R
Sing
I ¼ R1

al r1 � r0ð ÞK1

K2 � r0K1

� � 1
lþ2ð Þ

: ð19Þ

One can readily show that when the matrix is singular, the
ratio of areoid to topography coefficients, Nilm/hilm, for pure
surface loading is identical to that for pure internal loading.
Hence the relative contributions of internal and surface
loading are indeterminate if both yield the same relationship
of areoid to topography. Figure 3 depicts singular depths of
internal loading for a reference model of Mars described in
Table 2. The N/h ratios predicted for both internal loading
and surface loading depend on Te, density structure and
spherical harmonic degree. N/h for internal loading is also
very sensitive to the assumed loading depth and varies
significantly between the surface and the core-mantle
boundary. Consequently, a radius of singularity will occur
somewhere within the mantle for l less than about 25. For
the reference model parameters, the shallowest singular load
depth occurs for l = 7 to 8 at about 400 km, which is within
the range of depths that may be relevant for internal loading
by a degree-1 plume structure under Tharsis.
[13] Near-singularity of the load deconvolution matrix

(11) can produce highly spurious estimates of load mass if
the assumed depth of internal loading is significantly
different than the true load depth. Singularity of the load
deconvolution matrix on the left-hand side of equations (11)
is a mathematical artifact stemming from the assumption

that internal loading occurs at a single, fixed radius. In
reality, planetary internal loading is distributed over a range
of depths, reflecting the influence of various dynamical
processes on the chemistry, temperature and phase of
materials. However, we cannot adequately constrain a
vertically distributed loading structure from the areoid and
topography data alone, and in the absence of other data it is
reasonable to approximate internal loading as occurring at a
single depth. Unfortunately, when the load deconvolution
matrix in (11) is nearly singular, the iterative solution of
equations (11) may not converge. Consequently, we must
assess whether a particular estimate of load amplitude
approximately represents the true load distribution as
opposed to a mathematical singularity.
[14] In Figure 4, we plot curves demonstrating the de-

pendence of the surface load, hS, and the internal load scaled
by crustal density, x/r0, on the areoid/topography ratio for
various l and loading depths. Load coefficients were calcu-
lated for N/h coefficient relationships encompassing h = cos
�; N = 0.1 sin � for � in the range [0, 2p]. Here, � is a
dummy coordinate of the polar projection, and we have
used equations (11) to calculate the surface loads and
internal loads for a large number of different values of �
in order to produce the curves shown in Figure 4. We use
N = 0.1 sin � instead of the unit circle to better visually
distinguish effects of loading (and because areoid coeffi-
cients are typically one to two orders of magnitude smaller
than Martian topography coefficients). The example calcu-
lations use the reference model in Table 2 and internal load
depths of 400 and 100 km. In most cases shown in Figure 4,
the maximum load amplitudes are relatively small (from 1
to 30 meters). However, for l = 8 and Rp � RI = 400 km, the
maximum possible load size is much larger, by several
orders of magnitude. l = 8 and Rp � RI = 400 km yields a
nearly singular load deconvolution matrix (compare with
Figure 3; the actual Rp � RI

Sing is 402.5 km).
[15] The maximum amplitudes of loads inverted on the

h = cos �; N = 0.1 sin � circle of projection is depicted for
all l = 2 to 60 for a 400 km internal load depth in Figure 5a,
and for a 100 km load depth in Figure 5b. Two effects can
amplify the calculated load coefficients to physically un-
likely values. One is downward continuation of the areoid to
calculate mass sources at the depth of internal loading.
Downward continuation amplifies the mass anomaly at
depth RI by a factor of (Rp/RI)

l+1 relative to the mass
anomaly at the planetary surface that would yield the same
geoid anomaly. The effects of this amplification on the
calculated internal load at large l can be seen by comparing
the estimate of equivalent internal load height (solid gray
line) with the load divided by the continuation factor

Table 2. Parameters of the Reference Model of Martian Loading

Parameter Symbol Value Sourcea

Planetary radius Rp 3397 km 1
Crustal density r0 2900 kg/m3 2
Mantle radius R1 3347 km 2
Mantle density r1 3400 kg/m3 2
Gravitational acceleration g 3.71 m/s 1
Elastic shell thickness Te 100 km
Young’s modulus E 1.44 � 1011 Pa 3
Poisson’s ratio n 0.268 3

a1, Lemoine et al. [2001]; 2, Zuber et al. [2000]; 3, McKenzie et al.
[2002].

Figure 3. Internal load depths resulting in singularity of
load deconvolution, for model parameters in Table 2.
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(dashed) in Figure 5. The second effect, noted previously, is
near-singularity of the load deconvolution matrix, which
can amplify both loads by several orders of magnitude when
the assumed internal load radius is near the singular load
radius RI

Sing.
[16] As noted earlier, the coefficient ratio N/h predicted

for pure surface loading is identical to that for pure internal
loading when the load deconvolution matrix is singular. If
the assumed load radius exactly equals RI

Sing, no solution is
possible, but this is an unlikely occurrence. However, in the
examination of Tharsis loading that is the subject of this

paper, reasonable assumptions of internal loading radius
commonly fall near the singular radius for some range of l.
Extreme amplification of estimated loads occurs when the
matrix (11) is nearly singular and the observed N/h is very
different than that predicted for pure surface loading (e.g.,
Figure 4c). If significant loading really does occur near RI

Sing

for a particular spherical harmonic coefficient, Nilm/hilm
should approximately equal the coefficient ratio predicted
for pure surface loading, in which case the load ampli-
tudes predicted by deconvolution will be physically
reasonable. If coefficient ratios are not near the value

Figure 4. Inverted loads for model parameters in Table 2. Topography and areoid map to the �-axis of
polar projection as ~h = cos �; ~N = 0.1 sin �. The resulting loads are plotted on the radial axis. Black
curve is surface load, hS, and gray is the height equivalent of the internal load, x/r0, in meters. Positive
loading is solid and negative is dotted. The black bar denotes pure surface loading (x = 0); the gray bar
pure internal loading (hS = 0). Light gray filled circles correspond to observed N/h coefficient ratios of
Mars data. Very light gray shading indicates � for which the load amplitude criterion C > 1. Note the
radial axis scale varies significantly in each plot. (a) l = 2; internal load depth Rp � RI = 400 km, (b) l = 2;
Rp � RI = 100 km, (c) l = 8; Rp � RI = 400 km, (d) l = 8; Rp � RI = 100 km, (e) l = 16; Rp � RI = 400 km,
(f ) l = 16; Rp � RI = 100 km.
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of N/h predicted for pure surface loading, however, it is
likely that internal loading has significant contributions
from some other radii besides RI

