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S U M M A R Y
Thermal and dynamical evolution of planets is controlled by thermal convection in planetary
mantles. Mantle compressibility, which measures volume change due to pressure change and
its associated energetic effects, can have important effects on planetary mantle convection.
However, key issues including marginal stability analysis, thermal boundary properties and
heat transfer in compressible mantle convection are not well understood. This paper studies
the influence of mantle compressibility on thermal convection in an isoviscous and compress-
ible fluid with infinite Prandtl number, using both marginal stability analysis and numerical
modelling. For the marginal stability analysis, a new formulation of the propagator matrix
method is implemented to compute the critical Rayleigh number Rac and the corresponding
eigenfunctions for compressible convection at different wavelengths (i.e. wavenumber kx) and
dissipation number Di which measures the compressibility. Rac from the analysis is in a good
agreement with that determined from the numerical experiment using the eigenfunctions as
initial perturbations. Our study suggests that if Ra is defined by the surface density, the min-
imum Rac may occur at non-zero Di. Finite element models are computed for compressible
mantle convection at different Ra and Di. Heat flux and thermal boundary layer (TBL) proper-
ties including boundary layer thickness and temperature difference are quantified and analysed
from the numerical results. Scaling laws of temperature differences across TBLs and of the
heat flux are derived analytically for compressible mantle convection and are verified by the
numerical results. This study shows that while TBL thicknesses and the heat flux are still scaled
with Ra to the −1/3 and 1/3 power, respectively, as those for incompressible convection, they
also strongly depend on Di. In particular, compressibility breaks the symmetry for the top and
bottom TBLs, and the ratios of thickness and temperature difference for the top TBL to those
for the bottom TBL are exp(Di/2). These results have important implications for compressible
mantle convection.

Key words: Instability analysis; Heat flow; Mantle processes; Dynamics of lithosphere and
mantle.

1 I N T RO D U C T I O N

Thermal convection within planetary mantles controls thermal and
dynamic evolution of planets. Most studies on Earth’s mantle con-
vection employ a Boussinesq approximation that assumes an incom-
pressible mantle. Classic studies with the Boussinesq approximation
provide an important understanding of Earth’s mantle convection
and interior dynamics (e.g. McKenzie et al. 1974). However, by
formulating compressible mantle convection models, a number of
studies have also examined the non-Boussinesq effects including
depth-dependent density, viscous heating and adiabatic heating (e.g.
Jarvis & McKenzie 1980; Steinbach et al. 1989).

In their classic work on compressible mantle convection, Jarvis
& McKenzie (1980) formulated a 2-D Cartesian model and system-

atically investigated the marginal stability problem and finite am-
plitude convection. Other models of compressible convection have
been formulated to examine the effects of equations of state (Ita &
King 1994), variable viscosity (Tackley 1996), spherical geometry
(Bercovici et al. 1992) and dynamic pressure in the buoyancy term
(Leng & Zhong 2008a). Recently, Tan et al. (2011) incorporated
variable viscosity and material properties into 3-D spherical mod-
els of compressible mantle convection. Also, a number of studies
showed that mantle compressibility has significant effects on plume
dynamics. It has been demonstrated that the number of plumes
is reduced in compressible convection since small-scale plumes
merge to form super-plumes (Balachandar et al. 1992; Thompson &
Tackley 1998; Tan & Gurnis 2005). Leng & Zhong (2008b) reported
that the compressibility has a controlling effect on plume excess
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temperature and plume heat flux. Tan et al. (2011) found that in a
compressible mantle, the plumes form around the edges of chemical
‘domes’ at the core mantle boundary.

However, more studies are needed to better understand the
marginal stability analysis and scaling laws of convective heat flux
for compressible mantle convection. Marginal stability analysis was
performed for compressible convection with limited parameters and
restricted boundary conditions (Jarvis & McKenzie 1980; Bercovici
et al. 1992). While scaling laws of heat flux and thermal boundary
layer (TBL) properties are well understood for Cartesian incom-
pressible thermal convection, they remain poorly understood for
compressible convection. Recently, as more exoplanets or super-
Earths are detected (e.g. Charbonneau et al. 2009), there is a grow-
ing interest in understanding the mantle dynamics for these planets
(e.g. O’Neill & Lenardic 2007; Valencia et al. 2007; Van Heck &
Tackley 2011; Foley et al. 2012). A distinct character of super-
Earths’ mantles is their very large compressibility and Rayleigh
number, due to their sizes and masses. Most of previous studies
on compressible mantle convection considered compressibility in
a range appropriate to Earth, and now it is necessary to consider
larger compressibility.

In this study, we perform marginal linear stability analysis using
a new technique based on a propagator matrix method. We also
compute finite amplitude compressible models with a wide range
of mantle compressibility and Rayleigh number, and derive scaling
laws for TBL properties and convective heat transfer. In the follow-
ing section, we present model formulation and governing equations.
In Section 3, we show results for the marginal stability analysis of
compressible convection. In Section 4, we present finite amplitude
convection calculations and derive scaling laws for TBL properties
and heat flux. In Sections 5 and 6, we discuss the implications of our
results for compressible convection and make concluding remarks.

2 M O D E L F O R M U L AT I O N

2-D Cartesian models are formulated with an anelastic-liquid ap-
proximation (ALA) (e.g. Jarvis & McKenzie 1980; Schubert et al.
2001). ALA uses depth-dependent parameters, notably density ρr (z)
as reference state in the governing equations. In this study, param-
eters such as viscosity, thermal conductivity, specific heat and ther-
mal expansion are assumed constant in our models unless otherwise
indicated.

ρr (z) is determined by the Adams–Williamson equation of state
by Birch (1952):

1

ρr

dρr

dz
= − αg

cP�
, (1)

where z is the vertical coordinate pointing upwards, g is the grav-
itational acceleration, α is the coefficient of thermal expansion,
cP is the specific heat at constant hydrostatic pressure and � is the
Grüneisen’s parameter and is defined as

� = αKS

ρcP
, (2)

where KS is the isentropic bulk modulus. Note that in our model
with homogeneous composition, isentropic and adiabatic process
may be viewed as equivalent. We also assume that � is constant.

In ALA, the density anomaly �ρ is determined by both temper-
ature perturbation T ′ = T − Tr and dynamic pressure p,

�ρ = ρr

[−α (T − Tr ) + K−1
T p

]
, (3)

where Tr is the reference temperature and KT is the isothermal bulk
modulus. In our models, we make assumption that KT ≈ KS , which
simplifies the compressible mantle convection problem as discussed
in Schubert et al. (2001).

With assumption of infinite Prandtl number, the conservation
equations of mass, momentum and energy can be written as follows
(Jarvis & McKenzie 1980; Ita & King 1994; Leng & Zhong 2008a;
King et al. 2010):

(ρr ui ),i = 0, (4)

− p, jδi j + τi j, j − �ρgδi z = 0, (5)

ρr cP Ṫ + ρr cP ui T,i + ρr gαT uz = (kT,i ),i + τi j ui, j + ρr H, (6)

where ui and T are the velocity vector and temperature, τ is the de-
viatoric stress tensor, Ṫ is the derivative of temperature with respect
to time t, k is the thermal conductivity, H is the heat production rate,
i and j are spatial indices and z means vertical direction and δi j is
the Kronecker delta function.

The deviatoric stress tensor τi j is determined by a rheology equa-
tion

τi j = η

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
, (7)

where η is the viscosity.
Eqs (4)–(6) can be non-dimensionalized with the following

characteristic values:

xi = dx ′
i , ui = κ0

d
u′

i , T = �T T ′ + Ts, Ts = �T T ′
s ,

ρr = ρ0ρ
′
r , t = d2

κ0
t ′, H = H ′κ0�T cP0

d2
, η = η0η

′,

p = η0κ0

d2
p′, α = α0α

′, g = g0g′, cP = cP0c′
P ,

� = �0�
′, k = k0k ′, (8)

where symbols with primes are dimensionless; symbols with a sub-
script 0 are surface values of corresponding parameters and are
used as the reference to scale the dimensional variables; d is the
mantle thickness, �T is the total temperature difference across the
layer and Ts is the surface temperature which is taken as 273K in
this study; κ0 is the reference thermal diffusivity and is defined as
κ0 = k0/(ρ0cP0).

After dropping the primes, the dimensionless governing equa-
tions for ALA are as follows (e.g. Leng & Zhong 2008a):

(ρr ui ),i = 0, (9)

− p, jδi j + τi j, j + [ρrαgRa(T − Tr ) − αg

cP�
pγ ]δi z = 0, (10)

ρr cP Ṫ + ρr cP ui T,i + ρr Diαguz(T + Ts)

= (kT,i ),i + Di

Ra
τi j ui, j + ρr H, (11)

where Ra is the Rayleigh number, Di is the dissipation number and
γ is the mantle compressibility. They are defined as

Ra = ρ2
0 cP0α0g0�T d3

k0η0
, (12)

Di = α0g0d

cP0
, (13)
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γ = Di

�0
. (14)

In our model, �0 is taken as 1; therefore, Di = γ . The dimension-
less surface temperature Ts is fixed as 0.091 and the heat production
rate H in eq. (11) is zero. The non-dimensional values of �, α, k, g
and cP are all 1 in eqs (9)–(11) unless otherwise indicated.

