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Tectonic plates on the Earth's surface bend at plate boundaries as they subduct into the mantle, thus
generating viscous dissipation. It has been proposed that viscous dissipation due to plate bending accounts
for more than 40% of the total viscous dissipation in mantle convection. The proposed large bending
dissipation at subduction zones may have significant effects on the Earth's thermal evolution history.
However, recent studies show that viscous dissipation from plate bending may not be as significant as
previously suggested. Here based on an energetics argument of mantle convection and previously estimated
bending dissipation for present-day Earth's subduction zones, we show that the total dissipation in the
Earth's mantle is 10.0–15.5 TW and that the bending dissipation only accounts for b10% of the total
dissipation in the Earth's mantle convection. We also determine the ratio of the bending dissipation to the
total viscous dissipation using compressible mantle convection models within a large parameter space. The
bending dissipation accounts for 10% to 20% of the total dissipation for cases with only temperature-
dependent viscosity. For cases with a weak upper mantle, the bending dissipation accounts for less than 10%
of the total dissipation. These results from numerical models further support the conclusion that the bending
dissipation only accounts for a small fraction (b10%) of the total viscous dissipation. Our results suggest that
in studying plate motions and long-term thermal evolution of the Earth, other convective processes in the
mantle play probably more important roles than plate bending.
ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

It is generally agreed that surface plate tectonics on the Earth is
mainly driven by the negative buoyancy of subducted slabs. As a plate
subducts beneath an overriding plate, the plate bending causes
significant viscous dissipation, thus representing an important
resisting force to plate motion (McKenzie, 1977; Conrad and Hager,
1999a). It has been proposed that the viscous dissipation and resisting
force to plate motion associated with plate bending may have
significant effects on convective heat transfer and thermal evolution
history of the Earth's mantle (Conrad and Hager, 1999b). Particularly,
considering the plate bending as the only major resisting force to
convective motion and potential effects of melting on mantle
lithospheric viscosity in a parameterized mantle convection model,
Korenaga (2006) suggested that convective heat flux may decrease
with increasing convective vigor or Rayleigh number Ra. Korenaga's
model provides a non-intuitive relationship between heat flux and Ra
and may help avoid excessively high temperature for the early Earth
that are predicted by other parameterized convection models with
low radiogenic heating rate (e.g., Davies, 1993; 2009). However, the
amount of viscous dissipation generated at subduction zones has been
a matter of great debate recently (Conrad and Hager, 1999a, 2001;
Buffett and Rowley, 2006; Capitanio et al., 2007, 2009; Krien and
Fleitout, 2008; Wu et al, 2008; Schellart, 2009; Davies, 2009).

By applying fixed subduction geometry, Conrad and Hager (1999a,
2001) well simulated the bending effects of the subducted plates in 2-
D Cartesian geometry with numerical models, and concluded that
viscous dissipation due to bending is mainly controlled by the radius
of curvature of subducted slabs, Rc, and the effective viscosity of the
lithosphere, ηl. The bending dissipation is proportional to ηl and the
inverse cube of Rc, and is therefore very sensitive to the variations of
Rc. Assuming Rc=200 km, Conrad and Hager (2001) suggested that
the bending dissipation can be up to 40% of the mantle's total
dissipation, and for a thick plate this percentage may be even larger
(Conrad and Hager, 1999a). Considering realistic plate geometry and
plate motions but also assuming a radius of curvature of subducted
slabs Rc=200 km, Buffett (2006) estimated the plate bending force
for major plates, and concluded ∼40% of the gravitational energy of
subducted slabs in the upper mantle is dissipated by bending
dissipation for the Pacific plate (Buffett and Rowley, 2006). For all
the major plates, the ratio is smaller, ∼25% (Buffett and Rowley,
2006). Although Buffett and Rowley (2006) considered whole mantle
convection, they did not discuss how much the bending dissipation
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would account for the total dissipation for the whole mantle. In the
thermal evolution calculations by Korenaga (2006), Rc is also assumed
to be 200 km.