Sing. Hence we enforce
limits on load amplitudes at those particular combinations
of RI, l and N/h which would otherwise yield unreason-
ably large load coefficients.
[17] The algorithm to identify physically unreasonable

amplification of loads at near-singular load radii proceeds
via the following steps:
[18] 1. We determine where the observed areoid and

topography coefficients would project onto the (~h = cos �;
~N = 0.1 sin �) circle via

�ilm ¼ tan�1 10Nilm

hilm

� �
: ð20Þ

The observed coefficients project onto the circle via multi-
plication by a scaling factor: [~hilm, ~Nilm] = Silm [hilm, Nilm],
where Silm = cos �ilm/hilm.
[19] 2. We multiply the right-hand side of equation (11) by

Silm and solve the system of equations for [~hilm
S, ~wilm, ~xilm].

Here the tilde denotes the solution on the (~h = cos�; ~N = 0.1
sin �) circle of polar projection, as distinct from the solution
using the observed areoid and topography coefficients.

[20] 3. We define a test criterion C to identify physically
unrealistic amplification of the load amplitudes, given by

Cilm 	
~hSilm

~xilm
r0ð2l þ 1Þ

RI

Rp

� �lþ1

ð21Þ

Note that this is simply the product of the projected surface
load and internal load height scaled by the upward contin-
uation of the areoid in equation (16), i.e., the dashed gray
line in Figure 5 multiplied by the black line.
[21] 4. We assign a scaling factor to map back from the

circle of polar projection to the original Nilm, hilm coeffi-
cients on the basis of whether the test criterion Cilm exceeds
an empirically defined limit L:

S�1
ilm ¼

1

Silm

; Cilm � L

L
CilmSilm

; Cilm > L

8>><
>>:

9>>=
>>; ð22Þ

[22] 5. We multiply the solution vector [~hilm
S , ~wilm, ~xilm] by

Silm
�1 to arrive at the final solution.
[23] The projection method described above has three

important features: (1) By projecting the observed coeffi-
cients onto the (~w = cos�; ~N = 0.1 sin�) circle, near-singular
load amplification is identified independently of the absolute
amplitudes of the areoid and topography. (2) If the assumed
loading depth is near the singular depth, but the observed
areoid-topography coefficient ratio closely approximates the
ratio expected for loading at that depth, the test criterion will
not exceed the empirically defined limit. (3) If the test
criterion does exceed the limit for a particular coefficient
pair, the algorithm preserves the ratio of predicted internal to
surface loading xilm/r0hilm

S while the load coefficients them-
selves are reduced. The resulting load coefficients are
reduced enough to guarantee convergence of the solution
of equations (11), but can still be so large as to be physically
implausible.
[24] We tested the projection approach for a range of

choices of the limit criterion L. L = 1 was found empirically
to be the largest choice of L which guaranteed convergence
of the iterative solution of equations (11) for all model
parameterizations considered in this paper. Consequently,
most of the calculations presented in the remainder of this
paper use L = 1. Example conditions for which the test
criterion C can exceed L = 1 are indicated by light gray
shading in Figures 4 and 5. The test criterion for the 400 km
load depth in Figure 5a can exceed the limit for certain
areoid-topography ratios when l = 2–17. For the 100 km
load depth example shown in Figure 5b, the test criterion
never exceeds the limit. In the case of a 400 km load depth,
the range of � for which C > 1 does not include any of the
observed Martian coefficient ratios when l = 2 (Figure 4a),
but almost all of the load coefficients would be reduced
for l = 8 (Figure 4c) and about 10% would be reduced
for l = 16 (Figure 4e). We will compare solutions using L = 1
with convergent solutions using L = 1 (i.e., with unlimited
load amplitudes) in section 5.

2.5. Load Integration for the Tharsis Region

[25] Much of the controversy surrounding loading pro-
cesses of the Tharsis rise centers on how much of the
topographic expression results from internal loading by

Figure 5. Maximum inverted load coefficients for model
parameters in Table 2 and projected topography ~h = cos �
and areoid ~N = 0.1 sin �. Black line with filled circles is
the maximum surface load hS; solid gray line is the
internal load height x/r0. Dashed gray lines are the
maximum internal load scaled by the areoid continuation
factor, x(RI/Rp)

l+1/[r0(2l + 1)]. Very light gray shading
indicates l for which the load amplitude criterion C can
exceed one. (a) Internal load depth Rp � RI = 400 km,
(b) Rp � RI = 100 km.
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plume buoyancy, and how much from surface loading by
volcanic construction. Hence, once the load mass fields
have been estimated for the planet, we would like to
examine loading localized to the Tharsis region in particu-
lar, as well as the sensitivity of load estimates to a priori
assumptions of lithospheric thickness, depth of internal
loading, and density structure of Mars. Toward this end,
we integrate the stresses applied by internal and surface
loads to estimate a resolved force for Tharsis loading.
[26] We modify a method for estimating regionally aver-

aged surface mass from time-variable geoid anomalies
[Swenson and Wahr, 2002] to estimate resolved forces
within the Tharsis region. Error in an estimate of regionally
averaged surface mass density, �sregion, is minimized by

�sregion ¼
X
i;l;m

�l

�region

WilmNilm: ð23Þ

Here, �region is the area of the region of interest, �l is the
transfer function that relates surface mass density coeffi-
cients to areoid coefficients, and Wilm are optimized weight
coefficients [Swenson and Wahr, 2002]

Wilm ¼ 1þ 2�2
l B

2
l

s20Gl 2l þ 1ð Þ

� ��1

zilm ð24Þ

in which Bl
2 is the degree variance of the satellite areoid

measurements, s0
2 is the variance of the expected mass

signal, Gl are coefficients of the spatial covariance of the
expected signal, and zilm are coefficients of a region
function z(q, f) which has value one inside the region of
interest and zero outside. We modify (23) to estimate a
resolved force, i.e., the integral of stress over the region as
opposed to the average of mass density. Substituting the
appropriate relations, we get