The dimensionless Adams–Williamson equation is

1

ρr

dρr

dz
= − αg

cp�
γ. (15)

With αg/(cP�) = 1 and Di = γ , the dimensionless reference den-
sity profile is

ρr (z) = ρ0eDi(1−z). (16)

We consider 2-D Cartesian models within a box of non-
dimensional height of 1 and length L. The top and bottom boundaries
are set as z = 1 and z = 0, respectively. We use free-slip bound-
aries with zero normal velocities and tangential stresses at the four
boundaries of the box. The non-dimensional temperature is fixed
at 0 and 1 on the top and bottom boundaries, respectively, and the
sidewalls are thermally insulated.

Two different analyses are presented in this study: the marginal
stability analysis and the finite amplitude convection calculations.
We use the finite element code developed by Leng & Zhong (2008a)
for numerical experiments of compressible mantle convection. This
code is based on incompressible mantle convection code Citcom
(Moresi et al. 1996) and has been benchmarked (Leng & Zhong
2008a; King et al. 2010).

3 M A RG I NA L L I N E A R S TA B I L I T Y
A NA LY S I S U S I N G P RO PA G AT O R
M AT R I X M E T H O D

Rayleigh number, Ra, is an important non-dimensional number that
determines the vigour of convection. Convection occurs when Ra
exceeds a critical value Rac. Marginal linear stability analysis can be
used to study the onset of mantle convection and to determine Rac

(e.g. Jeffreys 1930; Turcotte & Schubert 2002). Classic analyses us-
ing a stream-function formulation have been used to determine Rac

for incompressible fluid with uniform thermodynamic parameters
and the same boundary conditions as our models (e.g. Turcotte &
Schubert 2002) and Rac is:

Rac = (π 2 + k2
x )3

k2
x

, (17)

where kx is the wavenumber of horizontal perturbation.
For compressible convection with depth-dependent density and

possibly other depth-dependent thermodynamic properties, prop-
agator matrix method is more effective. The propagator matrix
method has been used to obtain analytic solution of the Stokes flow
problem for incompressible (Hager & O’Connell 1981) and com-
pressible (Leng & Zhong 2008a) models. With a stream-function
and vorticity formulation, Jarvis & McKenzie (1980) employed the
propagator matrix method for marginal stability analysis with heat
flux boundary conditions. Buffet et al. (1994) used the propagator
matrix method for marginal stability analysis for incompressible
flows with depth-dependent viscosity. In this study, we develop a
new implementation of propagator matrix method for marginal sta-
bility analysis for both incompressible and compressible flows with
free-slip and isothermal boundary conditions. Our implementation

is based on a stress–velocity formulation which is similar to that
in Leng & Zhong (2008a), but we also incorporate the linearized
energy equation. The setup of propagator matrix and the solution
procedure are discussed in Appendix A. In the following sections,
we will outline the basic principles of marginal stability analysis and
present the critical Rayleigh number of compressible convection as
well as the corresponding eigenfunctions solved by the propagator
matrix method.

3.1 Linearized governing equations

Marginal linear stability analysis is performed in the limit of weak
convection, in which the governing equations can be linearized
around a background state (Turcotte & Schubert 2002). For basal
heating convection with a fixed temperature of 1 at the bottom and
0 at the top, and with constant thermal conductivity, the reference
temperature is set to be Tr = 1 − z, that is, purely conductive tem-
perature. Introduce a small perturbation T ′ into reference temper-
ature, such that T = Tr + T ′, and the perturbed temperature leads
to non-zero horizontal and vertical velocities u′and v′, as well as
non-zero shear and normal stresses τ ′and σ ′.

Since T ′, u′, v′, τ ′ and σ ′ are all of small magnitude, the governing
eqs (9)–(11) can be linearized as follows:

(
ρr u′

i

)
,i

= 0, (18)

− p, jδi j + τ ′
i j, j +

(
ρrαgRaT ′ − αg

cP�
pDi

)
δi3 = 0, (19)

ρr cP Ṫ ′ − ρr cPv′ + ρrαgv′ Di(1 − z + Ts) = k∇2T ′. (20)

The dependences of the perturbations on x and z are separable.
The horizontal and vertical components of the perturbations are
represented by sinusoidal functions and arbitrary functions, respec-
tively. Take the temperature perturbation T ′ as an example, T ′ can
be expressed in Fourier transform as

T ′ =
∫

T0(z) sin(kx x)eα′t dkx , (21)

where kx is the wavenumber of the horizontal component of tem-
perature perturbation, T0(z) is the vertical dependence of the tem-
perature perturbation, and α′ is the growth rate and is taken as
a real number. Note that both T0(z) and α′ in eq. (21) are cor-
responding to kx. Perturbations should satisfy the boundary condi-
tions. The isothermal boundary condition in our model requires that
T ′(z = 0) = T ′(z = 1) = 0 and T0(z) in eq. (21) should be 0 at z =
0 and z = 1. The critical Rayleigh number, Rac, is determined as the
value of Ra at α′ = 0. T0(z) at α′ = 0 is the eigenfunction of temper-
ature perturbation for corresponding Rac, that is, the corresponding
kx and Di.

The other four perturbations, u′, v′, τ ′ and σ ′, are expressed in
similar forms to that of T ′ in Appendix A. The vertical dependences
of u′, v′, τ ′and σ ′ are denoted as U (z), V (z), Yxz(z) and Szz(z),
respectively.

In Appendix A, we discuss that with a stress–velocity formula-
tion, the linearized governing eqs (18)–(20) for a compressible fluid
can be written as a vector linear differential equation:

dW

dz
= AW, (22)
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where A is a 6 × 6 matrix consisting of Ra, Di, kx, and other pa-
rameters, and W is a 6 × 1 vector:

W =
(

V, U,
Szz

2kx
,

Yxz

2kx
, T0,

dT0

dz

)T

, (23)

where superscript T denotes the matrix transpose.
The solution approach to eq. (22) using the propagator matrix

method and calculations of critical Rayleigh number and the corre-
sponding eigenfunctions are described in Appendix A.

This implementation of propagator matrix method is general and
can be used for marginal stability analysis for both incompress-
ible and compressible media with either homogeneous or depth-
dependent thermodynamic and material properties such as thermal
conductivity or viscosity.

3.2 Results for Rac and eigenfunctions

We first show calculations of Rac for incompressible (Di = 0) and
homogeneous fluid at fundamental mode n = 0 from our method.
Here mode n represents the number of internal nodes of the vertical
velocity eigenfunction, V(z) (i.e. the first mode or n = 1 mode has
one V(z) = 0 node, and thus two cells in the vertical direction). We
use 129 uniform grid points in z direction to compute propagator
matrix for all the results shown in this study. Fig. 1(a) shows Rac

for different wavenumbers kx and the results are identical to those
from classic analysis given by eq. (17).

For compressible fluid, Rac at fundamental mode n = 0 and first
mode n = 1 are determined and given in Table 1 and Figs 1(b) and
(c). We determined Rac at n = 0 mode for Di = 0, 0.5, 1 and 1.5,
and kx from 0.1π to 3π . We found that n = 0 mode does not exist
for large Di. For example, for kx = 0.5π , π and 2π , the maximum
Di with which n = 0 mode exists is 1.9, 1.8 and 1.7, respectively.
We also determined Rac at n = 1 mode for Di = 0, 0.5, 1 and 2,
and kx varying from 0.5π to 2π . Rac for n = 1 mode is much larger
than that for n = 0 mode. It is expected that n = 1 mode does not
exist for even larger Di (e.g. Jarvis & McKenzie 1980), but we did
not explore this topic further.

We now examine the dependence of Rac on dissipation number
Di and wavenumber kx. At the fundamental mode (n = 0), curves
of Rac versus kx for Di = 0 and Di = 1 are nearly identical, and are
both higher than Rac for Di = 0.5 (Fig. 1b). As Di increases from
1 to 1.5, Rac increases rapidly. For a particular wavenumber kx =
π and mode n = 0 (Fig. 1d), while Rac increases rapidly with Di at
large Di (Di > 1), following an approximately exponential function
of Di, Rac decreases with Di from Di = 0 to Di = 0.6. However, if
Ra is defined by the averaged density ρ̄, where ρ̄ = ∫ 1

0 ρr (z)dz =
ρ0(eDi − 1)/Di , rather than the surface density ρ0 as in eq. (12),
Rac would increase monotonically with Di (Fig. 1d). Rac shows
similar Di dependences for wavenumbers kx = 0.5π and kx = 2π

at fundamental mode (Table 1). For n = 1 mode, Rac increases with
Di for Di varying from 0 to 1 (Fig. 1c). While for n = 0 mode,
the wavenumber kx at which Rac is minimum is about

√
2π/2

Figure 1. (a) Critical Rayleigh number Rac versus wavenumber kx for incompressible fluid with uniform thermodynamic parameters and fixed temperature
boundary conditions. The ‘+’ symbols represent Rac from propagator matrix method and the line represents Rac from eq. (17). (b) and (c) Rac versus kx for
compressible fluid with uniform thermodynamic parameters at (b) fundamental mode n = 0 and for different Di; (c) first higher mode n = 1 and for different
Di. (d) Rac versus Di at kx = π for n = 0. In (b), (c) and (d), the lines are Rac (defined by surface density) from the marginal stability analysis, and the circles
are those from numerical experiments with error bars (Table 1). In (d), the dashed line represents Rac defined by depth-averaged density.
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Table 1. Critical Rayleigh number computed by propagator matrix method
(analytical) and finite element modelling (numerical).