F S ¼ r0g
X
i;l;m

1þ 2Blr20
s20GlC

2
1 2l þ 1ð Þ

� ��1

zilmh
S
ilm ð25Þ

for the resolved force of surface loading, and

F I ¼ g
X
i;l;m

al 1þ 2Bl

s20GlC
2
3 2l þ 1ð Þ

� ��1

zilmxilm ð26Þ

for the resolved force of internal loading.
[27] To evaluate the relative importance of internal versus

surface loading processes in the topographic signature of
Tharsis, we will express these resolved forces as a percent-
age ratio describing the internal loading relative to total
loading via �100F I/(jF Sj + jF Ij). The ratio includes a
negative sign for the resolved force of internal loading
because we expect predominantly buoyant (i.e., negative)
internal loading by hot plume material and/or iron-depleted
melt residuum. If the sign of the internal load is positive
(i.e., anomalously dense), the resulting percentage will be
negative.
[28] For calculations presented here, we use the region

depicted in Figure 1 to generate the coefficients zilm. The
degree variance of satellite measurement uncertainty Bl

2 was

calculated from individual areoid coefficient uncertainties
dilm (F. Lemoine, personal communication, 2002) via

B2
l ¼

X
i;m

d2ilm
2l þ 1

: ð27Þ

The statistical properties of mass density, s0
2 and Gl, were

approximated from the observed Martian topographic field
h(q, f).

2.6. Internal Contributions to Areoid and Topography

[29] In addition to knowing the relative sizes of surface
and internal loading, it is desirable to define an estimate of
the percentage internal and surface load contributions to the
observed topography and areoid. The spatial average of
topography �H, for example, is

�HTharsis ¼
X
i;l;m

zilm
�Tharsis

hilm: ð28Þ

We represent the percentage internal load contributions to
topography and areoid as 100 �HI/ �H and 100 �N I/ �N . Here,
because the flexure w in equations (11) is a lithospheric
response to combined internal and surface loading, we
calculate the averages for the internal contributions �HI

and �N I from the internal load coefficients using

hIilm ¼ r1C3 � alð ÞK1

K2 � r1K1 C1 þ C2ð Þ xilm ð29Þ

and

NI
ilm ¼ C3 þ

r1C3 � alð ÞK1

K2 C1 þ C2ð Þ � r1K1

� �
xilm: ð30Þ

3. Data Sources

[30] In the following analysis, we use the MGM1004D
areoid and associated errors to spherical harmonic degree 60
[Lemoine et al., 2001] and the IEGDR-L3-V1.0 planetary
radius data (0.25 by 0.25 degree resolution) archived at
http://wwwpds.wustl.edu/missions/mgs/mola/iegdr.html.
The areoid solution is derived from Mars Global Surveyor
(MGS) X band tracking data and Mars Orbital Laser Alti-
meter (MOLA) crossovers. Uncertainty in the areoid ranges
from 1.0 m at the south pole to 2.6 m near the equator, for
harmonics up to l, m = 60. Smith et al. [1999a] make a
distinction between planetary ‘‘shape’’ (corresponding to the
radius of the planetary surface from the center of mass) and
‘‘topography’’ (corresponding to the height of the planetary
surface above the areoid). For the analysis described in
section 2, the term ‘‘topography’’ follows another definition
used, e.g., by Turcotte et al. [1981] and Wieczorek and
Phillips [1998], in which h is referenced to radius Rp. The
latter definition of topography (i.e., the ‘‘shape’’ of Smith et
al. [1999a]) is the usage of the term followed throughout
this paper, and hence the planetary radius data are used in
the following analysis. We subtracted the reference ellipsoid
of the MGM1004D areoid (Rp = 3397 km and inverse
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flattening 1/f = 191.1372 m) from the mean planetary
radius field in the IEGDR data set, and we use the spherical
harmonic representation of the resulting topographic field up
to degree and order l,m = 60 for calculations in this paper. To
avoid errors associated with reference frame differences of
the topographic and areoid fields, we ignore the (l = 2,m = 1)
and l � 1 terms in the isostatic analyses presented here.
Hydrostatic effects of Martian rotation in the (l = 2, m = 0)
coefficients are largely removed by subtraction of the
reference ellipsoid, and so we include those coefficients in
the analysis.

4. Results

4.1. Synthetic Tests of the Method

[31] We tested independently the accuracy of the forward
relations (9) for thin shell flexure, (10) for the areoid, and
the inversion for loads (11) against a propagator-matrix
formulation of viscoelastic response to planetary loading
[Zhong, 1997; Zhong and Zuber, 2000; Zhong, 2002]. We
compared results for three loading scenarios, including a
unit load at the surface (hS = 1 meter), a unit load at 80 km
depth (x = r1 kg m�2), and a unit load at 400 km depth. The
synthetic model parameters were identical to those given in
Table 2, excepting that both the viscoelastic propagator
matrix model and the thin shell model described in this
paper used a lithospheric Poisson’s ratio of 0.5 to match the
instantaneous viscous flow modeling assumption of an
incompressible fluid [Hager and Richards, 1989].
[32] The forward model of the areoid used the flexure and

topography output by the viscoelastic propagator matrix
model and a linearized relation (i.e., higher order terms in
equation (10) were ignored). The differences between the
two are largest for small l and deep internal loads, but
nevertheless always less than 1% of the areoid. The differ-
ences reflect only the deformation of the core/mantle
boundary (CMB), which is included in the viscoelastic
model of Zhong and Zuber [2000] but ignored in the thin
elastic shell model. The forward model of surface topogra-
phy using equation (9) used the areoid output by the
viscoelastic propagator matrix model, so that we could
examine errors introduced by equation (9) independent of
the CMB contribution to the areoid. Differences between (9)
and the viscoelastic propagator matrix model do not exceed
0.5%. These differences represent the effects of the thin
shell approximation in (9) plus the instantaneous viscous
flow approximation of viscoelastic coupling al between
deep loads and the surface. Finally, the unit loads input to
the viscoelastic propagator matrix model of Zhong and
Zuber [2000] were compared with the loads recovered from
solution of equations (11) using the areoid and topography
output by the viscoelastic model. The combination of errors
that arise from ignoring CMB deformation, thick plate
effects, and the instantaneous viscous flow approximation
of a introduces inaccuracies of at most 5% in the inverted
load estimates.

4.2. Reference Loading Model

[33] An example solution for Martian planetary loading is
shown in Figure 6. The calculation assumes the reference
density structure and Te = 100 km in Table 2, plus a 50 km
depth of internal loading (i.e., at the crust-mantle boundary).