Mode Wave number Di Rac averaged Rac Error
n kx (π ) (analytical) (numerical)

0 0.5 0 761 760 ±0.8 per cent
0 0.5 0.5 667 667 ±0.7 per cent
0 0.5 1 761 760 ±0.8 per cent
0 0.5 1.5 2812 2812 ±0.5 per cent
0 1 0 779 779 ±0.8 per cent
0 1 0.5 683 683 ±0.4 per cent
0 1 1 785 785 ±0.6 per cent
0 1 1.5 2408 2408 ±0.5 per cent
0 2 0 3044 3045 ±0.2 per cent
0 2 0.5 2652 2645 ±0.5 per cent
0 2 1 3035 3035 ±0.3 per cent
0 2 1.5 6101 6100 ±0.3 per cent
1 0.5 0 29 910 30 500 ±0.7 per cent
1 0.5 0.5 26 321 26 825 ±0.3 per cent
1 0.5 1 35 533 36 400 ±1.6 per cent
1 0.5 2 23 775 23 150 ±1.5 per cent
1 1 0 12 176 12 200 ±0.8 per cent
1 1 0.5 10 714 10 725 ±0.2 per cent
1 1 1 14 394 14 400 ±0.7 per cent
1 1 2 11 215 11 180 ±0.7 per cent
1 2 0 12 468 12 450 ±0.4 per cent
1 2 0.5 10 963 10 950 ±0.5 per cent
1 2 1 14 557 14 550 ±0.7 per cent
1 2 2 14 572 14 600 ±0.7 per cent

for Di ≤ 1, this critical wavenumber increases with Di (Fig. 1b),
suggesting that smaller convective wavelength is favoured for larger
Di.

The eigenfunctions T0(z), U(z) and V(z) are shown in Fig. 2. It is
found that compressibility, or Di, has a significant effect on these
eigenfunctions (Figs 2a and b). For Di = 0, T0(z), U(z) and V(z) are
purely sinusoidal functions (Fig. 2, plotted in dashed lines as refer-
ences for other cases). For Di = 1, T0(z), U(z) and V(z) are similar
to sinusoidal functions, but are distorted to have larger amplitudes
at shallow depths (or z > 0.5) than sinusoidal functions (Fig. 2a).
For Di = 2, the fundamental mode does not exist, and eigenfunc-
tions of n = 1 mode is plotted. It can be seen that T0(z), U(z) and
V(z) differ significantly from sinusoidal functions with flow veloc-
ity much stronger at the shallow depths (Fig. 2b). Eigenfunctions
are also influenced by depth-dependent thermodynamic parameters
(Figs 2c–d).

Rac is also determined from numerical experiments for kx =
0.5π , π and 2π , with Di = 0, 0.5, 1 and 1.5 for the fundamental
mode, and Di = 0, 0.5, 1, 1.5 and 2 for the first mode, using the
finite element code for compressible convection (Leng & Zhong
2008a). We determine the critical Rayleigh number numerically
by searching for a Rayleigh number at which the kinetic energy
Ek remains constant with time for a given initial perturbation in
temperature (Zhong & Gurnis 1993). The initial perturbation is
given as

T ′ = cT0(z) cos(kx x), (24)

where c is a small number (e.g. 10−2) and T0(z) is the corresponding
eigenfunction determined from the marginal stability analysis for
the given Di and kx as discussed earlier. The kinetic energy Ek of
the flow from the numerical models is defined as

Ek =
∫
S

(u2 + v2)d S, (25)

where the integration domain S represents the whole flow field in
the 2-D model. For the given Di and kx, we calculate Ek for the first
200 time steps and adjust Ra in the model until Ek neither increases
nor decays with time (Fig. 3 for Ek versus time for two example
cases). The resulting Ra is the critical Rayleigh number where the
growth rate is 0 (e.g. Zhong & Gurnis 1993).

Our finite element models use the same model parameters
and boundary conditions as those for linear stability analysis.
The models use nx × nz = 257 × 129, 129 × 129 and 65 × 129
grid points for kx = 0.5π , π and 2π , respectively (i.e. the as-
pect ratio of the box is 2, 1 and 0.5, respectively). Such nu-
merically determined Rac for different Di and kx are in excel-
lent agreement with those from our propagator matrix method
with relative difference of less than 1 per cent (Figs 1b–d and
Table 1), providing confirmation for both our propagator ma-
trix method and the finite element method for determining
Rac.

We make two remarks about the eigenfunctions. First, it is well
known that for incompressible (Di = 0) and homogeneous fluid,
the eigenfunctions are sinusoidal functions (e.g. Turcotte & Schu-
bert 2002). We showed that the eigenfunctions are no longer si-
nusoidal functions for compressible fluid with Di �= 0 and depth-
dependent density (Figs 2a and b). Even for incompressible fluid
with Di = 0, depth-dependent thermal conductivity or thermal
expansion also leads to non-sinusoidal forms of eigenfunctions
(Figs 2c and d). Second, it is important to use the eigenfunctions
of T0(z) in eq. (24) to determine Rac numerically. Although nu-
merical methods have been used to determine Rac (e.g. Zhong &
Gurnis 1993), it has not been explicitly demonstrated that the eigen-
functions of T0(z) are needed as initial temperature perturbations.
We found that forDi �= 0, if sin(π z) rather than eigenfunction of
T0(z) is used for the initial perturbations, the kinetic energy Ek does
not vary monotonically with time and Rac cannot be determined
accurately.
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Figure 2. The solid lines are eigenfunctions of temperature (left panel), horizontal velocity (middle panel) and vertical velocity (right panel) for models with
non-uniform properties: (a) Di = 1; (b) Di = 2; (c) non-uniform thermal conductivity that increases linearly from 1 at the top to 2 at the bottom, Di = 0; (d)
non-uniform thermal expansion that decreases linearly from 1 at the top to 0.2 at the bottom, Di = 0. The dashed lines in those figures are the corresponding
eigenfunctions for a case with Di = 0 and homogeneous fluid and are sinusoidal functions.
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Analyses of compressible convection 131

Figure 3. Kinetic energy Ek versus time from numerical calculations using Citcom with kx = π , Ra = 730 and (a) Di = 0; (b) Di = 0.5. The critical
Rayleigh numbers Rac computed from propagator matrix method for these two cases are 779 and 683, respectively. These two calculations show that Ek

increases/decreases with time when Ra is greater/less than Rac. These two cases were computed for 40 000 time steps (elapsed time ∼5) to reach nearly steady
states. For calculations numerically determining Rac, models are often computed for 200 time steps.

4 F I N I T E A M P L I T U D E C O N V E C T I O N

We computed 2-D Cartesian models of compressible mantle con-
vection at different Ra and Di (Table 2) using a finite element code
(Leng & Zhong 2008a). In this study of finite amplitude convection,
the models are all 1×1 boxes. All the cases are for basal heating
convection with no internal heating. The calculations are done with
adequate resolution that produces less than 3 per cent discrepancy
between top and bottom heat flux for most cases (Table 2). For all
cases, there are at least three elements across a TBL. For most cases
with relatively low Ra, calculations start from initial temperature
perturbation as in eq. (24). But for cases with high Ra, we choose
steady-state temperature field from calculations with either lower
resolution or lower Ra as initial conditions. The calculations are run
until steady states, or quasi-steady states are attained when averaged
heat flux does not change with time (Fig. 4). Compressible convec-
tion is more time-dependent in general, as discussed in King et al.
(2010). In our analysis for cases which reach quasi-steady state,
time-averaged values of heat flux and TBL properties are used.

With no internal heating, Cartesian thermal convection for in-
compressible fluid (Di = 0) display symmetric features for the
TBLs. Top and bottom TBLs contain equal amount of buoyancy, so
are the downwellings and upwellings (Fig. 5a). Horizontally aver-
aged RMS velocity for the top and bottom TBLs are identical, and
the average temperature in the convective core is 0.5 (Fig. 6a). The
compressibility breaks the symmetry between the TBLs. For Di =
1 cases, the top TBL has larger temperature difference and larger
flow velocity than those for the bottom TBL, and consequently cold
downwellings dominate heat transfer (Figs 5b and 6b). The adiabatic
temperature gradient is also evident (Figs 6b–d). These features are
expected, as have been observed by Jarvis & McKenzie (1980). An
increasing compressibility causes reduced flow velocity and larger
lateral homogenous temperature, that is, less vigorous convection
(Figs 6a–c), which leads to less efficient heat transfer (Fig. 7 and
Table 2). A larger Di also causes upwelling plumes to be much
weaker than downwellings (Fig. 5d). When Di = 2, upwelling
plumes can hardly be produced, even with a very large Ra (e.g.
Fig. 5d with Ra = 3 × 109), because at large Di, the compressibility

cools the upwelling plumes rapidly to diminish the plumes (Leng
& Zhong 2008a).

We computed cases with dissipation number Di = 0, 0.5, 1, 1.5
and 2 and a large range of Ra (Table 2). The smallest Ra for each Di is
generally slightly larger than the corresponding Rac. In the following
subsections, we will first present numerical results, and then develop
a scaling theory on how Di and Ra control TBL properties and heat
transfer. We will show that our theoretical analysis is consistent with
the numerical results.

4.1 Numerical results of Nu and TBL properties

The Nusselt number is defined as the ratio of the heat flux through
the convection system to the heat flux which would exist in a purely
conductive state:

Nu = Q

k�T/d
= q, (26)

where Q is the dimensional convective heat flux, k�T/d is dimen-
sional heat flux in a purely conductive state and q is the dimen-
sionless heat flux, given how the equations are normalized in eq.
(8).

Fig. 7 shows Nu versus Ra for all the cases. For a given Di, in
general, Nu does not follow a straight line in the log-log plot at
small Ra. This is because at relatively small Ra, the top and bottom
TBLs have not been fully developed and separated. In the following
analysis on Nu ∼ Ra scaling, we choose cases with relatively large
Ra (Table 3) that have developed vigorous convection and with Nu
larger than 4. Those cases follow Nu ∼ Raα and are along straight
lines in Fig. 7.