The estimate of surface load hS (Figure 6a) is dominated by a
significant thickness, average 17.8 km, of topographically
constructed material within the Tharsis region. The internal
load height x/r0 (Figure 6b) is dominated by high-frequency
variations, some of which probably reflect a factor of
(Rp/RI)

l+1 amplification by downward continuation of near-
surface density variations to the assumed depth of loading.
The average of the internal load over Tharsis is positively
buoyant but small, equivalent to a height of just 0.5 km.
Consequently, the net flexural response of the lithosphere
under Tharsis is downward (averaging 12.7 km over the
region; Figure 6c). Using the calculations described in
sections 2.5 and 2.6, the internal contribution to lithospheric
loading of Tharsis is 2.5%, and the internal contributions to
topography and the areoid are 6.8% and�0.5%, respectively.

4.3. Model Parameter Sensitivity

[34] The model used to invert for Tharsis loading depends
on properties of the Martian lithosphere and density structure
which are only approximately known. A complete analysis
of Tharsis loading should include uncertainties, which in this
application are dominated by uncertainties in these model
parameters. We have defined scalar expressions for the
averaged contribution of internal mass anomalies to total
lithospheric loading in section 2.5, and to observed areoid
and topography in section 2.6. In this section, we explore the
dependence of these integral expressions of Tharsis loading
on model parameters, including the range of Tharsis loading
that is feasible given parameter uncertainties.
[35] Parameters which significantly affect the estimates of

internal load contribution include the radius of internal
loading RI and the lithospheric thickness Te. Internal loading
of Tharsis likely reflects three processes: (1) thermal varia-
tions generated by the single-plume Martian convective
structure [Harder and Christensen, 1996], (2) mantle chem-
ical variations introduced by melt depletion [Sleep and
Phillips, 1979], and (3) crustal chemical variations resulting
from magmatic intrusion [Kiefer, 2003]. The method pre-
sented here cannot distinguish between different types of
internal loading, and so all of these are integrated into the
final estimate of internal load mass anomaly. Consequently,
we consider models for internal loading depths ranging from
near the planetary surface to >400 km. Most convective
buoyancy of a single-plume structure in the Martian mantle
would express just below the lithosphere, at depths shal-
lower than 400 km [Zhong, 2002]. Small buoyancy contri-
butions from greater depth are expected, but equations (11)
neglect deformation of the core-mantle boundary and so are
inaccurate for loading depths much greater than 400 km.
[36] Lithospheric thickness estimates for Mars are highly

variable. McKenzie et al. [2002] report Te estimates in the
range 12–70 km, while Zuber et al. [2000] andMcGovern et
al. [2002] tally estimates ranging from 5 to 200 km. Nimmo
[2002] estimated Te across the Martian crustal dichotomy to
be �60 km, and Turcotte et al. [2002] estimated the global
Martian Te = 90 km. Generally, low estimates of Te are
derived from impact structures and the most ancient features,
whereas the highest values tend to derive from young
volcanic features, presumably reflecting planetary cooling
with time [Zuber et al., 2000;McGovern et al., 2002]. Many
of the existing Te estimates for Mars are essentially lower-
bound estimates, for several reasons. For example, loads
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emplaced early in the planetary history do not require further
readjustment to maintain isostatic equilibrium as the litho-
sphere cools and strengthens [Courtney and Beaumont,
1983], so the topography and areoid reflect stresses frozen
in at the time of loading. Also, some estimates [McKenzie et
al., 2002; Zuber et al., 2000; Turcotte et al., 2002] assume
surface loading only, resulting in underestimation of the
lithospheric strength if net-buoyant internal loads are present
[Forsyth, 1985; Nimmo, 2002]. We examine Te in the range
of 60–200 km in our analysis of Tharsis loading, despite
lower estimates reported in some investigations.

[37] Figure 7 depicts the percentage contributions of
internal loading to total loading, topography and areoid.
We have included solutions using the load limit criterion
L = 1 (black dots) as well as the convergent solutions for
L = 1 (gray dots; i.e., with unlimited load amplitudes).
The load estimates exhibit several patterns of dependence on
the assumedmodel parameters. First, one will note that if Te is
about 85 km, the percentage internal contribution to loading
(Figure 7a) is negligible for all load depths. Larger values
of Te require a contribution from buoyant internal loading,
and the buoyancy of loading increases with increasing depth.

Figure 6. Example solution for (a) surface load hS, (b) internal load height x/r0, and (c) lithospheric
flexure w, assuming the reference model in Table 2 and an internal load depth of 50 km.
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For example, a Te of 120 km would necessitate an 8.4%
internal contribution to the vertical lithospheric load stress,
a 20.5% internal contribution to topography and a 4.9%
internal load contribution to the areoid of Tharsis for a load
at 220 km depth. Loading at 420 km would require internal
load contributions of 14.1%, 32.6% and 18.2% to loading,
topography and areoid respectively if Te = 120 km. On the
other hand, a Te < 85 km necessitates internal loading by
anomalously dense material, such that for example a 60 km
Te lithosphere loaded at 220 km depth would require
internal load contributions of �4.9%, �25.7% and
�11.0% to lithospheric loading, topography and areoid
respectively. The negative contribution of this anomalously
dense mass grows with increasing depth of the internal
load.
[38] Other uncertain parameters in the estimates of Tharsis

loading include crustal thickness Tc and crustal density r0.
Sohl and Spohn [1997] postulate two models of Martian
internal structure derived from meteorite samples of chem-
ical composition, dynamical relations and equations of state.
One model, matching the maximum estimate of Martian
moment of inertia, yields a mean crustal thickness of 110 km
while a second model matching chondritic bulk composition
gives 250 km for crustal thickness. Zuber et al. [2000]
estimate a lower-bound mean thickness of 50 km from the
relationship of gravity to topography, and argue that the
Martian crustal dichotomy would not be maintained on
�4 Ga timescales if the crust were as thick as 100 km.
Nimmo and Stevenson [2001] also model flow across the
crustal dichotomy using a flow law for dry Columbia
diabase, and they estimate the maximum mean crustal
thickness to be �115 km. However, the viscous flow
modeling for both of these upper-bound estimates assumes
lower crustal viscosities similar to that of Earth, where
silica-rich compositions and deep water cycling processes
differ significantly from Martian conditions. Given the
pyroxene-rich Martian crustal composition inferred from
Shergottite meteorites [Babeyko et al., 1993] and the
dependence of diorite creep strength on pyroxene content
[Mackwell et al., 1998; Bystricky and Mackwell, 2001],
Martian lower-crustal strength may exceed that of dry
olivine. Such extreme lower crustal strength may readily
support the Martian crustal dichotomy over significant
timescales. In this analysis, we examine crustal thicknesses
(here defined as thickness of crustal material prior to
the addition of surface load thickness hS) in the range of
10–160 km. We also examine a range of crustal densities
from 2400 to 3200 kg m�3, encompassing loosely com-
pacted airfall tephras up to the Shergottite crustal composi-
tion [Babeyko et al., 1993].
[39] Internal loading contributions for the range of crustal