Convective heat transfer is controlled by TBL properties. We
quantified the thickness δl and temperature difference �Tl of the top
and bottom TBLs from numerical models. The methods for quanti-
fying the TBL properties are described in Appendix B. For a given
Di, both the top and bottom TBL thicknesses, δt and δb, decrease
with Ra (Fig. 8a). For incompressible convection (Di = 0), δl scales
as δl ∼ Ra−0.30 from fitting our numerical results, which agrees with
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Table 2. Calculations for 2-D Cartesian compressible convection.

Case Di Ra I.C. Steps Grid �Nu (per cent) Nu εNu Vt Vb

(104)

NC0013 0 103 0 2 65 × 65 0.002 1.47 0 4.43 4.43
NC0033 0 3 × 103 0 2 65 × 65 0.001 3.10 0 16.59 16.59
NC0053 0 5 × 103 0 2 65 × 65 0.001 3.81 0 24.90 24.90
NC0014 0 104 0 2 65 × 65 0.003 4.89 0 41.47 41.47
AC0034 0 3 × 104 0 2 65 × 65 0.002 7.09 0 88.61 88.62
AC0015 0 105 0 4 65 × 65 0.002 10.5 0 197.8 197.8
AC0035 0 3 × 105 AC0015 6 65 × 65 0.009 14.9 0 406.3 406.4
AC0016 0 106 0 6 65 × 65 0.003 21.7 0 882.9 882.9
AC0036 0 3 × 106 0 6 65 × 65 0.007 30.2 0 1789 1788
AC0017 0 107 ∗ 12 129 × 129 0.112 44.7 0 3867 3863
AC0037 0 3 × 107 AC0017 18 257 × 257 0.938 61.9 0.28 7326 7388
NC0513 0.5 103 0 5 65 × 65 0.035 1.49 0 4.58 4.37
NC0533 0.5 3 × 103 0 2 65 × 65 0.035 2.58 0 14.31 14.02
NC0553 0.5 5 × 103 0 5 65 × 65 0.043 3.07 0 21.23 20.83
NC0514 0.5 104 0 5 65 × 65 0.043 3.82 0 35.05 34.37
NC0534 0.5 3 × 104 0 5 65 × 65 0.015 5.33 0 74.25 72.40
NC0564 0.5 6 × 104 0 4 65 × 65 0.005 6.54 0 117.0 113.3
NC0515 0.5 105 0 3 65 × 65 0.032 7.55 0 161.5 155.1
AC0535 0.5 3 × 105 0 3 65 × 65 0.111 9.00 0 252.7 224.8
AC0565 0.5 6 × 105 ∗ 8 129 × 129 4.534 11.3 1.60 341.1 307.1
AC0516 0.5 106 ∗ 8 129 × 129 0.132 13.0 0.40 444.6 390.1
AC0536 0.5 3 × 106 ∗ 8 129 × 129 4.789 17.2 1.52 529.9 464.2
AC0517 0.5 107 ∗ 10 129 × 129 1.818 23.9 2.42 1077 864.6
AC0537 0.5 3 × 107 AC0517 10 129 × 129 3.249 32.6 3.07 2032 1442
NC1013 1 103 0 5 65 × 65 0.075 1.21 0 2.98 2.56
NC1033 1 3 × 103 0 5 65 × 65 0.072 1.82 0 10.04 9.32
NC1014 1 104 0 5 65 × 65 0.075 2.47 0 24.40 23.0
NC1034 1 3 × 104 0 5 65 × 65 0.101 3.19 0 50.00 46.7
NC1015 1 1 × 105 0 1 65 × 65 0.218 3.87 0 88.89 77.47
NC1035 1 3 × 105 ∗ 8 129 × 129 4.14 4.82 0.82 129.3 111.6
NC1065 1 6 × 105 0 2.8 65 × 65 0.510 6.37 0 157.6 135.4
AC1016 1 106 0 5 65 × 65 0.078 6.87 0.20 192.4 166.5
AC1036 1 3 × 106 ∗ 3 129 × 129 1.159 9.44 0.97 387.6 279.3
AC1017 1 107 ∗ 10 129 × 129 2.473 13.7 1.80 798.3 503.1
AC1037 1 3 × 107 AC1037 10 129 × 129 4.646 18.9 2.14 1533 848.1
NC1533 1.5 3 × 103 0 5 65 × 65 0.148 1.11 0 3.99 2.08
NC1514 1.5 104 0 5 65 × 65 0.064 1.31 0 10.31 6.52
NC1534 1.5 3 × 104 0 5 65 × 65 0.038 1.49 0 19.16 12.57
NC1515 1.5 105 0 2 65 × 65 0.443 2.00 0 30.29 24.00
NC1535 1.5 3 × 105 ∗ 2.5 129 × 129 0.475 2.53 0 61.08 45.84
NC1516 1.5 106 ∗ 3.5 129 × 129 0.713 3.31 0.13 126.5 81.67
AC1536 1.5 3 × 106 ∗ 6 257 × 257 2.94 4.40 0.41 242.7 143.6
AC1517 1.5 107 ∗ 10 257 × 257 2.12 6.27 0.71 539.0 270.9
AC1537 1.5 3 × 107 ∗ 8 257 × 257 2.388 8.79 1.0 1075.2 472.6
AC1518 1.5 108 AC1537 8 257 × 257 5.298 12.27 1.52 2108.2 799.1
NC2034 2 3 × 104 0 3 65 × 65 0.018 1.10 0 9.06 0.51
NC2015 2 105 0 3 65 × 65 0.325 1.23 0 18.73 0.17
NC2035 2 3 × 105 0 5 65 × 65 0.700 1.33 0 34.63 0.20
NC2016 2 106 ∗ 2 129 × 129 1.084 1.46 0 60.4 0.38
NC2036 2 3 × 106 ∗ 8 257 × 257 −1.27 1.71 0.13 121.1 7.93
NC2017 2 107 ∗ 6 257 × 257 −1.23 2.16 0.18 242.2 29.46
NC2037 2 3 × 107 ∗ 10 385 × 385 1.645 2.79 0.33 456.3 92.84
AC2018 2 108 ∗ 4 385 × 385 1.284 3.87 0.38 1020 228.1
AC2038 2 3 × 108 ∗ 8 385 × 385 −1.72 5.24 0.50 1965 475.8
AC2019 2 109 ∗ 7 385 × 385 5.2613 7.27 0.71 4454 971.5
AC2039 2 3 × 109 AC2019 10 385 × 385 6.7265 10.14 0.85 7209 1666

The first six columns are for case number, Di, Ra, initial condition, the number of time steps (in 104) and finite element grid, respectively. NC cases do not have
vigorous enough convection, while AC cases have vigorous convection and are used in scaling analysis here. For the initial condition column (I.C.), ‘0’ stands
for default initial temperature condition (i.e. eq. 24), ‘∗’ for that from its lower resolution case and ‘AC’ for that from lower Ra case. Nu is for surface Nusselt
number. �Nu is the difference between the top and bottom Nu in percentage. εNu is the standard deviation of surface Nu (0 for steady state, while nonzero εNu

is for quasi-steady state). Vt and Vb are the RMS velocity for the surface and bottom, respectively.
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Figure 4. Nusselt number Nu versus elapsed time t for cases (a) AC0036,
with Di = 0, Ra = 3 × 106; (b) AC1537, with Di = 1.5, Ra = 3×107.
AC0036 reaches the steady state at t = 0.04. AC1537 reaches the quasi-
steady state at about t = 0.64. Solid and dashed lines are Nusselt number at
the bottom and top boundaries, respectively.

classic analysis, where δl ∼ Ra−1/3(e.g. McKenzie et al. 1974). TBL
thicknesses δl for compressible convection cases show similar scal-
ing with Ra to that for incompressible convection (Fig. 8a). While
for incompressible convection (Di = 0), δt and δb are identical, δt

is larger than δb for compressible convection (Di �= 0).
For Di = 0 cases, temperature difference of the top TBL,�Tt ,

is 0.5 and is identical with that of bottom TBL, �Tb (Fig. 9a). For
Di �= 0 cases, �Tt is larger than�Tb. Both �Tt and �Tb are mainly
controlled by Di, and decrease dramatically with Di. For a fixed Di,
both �Tt and �Tb seem to decrease slightly with Ra (Fig. 9a).

We may define a boundary layer Rayleigh number as

Ral = ρ2
l cPl gαl�Tlδ

3
l

ηl kl
, (27)

where subscript l means the local value of corresponding parameters
and l can be t and b, which represent the top and bottom TBLs,
respectively. Note that the density for each of the TBLs, ρ l, is taken
as that at the top of the TBL.

Rat and Rab can be defined and related to Ra as

Rat =
(

�T ∗
t

�T ∗

)(
δ∗

t

d

)3

Ra = �T 4
t

Nu3
Ra, (28)

Rab = e2Di(1−δb)

(
�T ∗

b

�T ∗

)(
δ∗

b

d

)3

Ra = e2Di(1−δb ) �T 4
b

Nu3
Ra, (29)

where the superscript ∗ denotes the dimensional values, and we
considered ρ = ρ0eDi(1−z) from eq. (16) and the following relations
for pure basal heating convection

Nu = (k�T ∗
t /δ∗

t )/(k�T ∗/d) = (�T ∗
t /�T ∗)/(δ∗

t /d) = �Tt/δt

= �Tb/δb. (30)

Rat and Rab calculated by (28) and (29) using numerical results
of Nu, �Tt and �Tb are presented in Fig. 10. Here, we use Nu, �Tt

and �Tb, but not TBL thicknesses δl , to determine TBL local Ra,
because the latter are more difficult to quantify accurately. The most
distinct feature of such determined local Ra is that for all the cases
(Fig. 10)

Rat = Rab. (31)

It should be noted that there are some scatterings in Fig. 10 for
Rat and Rab, especially for Di = 2 cases that may be caused by
resolution issues.

4.2 Boundary layer analysis of heat transfer

Eq. (28) can be written as

Nu = (�Tt )
4/3

(
Ra

Rat

)1/3

. (32)

The scaling Nu ∼ Ra1/3 is the same as that for isoviscous and
incompressible convection (e.g. McKenzie et al. 1974; Moresi &
Solomatov 1995; Schubert et al. 2001). While �Tt is a constant
(e.g. ∼0.5) for incompressible convection (Di = 0), it depends
strongly on Di for compressible convection (Di �= 0) (Fig. 9).

We take Rat = Rab as our basic assumption in the following
theoretical analysis. Combining (28) and (29), it is straightforward
to obtain:

�Tt

�Tb
= eDi(1−δb)/2 ≈ eDi/2. (33)

Since Nu = �Tt/δt = �Tb/δb (i.e. eq. 30), eq. (33) leads to

δt/δb ≈ eDi/2. (34)

Numerical results of �Tt/�Tb and δt/δb for all the cases with
different Ra and Di (Figs 8b and 9b) confirm eqs (33) and (34).

Our numerical results suggest that �Tt and �Tb are mainly con-
trolled by Di. Next, we derive how �Tt and �Tb are scaled by Di. In
finite amplitude compressible convection, an isentropic central re-
gion is produced (Jarvis & McKenzie 1980). In the central region,
the temperature in a non-dimensional form follows (e.g. Leng &
Zhong 2008a)

dTad

dz
= −Di (Tad + Ts) , (35)

where Ts is the non-dimensional surface temperature, Tad is the
adiabatic temperature and the negative sign results from z point-
ing upwards. Super-adiabatic temperature, which drives convection,
happens in the top and bottom TBLs. We divide the convective do-
main vertically into three parts: the top and bottom TBLs and the
central core, over which temperature differences are represented by
�Tt , �Tb and �Tad , respectively. Let �T be the temperature across
the whole convective system, and non-dimensional�T = 1.

�T = 1 = �Tt + �Tad + �Tb = �Tt

(
1 + �Tad

�Tt
+ �Tb

�Tt

)
.

(36)

From eq. (35), in the isentropic central area,

Tad + Ts = AeDi(1−z), (37)

where A is a constant (e.g. Leng & Zhong 2008a). At the base of the
top TBL or z = 1 − δt , the temperature is Tad (z = 1 − δt ) = �Tt ,
and from eq. (37),

Tad (z = 1 − δt ) + Ts = �Tt + Ts = AeDiδt . (38)

Likewise, at the top of the bottom TBL or z = δb, the temperature
is Tad (z = δb) = 1 − �Tb, and

Tad (z = δb) + Ts = 1 − �Tb + Ts = AeDi(1−δb ). (39)
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Figure 5. Contours and snapshots of representative temperature fields T for cases (a) AC0037, with Di = 0, Ra = 3 × 107, and normalized super-adiabatic
temperature field θ , for cases (b) AC1037, with Di = 1, Ra = 3 × 107; (c) NC2037, with Di = 2, Ra = 3 × 107; (d) AC2039, with Di = 2, Ra = 3 ×
109. The super-adiabatic temperature Tsa is computed by subtracting adiabatic temperature (for example, as shown in Fig. B1) from original temperature,
and normalized super-adiabatic temperature θ = (Tsa − T min

sa )/(T max
sa − T min

sa ), where T max
sa and T min

sa are the maximum and minimum of super-adiabatic
temperature. (T min

sa , T max
sa ) for cases in (b), (c) and (d) are (−0.2803, 0.1334), (−0.0713, 0.0127) and (−0.0584, 0.0174), respectively. All the cases have

reached quasi-steady states.

Combining (38) and (39) and defining �Tad = Tad (z = δb) −
Tad (z = 1 − δt ), we get

�Tad

�Tt + Ts
= eDi(1−δb ) − eDiδt

eDiδt
= eDi(1−δb−δt ) − 1. (40)

Substituting (40) and (33) into (36) leads to

1 = �Tt

[
1 +

(
eDi(1−δt −δb) − 1

)
(�Tt + Ts)

�Tt
+ e−Di/2

]
, (41)

which can be written as

�Tt = 1 − Ts

(
eDi(1−δt −δb) − 1

)
(e−Di/2 + eDi(1−δt −δb))

. (42)

From (42), �Tt is determined by both Di and TBL thickness (δt +
δb). As discussed before, TBL thickness δ scales with Ra following

δ ∼ Ra−1/3. Therefore, eq. (42) suggests that �Tt is influenced by
both Di and Ra. From numerical results, (δt + δb) is of a smaller
magnitude compared with 1, especially for large Ra (Fig. 8a), and
may be ignored in (42) without introducing a large error. As a result,
eq. (42) may be approximated as

�Tt ≈ 1 − Ts

(
eDi − 1

)
(e−Di/2 + eDi )

. (43)

Eq. (43) suggests that �Tt is mainly controlled by Di at large Ra,
which agrees with numerical results (Fig. 9a). Combining eqs (33)
and (43) leads to an expression for �Tb:

�Tb ≈ 1 − Ts

(
eDi − 1

)
(1 + e3Di/2)

. (44)
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Figure 6. The solid lines are the horizontally averaged temperature (left panel) and RMS velocity (right panel) for cases (a) AC0037; (b) AC1037; (c) AC2039.
The dashed lines in the temperature plots are the maximum temperature versus depth.

Fig. 11(a) shows the comparison between �Tt from eq. (43) and
those from numerical models for different Di and Ra. For a given
Di, both �Tt from the largest Ra case and the averaged �Tt for
all cases (Table 3) are plotted. �Tt from the numerical models
agree well with that predicted from the theoretical analysis (Eq. 43)
with <5 per cent discrepancy, especially for cases with the largest
Ra, and it is expected because eq. (43) is a better approximation for
large Ra cases. �Tb from numerical models for different Di and Ra
show similarly good agreement with those predicted from eq. (44)
(Fig. 11b).

Substituting (43) into (32), we find

Nu =
(

1 − Ts(eDi − 1)

e−Di/2 + eDi

)4/3 (
Ra

Rat

)1/3

. (45)

From Fig. 10, Rat is approximately a constant of 18 for Di �= 0
cases. Using Rat = 18 for Di �= 0 cases and Rat = 6 for Di = 0
in eq. (45), Fig. 12 shows the comparison of Nu from (45) with our

numerical results for all the cases with different Ra and Di. This
comparison suggests that our theory as given by eq. (45) describes
the numerical results of heat transfer well.

5 D I S C U S S I O N

In this study, we formulate a 2-D Cartesian compressible convec-
tion model to examine the effects of compressibility on thermal
convection. We present a new implementation of propagator ma-
trix technique for marginal linear stability analysis and determine
critical Rayleigh number for different dissipation numbers Di and
wavenumbers kx. In the regime of finite amplitude convection, we
use a finite element code to study the influence of Di on TBL prop-
erties and heat flux for models with kx = π and different Di and Ra.
We also develop scaling laws that describe the dependence of TBL
properties and heat flux on Di and Ra.

 at U
niversity of C

olorado on June 26, 2013
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


136 X. Liu and S. Zhong

Figure 7. Nu versus Ra in log-log plot for 2-D compressible convection
with different Di. The symbols diamond, circle, star, triangle and square
are for cases with Di = 0, 0.5, 1, 1.5 and 2, respectively. The cases along
the straight lines with filled symbols have developed vigorous convection
and are used in the scaling analyses (Table 3). When applicable, error bars
represent standard deviations.

5.1 Marginal linear stability analysis

Using a propagator matrix method, we have determined the critical
Rayleigh number, Rac, for compressible convection with Di varying
from 0 to 3. Its agreement with Rac determined from numerical
experiments proves the robustness of the method and results. Our
results indicate that if defined with surface density, Rac does not vary

monotonically with Di. For example, with horizontal perturbation
wavenumber kx = π , Rac decreases from 779 for Di = 0 to 681 for
Di = 0.6, but Rac increases rapidly with Di for Di > 0.6 (Fig. 1d).
To show the robustness of the result, we computed two cases with
Di = 0 and 0.5, respectively, but with the same Ra = 730 and
kx = π , using our finite element model. Note that Ra = 730 is
slightly smaller than Rac = 779 for Di = 0.0 but larger than Rac =
683 for Di = 0.5. The initial temperature perturbations for these
calculations are the same as described in Section 3.2. Fig. 3 shows
that with same Rac = 730, the kinetic energy Ek increases with time
to a steady-state value for Di = 0.5 case, but decays to nearly zero
for Di = 0 case, confirming that Rac is smaller for Di = 0.5 than
for Di = 0. However, it should be pointed out that if we re-define
Ra using the averaged density rather than the surface density as in
eq. (12), Rac does increase monotonically with Di (Fig. 1d).

Our results appear significantly different from those by Jarvis &
McKenzie (1980), where the authors found that Rac increases much
more rapidly with Di for models with heat flux boundary conditions
at the bottom. For example, for kx = π , Jarvis & McKenzie (1980)
reported that Rac defined by the average density increased from
586.8 for Di = 0 to 9310 for Di = 0.117, and to 2.6 × 105 for Di =
0.5. It is interesting that the bottom heat flux boundary may have
such a major influence on Rac.