thickness and density are shown in Figure 8, assuming an
internal load depth of 200 km and other parameters as listed
in Table 2. The buoyancy of the internal load estimate
decreases with decreasing crustal density and with decreas-
ing crustal thickness. If we expect a relatively thin crust and
low density of fractured or weathered near-surface materials,
as suggested by Nimmo [2002], the internal buoyancy may
be somewhat less than in the calculations shown in Figure 7.
If on the other hand the crust is thick and crustal density
nears the Shergottite composition (r � 3100 kg m�3),
as inferred by Sohl and Spohn [1997], internal buoyancy

Figure 7. Percentage contribution by internal loading to
(a) integrated lithospheric force, (b) topography, and (c)
areoid of Tharsis, estimated for Te = 60 to 200 km and
depth of internal loading Rp � RI = 20 to 420 km. Black
circles with solid lines are results using the load limit
algorithm (section 2.4) at near-singular load depths; gray
circles are convergent solutions with unlimited load
coefficients. White star denotes intersection with models
of Figure 8.
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(and corresponding contributions to areoid and topography)
could be as much as 10% greater than shown in Figure 7.

5. Discussion

[40] Until now, most quantitative estimates of Tharsis
loading have assumed a priori that loading was either
predominantly internal [e.g., Kiefer et al., 1996] or predom-
inantly by surface construction [e.g., Willemann and
Turcotte, 1982]. Investigations which have explicitly incor-
porated both surface and internal loading include Banerdt
and Golombek [2000], which neglects possible viscous
coupling to deep loads, and Zhong and Roberts [2003],
which examined the global expression of l = 2–3. Accurate
estimates of dynamic loading contributions require a model
incorporating both the elastic lithosphere and viscous man-
tle flow [Zhong, 2002]. The method described in this paper
factors the elastic lithosphere and viscous flow responses
into estimates of the relative contributions of surface and
internal loading processes to topographic shape and the
geoid. Also, in contrast to power spectral (e.g., ‘‘admit-
tance’’) techniques, this analysis retains all of the informa-
tion content of the data, including the signs and amplitudes
of individual coefficients. Power spectral averaging to
estimate the geoid/topography ratio or ‘‘admittance’’, by
squaring and summing the coefficients, destroys the loca-
tion-specific information and moreover strips away much of
the coefficient sign information which is crucial to identify
the amplitude and sign of loading (e.g., Figure 4). By
retaining the information content for each individual coef-
ficient, this method enables analysis of loading processes
localized within a particular region of the planet.
[41] We have explored loading estimates within the

Tharsis region for a plausible range of parameters, and
we find that volcanically constructed surface loads com-
prise at least 70% of the lithospheric load acting on the
Tharsis lithosphere, for Te � 200 km and internal load
depth �420 km. For the same parameter range, buoyancy
under Tharsis contributes �50% of the topographic
expression, and �25% of the areoid (Figures 7 and 8).
Banerdt and Golombek’s [2000] model parameterization is
virtually identical to that of our reference model (Table 2)
except that they use a mantle density of 3500 instead of
3400 kg m�3. They similarly find Tharsis loading to be
predominantly surficial, with an average �12 km downward
lithospheric deflection w beneath the Tharsis province as
compared to 12.7 km for the reference model in section 4.2.
The similarity of results is not surprising, given the assumed
50 km loading depth. Viscous stress coupling neglected
by Banerdt and Golombek [2000] is negligible for loads
within the lithosphere. Our upper-bound (25%) estimate of
internal contribution to the Tharsis areoid is somewhat
larger than the 15% upper-bound cited by Zhong and
Roberts [2003], but the two analyses differ in some respects.
Most notably, Zhong and Roberts [2003] assume cooling of
the lithospheric between the times of Noachian surface
loading and modern plume activity, which reduces the
internal contribution to the areoid by reducing Te at the time
of surface loading. Using their assumed model parameteri-
zation with Te = 120 km and a load depth of 450 km
(corresponding to their upper-bound case), we calculate the
internal load contribution to the areoid to be 16.2%. If we

Figure 8. Percentage contribution by internal loading to (a)
integrated lithospheric force, (b) topography, and (c) areoid
of Tharsis, estimated for r0 = 2400 to 3200 kgm�3 and crustal
thickness Rp � R1 = 10 to 160 km. Black circles with solid
lines are results using the load limit algorithm (section 2.4) at
near-singular load depths; gray circles are convergent
solutions with unlimited load coefficients. White star denotes
intersection with models of Figure 7.
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limit calculations to the spherical harmonic degrees l = 2–3
that they considered, the internal load contribution is 14.8%,
virtually identical to their upper-bound estimate.

5.1. Limitations of the Load Calculation Method

[42] The methodology introduced in this paper, while
superior to load estimation from power spectra, provides
only a range of possible solutions corresponding to the
range of uncertainties in model parameters such as the
Martian reference density structure, lithospheric thickness
and depth of internal loading. The method also incorporates
several approximations and assumptions, but these have
negligible impact on the results. For example, we use a thin
shell approximation to lithospheric strength. Given the thick
lithosphere and small planetary radius of Mars, errors in the
thin plate approximation can exceed 10% for l > 20 [Zhong
and Zuber, 2000]. However, because of the large areal
extent of Tharsis, contributions from higher degrees are
negligible. If we perform the calculations using only l � 10,
we get results identical to those presented in Figures 7 and
8 (using l � 60) to within a few percent.
[43] We have also neglected the effect of deformation at

the core-mantle boundary in the areoid. This approximation
is warranted because we limit the internal loading depths to
<420 km, for which CMB contributions to the areoid are
negligible. Also, the assumption that internal loading occurs
at a single fixed radius is one of many possible parameter-
izations of internal loading. Regardless of how we might
choose to specify the depth dependence of loading, a single
amplitude parameter describing the internal mass is dictated
by the fact that we have only two observables (h and N) at
each harmonic. We will explore other depth-dependent
parameterizations of buoyancy (e.g., distributions reflecting
convective scaling relations) in subsequent analyses.
[44] The algorithm for limiting load amplitudes when the