Eigenfunctions for the fundamental mode and kx = π (Fig. 2)
show that as Di increases, the flow in the lower region becomes
more sluggish than that in the upper region. For Di = 2, there is
an internal node in the eigenfunction of vertical velocity, indicat-
ing a shear driven flow in the lower region. This is similar to the
eigenfunction results by Jarvis & McKenzie (1980). One important
conclusion from our study is that the eigenfunctions of temperature
T0(z), horizontal and vertical velocities U(z) and V(z), for compress-
ible convection may differ significantly from sinusoidal functions

Table 3. TBL properties of finite-amplitude convection cases.

Cases Di Ra �Tt �Tb δt δb Rat Rab

AC0034 0 3 × 104 0.500 0.500 0.112 0.112 5.25 5.24
AC0015 0 105 0.495 0.495 0.075 0.075 5.19 5.19
AC0035 0 3 × 105 0.496 0.497 0.054 0.054 5.50 5.50
AC0016 0 106 0.497 0.497 0.038 0.038 5.94 5.94
AC0036 0 3 × 106 0.500 0.500 0.028 0.028 6.80 6.79
AC0017 0 107 0.497 0.496 0.019 0.019 6.80 6.76
AC0037 0 3 × 107 0.485 0.500 0.014 0.014 7.03 7.95
AC0535 0.5 3 × 105 0.409 0.305 0.072 0.056 11.5 9.16
AC0565 0.5 6 × 105 0.404 0.291 0.059 0.045 11.9 7.33
AC0516 0.5 106 0.389 0.296 0.047 0.037 10.4 9.08
AC0536 0.5 3 × 106 0.389 0.291 0.036 0.029 13.4 11.0
AC0517 0.5 107 0.381 0.293 0.026 0.021 15.6 14.4
AC0537 0.5 3 × 107 0.378 0.298 0.019 0.016 17.8 18.4
AC1016 1 106 0.269 0.168 0.061 0.038 16.1 16.9
AC1036 1 3 × 106 0.262 0.158 0.044 0.026 16.9 15.6
AC1017 1 107 0.255 0.156 0.030 0.019 16.7 16.4
AC1037 1 3 × 107 0.251 0.156 0.022 0.014 17.8 19.1
AC1536 1.5 3 × 106 0.154 0.073 0.053 0.023 19.6 19.1
AC1517 1.5 107 0.146 0.063 0.036 0.014 18.4 12.5
AC1537 1.5 3 × 107 0.140 0.063 0.025 0.011 17.2 13.5
AC1518 1.5 108 0.137 0.062 0.018 0.008 19.1 15.6
AC2018 2 108 0.059 0.023 0.023 0.007 21.2 26.6
AC2038 2 3 × 108 0.056 0.024 0.017 0.006 20.8 34.4
AC2019 2 109 0.054 0.022 0.012 0.004 22.1 35.3
AC2039 2 3 × 109 0.053 0.020 0.008 0.003 22.6 24.3

�Tt and �Tb are the temperature differences across the top and bottom TBLs, respectively. δt and δb are the thicknesses of the top
and bottom TBLs, respectively. Rat and Rab are local Rayleigh numbers of the top and bottom TBLs, respectively.
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Figure 8. (a) Thicknesses of the top and bottom TBLs and (b) the ratio of
top TBL thickness to bottom TBL thickness versus Ra. In both (a) and (b),
the symbols diamond, circle, star, triangle and square represent cases with
Di = 0, 0.5, 1, 1.5 and 2, respectively. In (a), the filled symbols are for top
TBL thickness and the unfilled ones are for bottom TBL thickness. In (b),
the lines mark eDi/2.

that are eigenfunctions for a homogeneous and incompressible fluid
(e.g. Turcotte & Schubert 2002). We also found that even for in-
compressible convection, depth-dependent thermodynamic param-
eters such as thermal conductivity or thermal expansion can also
cause T0(z), U(z) and V(z) to deviate from sinusoidal functions
(Figs 2c and d). For example, for incompressible convection with
thermal conductivity increasing linearly from 1 at the top to 2 at
the bottom, our analysis revealed that Rac = 1166 for kx = π

and the corresponding eigenfunctions are given in Fig. 2c. Note
that for this calculation, the background conductive temperature
Tr needs to be determined for the variable thermal conductivity,
and dTr/dz in the propagator matrix should be modified accord-
ingly. We also considered a case with thermal expansion decreasing
linearly from 1 at the top to 0.2 at the bottom, and for this case,
Rac is 1295 for kx = π and eigenfunctions are given in Fig. 2(d).
These results of Rac are in agreement with those determined from
numerical experiments, provided that the corresponding eigenfunc-
tions T0(z) are used as initial temperature in the calculations. Com-
pared with Rac = 779 for thermal convection in an incompressible
and homogenous fluid, our results show that the depth-dependence
of the thermodynamic parameters considered here stabilizes the
convection.

A final remark on the marginal stability analysis is on ignor-
ing the imaginary part of the growth rate in our analysis (i.e. we
only considered real number for the growth rate), while Jarvis &
McKenzie (1980) considered both imaginary and real numbers for
the growth rate. The growth rate with imaginary number implies os-
cillatory behaviour. Although it is of some interest for future studies
to examine the physical significance of imaginary part of the growth
rate, we would like to point out that the independent verification of

Figure 9. (a) Temperature differences across the top and bottom TBLs
and (b) the ratio of temperature differences across the top TBL to that of
the bottom TBL versus Ra. For both (a) and (b), the symbols diamond,
circle, star, triangle and square are for cases with Di = 0, 0.5, 1, 1.5 and
2, respectively. In (a), the filled symbols are for top TBL thickness and the
unfilled ones are for bottom TBL thickness. In (b), the lines mark eDi/2.

our marginal stability analysis from our finite element modelling
(Figs 1b–d) suggests that our analysis is robust.

5.2 Finite amplitude compressible convection

We have quantified convective heat flux and TBL properties for
compressible convection at different Ra and Di. It is well known
that for isoviscous and incompressible convection, the top and bot-
tom TBLs are symmetric with both TBL thickness and temperature
difference in TBL identical for the top and bottom TBLs. Compress-
ibility breaks the symmetry. Eqs (33) and (34) show that the ratios
of thickness and temperature drop of the top TBL to those of the
bottom TBL increase with Di but are insensitive to Ra, especially
at large Ra, and these two equations describe the numerical results
reasonably well (Figs 8b and 9b).

We also developed theoretical expressions for temperature dif-
ferences across the top and bottom TBLs, �Tt and �Tb. We found
that �Tt and �Tb, given by eqs (43) and (44), respectively, are con-
trolled by Di and insensitive to Ra, especially when Ra is large and
boundary layer thicknesses are significantly smaller than the depth
of the fluid (see eq. 42). �Tt and �Tb from eqs (43) and (44) are
consistent with numerical results (Fig. 11).

Note that eqs (43) and (44) for �Tt and �Tb may pose an upper
bound on dissipation number Di, Dimax, for which these equations
are applicable. That temperature differences �Tt and �Tb must be
greater than zero requires that

1 − Ts(eDi − 1) > 0. (46)
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Figure 10. Boundary layer Raleigh numbers for the top and bottom TBLs versus Ra for cases with (a) Di = 0; (b) Di = 0.5; (c) Di = 1; (d) Di = 2. The circles
and the diamonds represent the top and bottom TBLs, respectively.

Figure 11. Temperature difference for (a) the top and (b) bottom TBLs
versus Di. In (a) and (b), the lines are computed from eqs (43) and (44),
respectively, and the circles and diamonds are from numerical experiments.
The circles are from the highest Ra case for each Di series, while the
diamonds are for averaged temperature difference for each Di series.

In our models, the dimensional surface temperature Ts is set
as 0.091 and is applicable to the Earth. To satisfy (46), Di must
be smaller than ∼2.5 or Dimax ∼ 2.5. This is consistent with the
diminished bottom TBLs in cases with very high Di (e.g. Di = 2,

Figure 12. Nu from numerical results compared with those from eq. (45) for
cases listed in Table 3. The line represents Nudata = Nutheory. The symbols
are for Nu from eq. (45), using Rac = 18 for Di > 0 cases and Rac = 6 for
Di = 0 cases. The symbols diamond, circle, star, triangle and square are for
Di = 0, 0.5, 1, 1.5 and 2 cases, respectively.

Ra = 3 × 109, in Fig. 6c). Dimax is controlled by Ts. The larger Ts

is, the smaller �Tt and Dimax are. Also, note that Ts does not affect
�Tt for Di = 0, because eDi − 1 = 0.

Based on our analyses of TBL properties, we developed a scaling
relationship of heat flux (i.e. Nu) to Rayleigh number Ra and dis-
sipation number Di for isoviscous and basal heating compressible
convection at relatively large Ra (Eq. 45). In particular, we found
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that Nu scales with Ra1/3, which is similar to that for incompressible
thermal convection (e.g. Turcotte & Schubert 2002), while its de-
pendence on Di follows a more complicated expression due to the
relationship of �Tt to Di in eq. (43). Rat is needed to fully determine
Nu in addition to Ra and Di, using eq. (45). From numerical mod-
elling, Rat does not vary with Ra, but appears to increase moderately
with Di from Rat ∼ 6 for Di = 0 to Rat ∼ 18 for Di = 2 (Fig. 10).
For Di = 0 cases, Rat may be deduced from eq. (28) together with
�Tt = 0.5 and numerical results of Nu = 0.2987Ra0.31, and this
leads to Rat ∼ 6, which is consistent with Rat ∼6 in Fig. 10. Similar
value of Rat can be obtained if Nu = 0.294Ra1/3 from Turcotte &
Schubert (2002) is used for incompressible convection. If we simply
take Rat = 6 for Di = 0 and Ra = 18 for Di > 0, Nu predicted from
eq. (45) agree well with numerical results (Fig. 12).