deconvolution matrix is nearly singular (section 2.4) is an
important element of the load deconvolution. Limiting the
amplitudes at near-singular load depths was necessitated by
inclusion of the finite-amplitude areoid response to flexure
w (equation 10) in the iterative solution of equations (11). If
loads are permitted to be arbitrarily large, w can also be
arbitrarily large and the solution of (11) diverges for some
combinations of model parameters. If the load deconvolu-
tion matrix in equations (11) is nearly singular, but the
observed areoid/topography ratio is very different from that
predicted for the assumed load depth, the physical implica-
tion is that internal loading is probably dominated by mass
anomalies at other depths. Nevertheless, we want to repre-
sent as accurately as possible the mass distributions pre-
dicted for internal loading at a specific planetary radius. In
Figures 7 and 8, the gray circles denote convergent sol-
utions obtained without specifying a limit criterion on the
maximum load amplitudes (i.e., L =1). Solutions for those
cases which do converge in the absence of a load limit
criterion (generally, for combinations of large Te, shallow
internal loading, high crustal density and thick crust) are
nearly identical to those obtained using L = 1. For results
shown in Figure 7, the number of coefficients altered by
application of a load limit criterion ranged from 0 for large
Te and shallow loading to �350 (out of 1889) for deep
internal loading with Te = 60 km.

5.2. Implications for Te Estimation

[45] An important corollary of the method presented here
has been noted before [Forsyth, 1985]: Namely, any arbi-
trary choice of Te and reference density structure can exactly
reproduce the relationship of gravity to topography, given
an appropriate choice of the relative contributions from
surface and internal loading. Consequently, to estimate
flexural model parameters such as Te and density, some
assumption or other constraint of the model solution space
is required. McKenzie et al. [2002] and Turcotte et al.
[2002], for example, limit the solution space by the as-
sumption that loading occurs only at the surface. If, using
our methodology, we adopt Te = 70 km, r0 = 3000 kg m�3

as McKenzie et al. [2002] estimate for Tharsis and we adopt
their reference density structure, our estimate of internal
loading at Tharsis is <2% for load depths <250 km. Hence
McKenzie et al.’s [2002] 70 km estimate for Te of Tharsis is
dictated by their assumption that there is no internal
loading.
[46] McGovern et al. [2002] incorporate internal loading

via a grid search for the Te and the ratio f of internal loading
to surface loading, assumed constant for all (i, l, m), that
minimize the difference between observed and predicted
admittance functions. They use an unbiased spectral esti-
mate of the complex admittance, which removes via can-
cellation most of the effects of uncorrelated surface and
internal loading present in the data. The modeling assump-
tion of a single constant load ratio f forces the modeled
internal load to correlate perfectly with the surface load.
Hence, by cancelling uncorrelated load effects and model-
ing the correlated load, this approach should yield a better
approximation of the true Te than McKenzie et al.’s [2002]
assumption of no internal loading, unless the correlated load
ratio f = 0, in which case the two methods are equivalent.
However, two significant limitations remain in this approach.
For one, there is no guarantee that correlated loading
will have constant f-ratio for all (i, l, m) (on the
contrary, one would expect processes that correlate surface
and internal loads to depend strongly on spatial wave-
length). For the second, McGovern et al. [2002] explore f
only on the interval [0, 1], whereas the potential range is
[�1, 1].
[47] McGovern et al. [2002] do not examine Tharsis as a

whole, but their estimates for small individual features of
Tharsis range from Te = 20–35 km for Highland Plana up to
>150 km for Olympus Mons, with most estimates falling in
the range 60–100 km. They attribute the variations to age of
the load. Their estimates of internal loading are zero for most
Tharsis features excepting Alba Patera ( f < 0.2, corre-
sponding to >17% internal loading in the resolved
force estimation used in this paper) and the Valles Marineris
( f � 0.5, or �33% internal loading). At the 50 km internal
load depth assumed by McGovern et al. [2002], our esti-
mates of internal loading for all of Tharsis in Figure 7 range
from f =�0.04 for Te = 60 km up to f = 0.13 for Te = 200 km.
Our estimates should not directly equate to theirs owing to
differences in the spatial regions examined, their assumption
that f is independent of (i, l, m), and omission of l � 5
(which dominates our loading calculations) by their spatio-
spectral localization technique. Nimmo [2002] applied a
similar fixed-f admittance approach to line-of-sight gravity
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data over the Martian crustal dichotomy, and estimated Te of
61 ± 24 km with a best-fit f = 1.
[48] All of the estimates of Te described above are derived

from the relationship of the areoid (or gravity) to topogra-
phy. Because that relationship can be modeled precisely for
any arbitrary Te using equations (11), the accuracy of Te
estimates depends critically on the validity of the assumed
relationship between surface and subsurface loading that
limits the solution space. The relationship between internal
and surface loading processes in the Martian areoid and
topography can be examined qualitatively from the ratios of
areoid coefficients divided by topography coefficients in the
spherical harmonic domain. These coefficient ratios differ
from the so-called ‘‘geoid-topography ratio’’ (GTR), in
which the squares of coefficients Nilm

2 and hilm
2 are

summed over i, m before dividing. Squaring removes the
sign information and hence biases the ratio, so we define an
unbiased, amplitude-weighted average coefficient ratio Rl,

�Rl ¼
P

i;m sign Nilm=hilmð Þ Nilmj jP
i;m hilmj j : ð31Þ

In Figure 9, Rl are quite similar to modeled relations for
purely surface loading. Most (though not all) of the aver-
aged coefficient ratios fall within a range encompassing the
pure surface loading models predicted for a plausible range
of Te and Martian reference density structure. However,
individual areoid/topography coefficient ratios, prior to
averaging, can deviate significantly from the range for pure
surface loading. Eighty-one percent of the individual ratios
lie outside the plausible range for surface loading, and fifty-
seven percent remain outside that range at 95% confidence
when measurement uncertainties are taken into account.
Deviation of ratios from the surface load prediction results
from a combination of (1) coefficient coupling by finite
amplitude effects in the areoid and/or spatially variable
lithospheric thickness Te, and (2) internal loading of the
lithosphere. We expect that the distribution of coefficient
ratios in Figure 9 is dominated by internal loading. Coin-
cidence of the averaged coefficient ratios with the surface
load model prediction suggests that internal loading is an
approximately zero-mean process for given l. Such behavior
would be expected for randomly distributed, spatially vary-
ing density of the planetary interior.
[49] Given that any Te can be made to exactly fit the areoid