An interesting question is to understand the dependence of Rat on
Di. Unfortunately, critical Rayleigh numbers Rac from our marginal
stability analysis do not seem to be directly applicable to understand
the effects of Di on Rat, since Rac does not vary significantly for
Di varying from 0 to 1 (Fig. 1b). However, Rac increases rapidly
with decreasing convective wavelength or increasing wavenumber
kx for kx > π (Fig. 1b). We speculate that the dependence of Rat

on Di (Fig. 10) may also reflect the effects of decreasing convective
wavelengths for cases with increasing Di (Fig. 5). We will leave this
for future studies.

Finally, we wish to point out that the Nu ∼ Ra scaling law (i.e.
eq. 45) does not apply for convection at intermediate Ra (Fig. 7). We
think that this is because at intermediate Ra, TBLs are not yet fully
developed, and the top and bottom TBLs have not been separated
yet.

6 C O N C LU S I O N

Thermal convection in an isoviscous, compressible fluid is inves-
tigated using both marginal stability analysis and finite element
modelling. A technique based on a propagator matrix method is de-
veloped for marginal stability analysis of thermal convection with
depth-dependent thermodynamic properties, density and viscosity.
Scaling laws are developed for heat transfer and TBL properties
for thermal convection in an isoviscous, compressible fluid. The
conclusions can be summarized as follows.

(1) Critical Rayleigh numbers, Rac, at the fundamental and higher
modes are determined for thermal convection in a compressible
fluid. At the fundamental mode, if Ra is defined by the surface
density, Rac may not show a monotonic variation with dissipation
Di. The fundamental mode may only exist for relatively small Di.

(2) For thermal convection with depth-dependent density or ther-
modynamics parameters, the eigenfunctions are no longer sinu-
soidal functions, as they are for thermal convection in a homo-
geneous, incompressible fluid. For Di > 0, the eigenfunctions for
temperature T0(z), horizontal velocity U(z) and vertical velocity
V(z) have larger amplitudes at the shallower depth than those at the
larger depths, and shear driven convective cell may appear for large
Di.

(3) Rac are also determined from numerical experiments for dif-
ferent Di and wavelengths. With the eigenfunctions for temperature
T0(z) as initial perturbations, numerically determined Rac agree well
with Rac computed from marginal stability analysis.

(4) TBL properties are quantified in numerical models of thermal
convection in a compressible fluid at different Ra and Di. TBL thick-
nesses and temperature differences are heavily influenced by Di.
While temperature differences across the TBLs decrease with Di,

TBL thicknesses increase with Di. The ratios of top TBL thickness
and temperature difference to corresponding bottom TBL proper-
ties are eDi/2. For both incompressible and compressible convection,
TBL thicknesses follow δl ∼ Ra−1/3, while TBL temperature dif-
ferences are insensitive to Ra.

(5) Our numerical modelling shows that the local Rayleigh num-
bers at the top and bottom TBLs are nearly identical and are insen-
sitive to Ra and Di for compressible convection.

(6) The scaling laws of the temperature differences across TBLs,
�Tt and �Tb, are derived as �Tt = [1 − Ts(eDi − 1)]/(e−Di/2 +
eDi ) and �Tb = [1 − Ts(eDi − 1)]/(1 + e3Di/2). �Tt and �Tb are
found only dependent on Di. The scaling laws are verified by nu-
merical results.

(7) The scaling law of heat transfer, Nusselt number Nu, for ther-
mal convection in an isoviscous, compressible fluid is derived to be

Nu =
(

1−Ts (eDi −1)
e−Di/2+eDi

)4/3 (
Ra
Rat

)1/3
. Nu scales with Ra as Nu ∼ Ra1/3,

similar with that for incompressible convection. The scaling law for
Nu is consistent with numerical modelling results. We think that
these results may have important implications for understanding
thermal evolution of super-Earths.
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A P P E N D I X A : M A RG I NA L S TA B I L I T Y A NA LY S I S U S I N G A P RO PA G AT O R
M AT R I X M E T H O D

The marginal linear stability problem for compressible flow is governed by eqs (18)–(20). Leng & Zhong (2008a) constructed a propagator
matrix for the Stokes’ flow problem for a compressible fluid (i.e. eqs 18 and 19). Based on their method, we add the linearized energy
equation (20) and set up the propagator matrix for the marginal linear stability problem. In the linearized governing eqs (18)–(20), the
dependences of the velocities, pressure and stresses perturbations on x and z are separable. Horizontal component of the perturbations is
represented by sinusoidal functions, but vertical component of the perturbations is represented by arbitrary functions. The time-dependence of
the perturbations is expressed by an exponential function of time with a growth rate α′. The perturbations should satisfy boundary conditions.
The free-slip boundary condition requires that τ ′

xz = u′ = 0 at x = 0 and 1, and τ ′
xz = v′ = 0 at z = 0 and 1. The fixed temperature boundary

condition requires that T ′ = 0 at z = 0 and 1. The perturbations can be expressed in Fourier transform as

T ′ =
∫

T0 (z) cos (kx x) eα′ t dkx

u′ =
∫

U (z) sin (kx x) eα′t dkx

v′ =
∫

V (z) cos (kx x) eα′ t dkx ,

τ ′
xz =

∫
Yxz (z) sin (kx x) eα′ t dkx

σ ′
zz =

∫
Szz (z) cos (kx x) eα′ t dkx (A1)

where kx is the horizontal wavenumber, T0(z), U (z), V (z), Yxz(z) and Szz(z) represent the vertical dependence of the perturbations corresponding
to kx. The boundary conditions T ′ = v′ = τ ′ = 0 at z = 0 and 1 require that

T0 = V = Yxz = 0 at z = 0 and 1. (A2)

Linearized governing eqs (18)–(20) should be formulated into a vector linear differential eq. (22) so that it can be solved by a propagator
matrix method. Based on a velocity–stress formulation, the vector W in eq. (22) is chosen as (23). Linearized governing equations and
constitutive equation are rearranged such that only items in vector W are used in the equations as unknown variables. In the following
equations, non-dimensional forms are used and the variables with a prime are perturbations in the linearized equations.

Considering the depth-dependent density profile (16), non-dimensional linearized mass conservation equation (18) can be rewritten as(
ρr u′

i

)
,i

= ρr,i u
′
i + ρr u′

i,i = −DieDi(1−z)v′ + eDi(1−z)u′
i,i = 0, (A3)

or

∂u′

∂x
+ ∂v′

∂z
− v′ Di = 0, (A4)
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The total stress σ ij can be related to dynamic pressure p and deviatoric stress τ ij as

σi j = −pδi j + τi j , (A5)

where τ ij is given in eq. (7). From eq. (A5), σ zz and p are

σzz = −p + η

[
2
∂v

∂z
− 2

3

(
∂u

∂x
+ ∂v

∂z

)]
, (A6)

p = 4

3
η

∂v

∂z
− 2

3
η

∂u

∂x
− σzz . (A7)

Substituting (A7) into the x component momentum conservation eq. (19) leads to

∂σ ′
zz

∂x
+ ∂τ ′

xz

∂z
+ 4η

∂2u′

∂x2
− 2ηγ

∂v′

∂x
= 0. (A8)

Substituting (A7) into the z component of eq. (19) leads to

∂σ ′
zz

∂z
+ ∂τ ′

xz

∂x
+ Ra(αg)ρr (T − Tr ) − g

cP�
αγ

(
4

3
η

∂v′

∂z
− 2

3
η

∂u′

∂x
− σ ′

zz

)
= 0. (A9)

The non-dimensional linearized energy equation (20) may be written as

ρr cP Ṫ ′ + ρr cPv′ dTr

dz
+ ρrv

′ Diαg�(Tr + Ts) = k

(
∂2T ′

∂x2
+ ∂2T ′

∂z2

)
. (A10)

From the constitutive equation (7),

τxz = η

(
∂u

∂z
+ ∂v

∂x

)
. (A11)

For each wavenumber kx, combining eqs (A4) and (A8)–(A11), and eliminating sin(kx x), cos(kx x) and eα′ t , these equations can be written as

dU

dz
= kx V + 1

η
Yxz, (A12)

dV

dz
= −kxU + γ V, (A13)

dSzz

dz
= −2ηkxγ

(
αg

cP�

)
U + 4

3
ηγ 2

(
αg

cP�

)
V −

(
αg

cP�

)
γ − kx Yxz − Raρr (αg)T0, (A14)

dYxz

dz
= 4ηk2

xU − 2ηkxγ V + kx Szz, (A15)

d

dz
T0 = dT0

dz
, (A16)

d

dz

dT0

dz
= ρr

k
[Di(αg)(1 − z + Ts) − cP ] V +

[
ρr cPα′

k
+ k2

x

]
T0. (A17)

Eqs (A12)–(A17) may be written as a vector equation (22) or dW/dz = AW, and the vector W and the matrix A are defined in eqs (A18) and
(A19):

W =
(

V, U,
Szz

2kx
,

Yxz

2kx
, T0,

dT0

dz

)T

, (A18)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Di −kx 0 0 0 0

kx 0 0
2kx

η
0 0

2ηg

3cP�

αDi2

kx
− gη

cP�
αDi − g

cP�
αDi −kx −g

αRaρr

2kx
0

−Diη 2kxη kx 0 0 0

0 0 0 0 0 1

ρr αg
k

[Di (1 − z + Ts) − cP ] 0 0 0

(
cPα′ρr

k
+ k2

x

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A19)
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where the superscript T for eq. (A18) represents matrix transpose. We assume that all the parameters in matrix A except for ρr in (A19) are
constant and independent of z. This leads to dimensionless parameters g, cP , �, η, α and k in eq. (A19) to be 1, and matrix A may be written
as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Di −kx 0 0 0 0

kx 0 0 2kx 0 0

2

3

Di2

kx
−Di −Di −kx − Raρr

2kx
0

−Di 2kx kx 0 0 0

0 0 0 0 0 1

ρr [Di (1 − z + Ts) − 1] 0 0 0
(
α′ρr + k2

x

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A20)

We then discuss solution procedures of eq. (22) using a propagator matrix method. Propagator matrix method was proposed by Gilbert &
Backus (1966) and is widely used to solve vector linear differential equation in the form of eq. (22). Eq. (22) has a solution:

W (z) = eA(z−z0)W(z0) = P(z, z0)W(z0), (A21)

where

P (z, z0) = eA(z−z0) (A22)

is a propagator matrix that has the same dimensions as matrix A (i.e. 6 × 6), and W(z0) is vector W at z = z0 (e.g. at a boundary). If matrix
A is dependent on z, the solution at any depth can be obtained by propagating along z direction from a starting point z0 with

W (zn) = P (zn, zn−1) P (zn−1, zn−2) · · · P (z2, z1) P (z1, z0) W (z0) = PnPn−1 · · · P2P1W (z0) = PW (z0) , (A23)

where Pi = eAi (zi −zi−1) is a propagator matrix between zi and zi−1 over which Ai and Pi can be treated as constant matrices.
Given boundary conditions (A2), vectors W at z = 1 and z = 0, denoted as W1 and W0, respectively, are

W1 =
(

0, U (z = 1),
Szz(z = 1)

2kx
, 0, 0,

dT0

dz z=1

)T

, (A24)

W0 =
(

0, U (z = 0),
Szz(z = 0)

2kx
, 0, 0,

dT0

dz z=0

)T

, (A25)

and from eq. (A21)

W1 = P (1, 0) W0. (A26)

Propagator matrix P(1,0) in eq. (A26) is constructed as given in (A22) and (A23), based on a grid between z = 0 and z = 1 from z-dependent
matrix A. There are six unknowns in W1 and W0: horizontal velocity U, vertical normal stress Szz/2kx, and dT0/dz at the surface and bottom
boundaries, and they are represented as x, y, z, a, b and c, respectively. Eq. (A26) can be written as

0 = P12a + P13b + P16c

0 = P42a + P43b + P46c

0 = P52a + P53b + P56c

x = P22a + P23b + P26c

y = P32a + P33b + P36c

z = P62a + P63b + P66c

, (A27)

where Pij is the ij item of propagator matrix P(1,0). Eq. (A27) may be rearranged as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P12 P13 P16 0 0 0

P42 P43 P46 0 0 0

P52 P53 P56 0 0 0

P22 P23 P26 −1 0 0

P32 P33 P36 0 −1 0

P62 P63 P66 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

b

c

x

y

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (A28)
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Figure A1. Contour plots of the determinant of matrix E in growth rate α’ and Ra space for cases with kx = π and (a) Di = 0 and (b) Di = 2.

A non-trivial solution for eq. (A28) requires that the determinant of the 6×6 matrix in eq. (A28) is zero, which, in turn, requires

det

⎛
⎜⎜⎝

P12 P13 P16

P42 P43 P46

P52 P53 P56

⎞
⎟⎟⎠ = 0. (A29)

Eq. (A29) forms the basis of our marginal stability analysis using the propagator matrix technique.
For a given set of thermodynamic parameters, mantle compressibility, density structure and wavenumber of the perturbation, there are two

unknown parameters in matrix A in (A20) or matrix E in (A29): the growth rate α′ and the Rayleigh number Ra. Note that critical Rayleigh
number Rac is defined as Ra which makes α′ = 0. A search scheme is developed to determine Rac: setting α′ = 0, we compute det(E) for
different Ra, and when det(E) = 0, Ra equals Rac. Different Rac can be determined for different wavenumber kx and other model parameters
such as the dissipation number Di.

To illustrate the search scheme, we present contour plots of det(E) in the Ra− α′ space in Fig. A1 for two calculations with kx = π and
Di = 0 and Di = 2, respectively. For Di = 0, it is observed that the zero contours of det(E), which we use to find Rac at α′ = 0, are straight
lines, indicating that in the limit of weak convection, growth rate increases linearly with Ra. As there are multiple zero contour lines of det(E)
(Fig. A1a), more than one Rac can be obtained, and each Rac is for a distinct mode. We use n = 0 to represent the fundamental mode and
n = 1, 2, . . . to represent the first, second, . . . mode. The value of n represents the number of nodes where the vertical flow velocity is zero
(excluding z = 0 and z = 1), and n+1 is the number of convection cells that are stacked in the vertical direction. For the range of Ra shown
in Fig. A1, zero contours of det(E) cross the α’ = 0 line twice for Di = 0 but only once for Di = 2. What mode each zero contour of det(E)
corresponds to depends on eigenfunction of vertical flow velocity V(z).

The eigenfunctions of T0(z), U(z) and V(z) are also determined from the propagator matrix method. First, we need to determine W0 =
W(z = 0) in eq. (A24). From eqs (A24)–(A26), we get

EWsub
0 =

⎛
⎜⎜⎜⎝

P12 P13 P16

P42 P43 P46

P52 P53 P56

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

U (z = 0)

Szz

2kx
(z = 0)

dT0

dz z=0

⎞
⎟⎟⎟⎟⎟⎠ = 0, (A30)

where Wsub
0 consists of the three non-zero items of W0. Since det(E) = 0, Wsub

0 cannot be uniquely determined. However, we seek for a
solution by fixing dT0/dz z = 0 = 1. For a given set of model parameters (e.g. Di and kx), propagator matrix P(z,0) is formed by eqs (A22)
and (A23), using Rac = Ra and growth rate α′ = 0 in matrix A (i.e. eq. A20). With W0 and the propagator matrix P(z,0), W(z) (i.e. the
eigenfunctions) can be computed from eq. (A23). In Fig. 2, we show eigenfunctions of T0(z), U(z), and V(z) for some selective cases. Note
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that T0(z) is scaled such as its maximum value is 1, and U(z) and V(z) are scaled accordingly. Based on V(z), we also determined that the two
modes in Fig. A1a for Di = 0 are for n = 0 and n = 1 modes, while the only mode in Fig. A1b for Di = 2 is for n = 1 mode. The latter
suggests that for Di = 2, n = 0 mode (i.e. the fundamental mode) does not exist. In this study, we use 129 uniform grid points in z direction
to compute propagator matrix for all the results shown in Section 3.2.

A P P E N D I X B : Q UA N T I F Y I N G T B L P RO P E RT I E S

In compressible convection, an isentropic central region is developed (e.g. Jarvis & McKenzie 1980), and the adiabatic temperature follows
eq. (35). While the horizontally average temperature follows adiabatic temperature Tad in the isentropic central regime, it deviates significantly
from Tad within the top and bottom TBLs (i.e. super-adiabatic). Here, we describe how the thicknesses and temperature difference of TBLs
are defined and quantified.

As an example, Fig. B1b shows the gradients of typical horizontally averaged temperature dT/dz and of adiabatic temperature dTad/dz
(computed from eq. 35) for case AC1017, where Di = 1 and Ra = 107. The temperature gradient deviates from adiabatic gradient in the top
and bottom TBLs and we define the bottom (top) of the top (bottom) TBL as where the deviation of temperature gradient starts to develop:(∣∣∣∣dT

dz

∣∣∣∣ −
∣∣∣∣dTad

dz

∣∣∣∣
)/(

Nu −
∣∣∣∣dTad

dz

∣∣∣∣
)

> ε. (B1)

In (B1), ε is a small value, and in our study is set as 0.2, and dTad/dz in both numerator and denominator is the adiabatic temperature gradient
at depth z. Eq. (B1) measures super-adiabatic gradient normalized by surface super-adiabatic gradient and helps to determine the top and
bottom TBL thicknesses δt and δb. The choice of ε affects the values of δt and δb. The larger ε is, the smaller δt and δb are. However, we
found that the ratios of TBL thicknesses and the scalings of such determined TBL properties are insensitive to the choice of ε. After δt and
δb are determined, the temperature difference in TBLs, �Tt and �Tb can be determined from the horizontally averaged temperature profile
(Fig. B1a). Interpolation is needed to obtain �Tl , because δt and δb do not necessarily occur at the grid points. For each case, we determine
average TBL thickness and temperature difference over a large number of time steps for steady-state or quasi-steady state solutions. The
adiabatic temperature is also plotted in Fig. B1(a). Since eq. (35) might not be applicable within TBLs, here, we assume that the adiabatic
temperatures within the top and bottom TBLs are assumed to be the same as those outside the TBLs. This assumption is valid because the
TBLs are very thin, and �Tad within TBLs should be very small.

Figure B1. (a) Horizontally averaged temperature profile for case AC1017, with Di = 1.0 and Ra = 107. (b) Temperature gradients for case AC1017. In both
(a) and (b), the dotted lines are the horizontally averaged temperature (gradient), where dots show the grid points in the numerical models. The dashed lines
are the adiabatic temperature (gradient) (eq. 35). The solid lines in both figures show the TBLs determined by the method introduced in Appendix B.
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