and topography data by using equations (11), it is worth
examining the assumptions that restrict the solution space for
various spherical harmonic domain Te estimation methods.
The assumption byMcKenzie et al. [2002] and Turcotte et al.
[2002] that there is no contribution from internal mass
anomalies is not consistent with expected scaling of thermal
and chemical variations within planetary interiors, nor does it
match the large variability in ratio of areoid and topography
coefficients for fixed l (Figure 9). Even a small percentage of
net contribution from internal mass anomalies can signifi-
cantly change the estimate of Te (Figure 7a), so ignoring
internal loads is unlikely to yield an accurate estimate.
[50] McGovern et al.’s [2002] and Nimmo’s [2002]

model assumption that the load ratio f is independent of
(i, l, m) implicitly assumes perfect correlation of the loads.
Figure 9 clearly demonstrates that loads are not perfectly
correlated. For fixed l and fixed depth of loading, a

constant f-ratio of internal to surface loading would result
in all of the individual coefficient ratios plotting as a
single point in Figure 9. However, the unbiased estimate
of admittance used in these papers should cancel the
uncorrelated components of loading in the ‘‘observed’’
admittance, leaving only that component of internal load-
ing which is correlated with surface loading. When the
areoid/topography ratios of global coefficients are aver-
aged in an unbiased fashion using equation (31), we find
that the relationship is very similar to a pure surface
loading model (i.e., f = 0). The small differences between
Rl and a ‘‘best-fit’’ surface-loading model parameterization
are dependent on wavelength, however, in a manner that is
not necessarily well-described by a scale-independent
parameterization of a correlated surface load ratio f.

5.3. Resolving the Te Ambiguity

[51] A careful description of the ambiguous statistical
relationship between surface and internal loading will
require the introduction of additional physical constraints
and/or other observable quantities into the modeling. Apart
from gravity and topography, the most commonly cited
observable in studies of Tharsis loading are the associated
tectonic structures [Carr, 1974; Willemann and Turcotte,
1982; Harder and Christensen, 1996; Mege and Masson,
1996; Anderson et al., 2001; Banerdt and Golombek, 2000].
These features reflect the stress/strain fields at the time of
their formation, so comparing them to the modern-day
areoid and topography may require an evolutionary physical
model of Tharsis with substantially more variable para-
meters than the model described here [Banerdt et al., 1982].
[52] Alternatively, it may be possible to restrict the Te

solution space via careful forward modeling of the loading
processes. If degree-one thermal convection is still active, as

Figure 9. Ratios of areoid/topography coefficients for the
data used in this study. Black circles represent ratios Rl of
coefficients after averaging for given l, and gray circles are
ratios of the individual coefficients. Solid lines are the ratios
predicted by pure surface loading using variable Te as
indicated and density model parameters as in Table 2. The
hachured line pattern denotes the predicted range of all pure
surface loading models encompassing Te = 50–200 km,
crustal thickness Tc = 10–160 km, r0 = 2400–3200 kg m�3,
and r1 = 3300–3800 kg m�3.
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would seem likely given that Tharsis volcanism has con-
tinued to at least the past 100 Myr [Hartmann et al., 1999],
internal loading of Tharsis would include significant posi-
tive buoyancy. Even if Tharsis single-plume convection is
greatly reduced from what it must have once been, chemical
buoyancy of basalt-depleted mantle is likely to remain
localized within and immediately beneath the Tharsis lith-
osphere, given the extremely large volumes of basalt which
would be required to produce the Tharsis surface loading.
Consequently, the Tharsis internal load is much more likely
to be net buoyant than anomalously dense. If we conserva-
tively assume a high crustal density (r0 = 3100 kg m�3) and
require that the internal load contribution have a net buoyant
contribution, we find that the minimum possible planetary
Te at the time of Tharsis loading is 50 km. The actual Te can
be much larger if the internal load contribution is large, or
the crustal density is low. A carefully constructed planetary
circulation model, incorporating melt chemistry relations
and matching the thermal history requirements for timing of
Tharsis volcanism as well as the final ratios of internal to
surface loading, could narrow further the possible range of
Martian lithospheric thickness.
[53] Until these more complex model spaces can be

explored, the distribution of coefficient ratios (Figure 9)
suggests that the statistical relationship of Martian surface
and internal loading processes might best be described as
uncorrelated, with some instances of locally enhanced cor-
relation that depend strongly on spatial scale. Forsyth [1985]
hypothesized that randomization by surficial processes such
as erosion and deposition should decorrelate surface and
internal loads. Hence Forsyth’s [1985] coherence method
limits the solution space by choosing the Tewhich minimizes
correlation of the loads. Erosion and deposition are not the
only processes which should decorrelate surface and internal
loads. If we remove the effects of isostatic response, most
physical process aggregates would tend to have a very
different scale dependence for mass redistribution at the
surface than at depth. The broad distribution of individual
coefficient ratios in Figure 9, with approximately zero-mean
relative to the pure surface loading prediction, is consistent
with what one would expect to observe if surface and
internal loading is uncorrelated. However, some of the
averaged coefficient ratios Rl (particularly for l < 10) are
slightly different from the surface load prediction, indicating
enhanced correlation of surface and internal loads within
wavebands where loading occurs predominantly by coupled
processes of volcanism and convection or by extremely large
(i.e., Hellas-sized) impacts.
[54] To obtain a preferred estimate of lithospheric thick-

ness and reference density structure of Mars, and hence of the
load structure, we examined which of the model parameter-
izations would minimize the correlation of the surface load
estimate hSwith the internal load estimate x. The rationale for
minimizing the correlation of surface and internal loads (as
opposed to modeling the unbiased admittance using a scale-
independent load ratio parameterization) is twofold. One
reason is that an incorrect load model parameterization will
always systematically enhance the apparent correlation of
loads calculated via equations (11) by the introduction of (for
example) false internal loads that offset, and hence are in
phase with, the errors in model estimates of the surface load.
Consequently, correlation statistics of the loads are more

sensitive to the model parameterization than are the unbiased
estimates of admittance. The second reason is that true
correlated loads are unlikely to occur everywhere on the
planet, nor are they likely to be correlated in a consistent
manner at all wavelengths. Indeed, if correlated loads were
scale-independent and could simulate the scale dependence
of an isostatic model parameter, there would be no advantage
to using an admittance estimate because the model parameter
and the load ratio f would be completely cross-correlated in
any grid-search minimization of the difference between
model and observation. Hence, although loading will be
somewhat correlated on certain spatial scales at some loca-
tions, the optimal model parameterization is in any case
likely to be that which minimizes the global correlation of
loads estimated via equations (11).
[55] In Figure 10, we show the averaged global coherence

g2 between surface and internal loads,

g2 ¼ 1

59

X60
l¼2

Xl

m¼0
hS1lm þ {hS2lm
� �

x1lm � {x2lmð Þ
��� ���2X

i;m
hSilm
� �2X

i;m
x2ilm

; ð32Þ

for a range of assumed lithospheric thickness Te, crustal
density r0, crustal thickness Tc, and mantle density r1. A
grid search over these parameters, assuming other para-
meters as given in Table 2 and a 50 km load depth, yields a
global minimum coherence of the load fields g

2 = 0.071
when Te = 110 km, r0 = 2600 kg m�3, Tc = 160 km and r1 =
3300 kg m�3. Note that it is desirable to assume a shallow
load depth for this calculation, as assuming a deep internal
load can dramatically amplify (and spuriously correlate) the
load coefficients for assumed load depths approaching the
singular depth. Also shown as thick dotted lines in Figure 10
are the 65% and 95% confidence intervals for the
parameters that yield minimum coherence, estimated via
the likelihood ratio method [Beck and Arnold, 1977]. The
minimum-coherence parameters of Te and r0 are tightly
constrained, but the coherence of estimated loads is so
insensitive to assumed Tc and r1 that no value in the range
of the search can be rejected at high confidence.
[56] The coherence as a function of spherical harmonic

degree l for the model parameterization that minimizes
equation (32) is also shown in Figure 10d. The coherence
is non-negligible at l � 10 and l > 50, where averaged
coefficient ratios show evidence of bias downward from the
surface load prediction (Figure 9). Increased coherence of
surface and internal loading at the very long wavelengths
may result from the collocation of volcanic loading and
thermal/chemical buoyancy at Tharsis and Elysium, as well
as crustal excavation and mantle upwarp by the Hellas and
Utopia impacts. Increased correlation of surface and internal
loads at l > 50 may reflect surface density at the major
volcanoes (Olympus, Pavonis, Ascraeus, Arsia, Syrtis Major
and Syria Planum) which dominate the areoid and topo-
graphic power at these wavelengths. These features likely
have much higher density than the 2600 kg m�3 which best
represents the remainder of the Martian topography. The
residual mass of the volcano edifice would be assigned to
subsurface loading by the solution of equations (11) and then
amplified by downward continuation to 50 km depth.
[57] If we assume the parameters that minimize coherence

represent a ‘‘best’’ approximation of the Martian lithosphere
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and density structure, we can also calculate a preferred
estimate of the internal contribution to loading of Tharsis.
Using the minimum coherence parameters and an internal
load depth of 200 km, we find that the internal buoyancy
contributes 2.1% of the lithospheric force balance, 4.2% of
the topography and 0.7% of the areoid at Tharsis.

6. Conclusions

[58] We have introduced a methodology for inverting
internal and surface loading effects from geoid and topog-
raphy data. The method incorporates the physics of both

lithospheric stress and viscous coupling to deeper loads, as
well as finite amplitude effects of layer boundary topography
on the geoid. Application of the method to synthetic geoid
and topography outputs from a fully viscoelastic formulation
of planetary loading [Zhong and Zuber, 2000] yields negli-
gible errors of <5% in recovery of the input loads.
[59] The method was applied to estimate loading of the

Tharsis province on Mars. By far the largest uncertainties in
the contribution of internal loading to Tharsis are introduced
by parameter uncertainties in the depth of internal loading,
lithospheric thickness, and reference density structure of
Mars.

Figure 10. Coherence of the surface load field hS and internal load x as a function of assumed model
parameters. The contour interval is 0.02, the 65% and 95% confidence ellipses for the minimum are shown
as thick dotted lines, and the minimum coherence is indicated by a diamond. (a) Lithospheric thickness Te
versus crustal density r0. (b) Lithospheric thickness Te versus crustal thickness Tc. (c) Lithospheric
thickness Te versus mantle density r1. (d) Coherence as a function of spherical harmonic degree l for the
minimum global g2 defined by Te = 110 km, r0 = 2600 kg m�3, Tc = 160 km, and r1 = 3300 kg m�3.
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[60] Within parameter uncertainties, lithospheric loading
by internal buoyancy beneath Tharsis is less than half of that
by volcanically constructed surface loads. Internal buoy-
ancy is responsible for �50% of the topographic expression
of Tharsis, and �25% of the areoid (Figures 7 and 8). The
upper-bound estimate of internal load contribution would
require deep internal loading �420 km, a thick lithosphere
Te � 200 km, and a high crustal density near 3000 kg m�3.
We cannot rule out a null contribution from the internal
Tharsis load, nor can we rule out negative contributions
from an anomalously dense load.
[61] Using the methodology developed here, the relation-

ship between geoid and topography can be modeled exactly
using any arbitrarily chosen Te and reference density struc-
ture. Hence, when estimating a ‘‘best’’ Te and density from
gravity and topography, it is necessary to somehow con-
strain the stochastic relationship between surface and
internal loading. Distributions of individual areoid/topogra-
phy coefficient ratios (Figure 9) suggest that the relationship
between surface and internal loads is best (albeit not
perfectly) described as uncorrelated. If that assessment is
correct, Te and density can be estimated by minimizing the
global coherence of surface and internal load estimates. We
find that coherence is minimized at 95% confidence by a
lithospheric thickness Te = 110 ± 30 km and crustal density
r0 = 2600 ± 150 kg m�3 (Figure 10). Load coherence is also
minimized by crustal thickness Tc = 160 km and mantle
density r1 = 3300 kg m�3, but it is insensitive to these
parameters at 95% confidence.
[62] Using the minimum-coherence parameters and an

internal load depth of 200 km, internal buoyancy contrib-
utes 2.1% of the lithospheric force balance, 4.2% of the
topography and 0.7% of the areoid at Tharsis. For the same
parameterization with a load depth of 400 km, internal
buoyancy contributes 4.3% of the lithospheric force bal-
ance, 8.5% of the topography and 2.2% of the areoid at
Tharsis. Internal load contributions for other model param-
eterizations can be determined from inspection of Figures 7
and 8.
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