Recently, observational studies, and numerical and laboratory
modeling all show that viscous dissipation from plate bending may be
significantly smaller than previously suggested (Wu et al., 2008;
Capitanio et al., 2007, 2009; Krien and Fleitout, 2008; Schellart, 2009).
Wu et al. (2008) compiled the radius of curvature Rc globally in 207
subduction zones from slab seismicity and estimated the average Rc as
390 km, which is nearly twice of the previous estimate of 200 km
(Conrad and Hager, 1999a, 2001), implying a reduction of bending
dissipation by a factor of 8. Capitanio et al. (2007, 2009) studied the
dynamics and energetics of a free subduction system and found that
bending curvature and dip angle dynamically adjust to minimize the
plate bending dissipation. They argued that the bending dissipation is
independent of the lithosphere viscosity ηl due to this self-regulating
mechanism, and that the ratio of bending dissipation to total
dissipation in the Earth's mantle is less than 20%. Krien and Fleitout
(2008) proposed that in order to reproduce the short- to intermedi-
ate-wavelength gravity and geoid anomalies observed in subduction
zones, more than 70% of the total dissipation should be generated in
the sublithospheric mantle, and only 10%–20% dissipation is gener-
ated in the bending zones. With 3-D laboratory studies on subduction,
Schellart (2009) suggested that the bending dissipation is 6% to 22% of
the total dissipation, and that it increases with increased viscosity
contrast between the lithosphere and the upper mantle. This
dependence of the bending dissipation on the lithospheric viscosity
is different from Capitanio et al. (2007, 2009) who suggested that the
bending dissipation is independent of the lithosphere viscosity but is
consistent with suggestions by Conrad and Hager (1999a, 2001).
Based on these studies, Davies (2009) questioned the results of large
bending dissipation in subduction zones and the validity of thermal
evolution models suggested by Korenaga (2006).

In the above-mentioned modeling studies of bending dissipation
in subduction zones, the slabs are either modeled with Stokes flow
model or convection model with Boussinesq approximation (Conrad
and Hager, 1999a, 2001; Buffett and Rowley, 2006; Capitanio et al.,
2007, 2009). The total viscous dissipation in these models can be
determined accurately, provided that the mantle buoyancy flux
structure is known precisely (e.g. Conrad and Hager, 1999a).
However, the buoyancy flux structure in the Earth's mantle is not
well constrained, particularly for the slab buoyancy in the lower
mantle and the plume buoyancy. Most of the previous studies only
considered the slab buoyancy flux in the upper mantle as the total
buoyancy flux (Conrad and Hager, 1999a, 2001; Capitanio et al., 2007,
2009), and may underestimate the total dissipation in the Earth's
mantle. Hewitt et al. (1975) suggested an independent method to
estimate the total dissipation based on a more complete compressible
mantle convection formulation. In Hewitt et al.'s (1975) method, the
total mantle dissipation can be directly estimated from convective
surface heat flux, internal heating ratio, and mantle thermodynamic
parameters, with no need for detailed knowledge of mantle
convective structure. In addition, the compressible mantle convection
model that includes viscous heating and adiabatic heating as energetic
components may significantly influence the convection and dissipa-
tion patterns (Bercovici et al., 1992; Balachandar et al., 1995, Leng and
Zhong, 2008b).

Here, we formulate a compressible whole mantle convection
model to study viscous dissipation for the whole convection system
and also for subduction zones. We first provide a new and robust
constraint on total dissipation of the Earth's mantle convection, using
observed convective surface heat flux and thermodynamic properties
of the Earth's mantle (Hewitt et al., 1975). We then quantify the
bending dissipation in our numerical models for cases within a large
parameter space. After discussing the implications of our results, we
draw our main conclusions.
2. Constraints on total viscous dissipation from the energetics

Based on an energy balance argument, Hewitt et al. (1975) has
demonstrated that the total dissipation in a compressible thermal
convection system is given by

Φtot≈Di 1−0:5μð ÞQs; ð1Þ

where Φtot, μ and Qs are the total dissipation, internal heating ratio of
the mantle, and surface heat flux, respectively. Di is the dissipation
number which is defined as

Di = α0g0d= CpX0; ð2Þ

where α0, g0 and Cp_0 are the reference thermal expansivity,
gravitational acceleration and specific heat (e.g. at the Earth's
surface), respectively; and d is the mantle thickness. Eq. (1) can be
analytically derived for compressible thermal convection indepen-
dent of mantle rheology (Hewitt et al., 1975), and it has been proven
valid in numerical models for isoviscous thermal convection when the
Rayleigh number, Ra, of the convection system is much larger than a
critical Rayleigh number (Hewitt et al., 1975; Jarvis and McKenzie,
1980). This relation has been employed to estimate the maximum
stresses on plate boundaries (McKenzie and Jarvis, 1980).

Eq. (1) was derived for a Cartesian geometry (Hewitt et al., 1975).
Recently, Leng and Zhong (2009) showed that for the Earth's mantle
in a spherical geometry, Eq. (1) becomes

Φtot≈Di 1−0:594μð ÞQs: ð3Þ

Eq. (3) has been used to put constraints on mantle internal heating
ratio based on plume heat flux (Leng and Zhong, 2009).

The total surface heat flux of the Earth is ∼44 TW with ∼8 TW
from the radiogenic heating in the continental crust (e.g., Pollack et
al., 1993; Davies, 1999). The remaining ∼36 TW is from the mantle
and can be considered as convective heat flux, or Qs. The dissipation
number of the mantle, Di, is estimated to be 0.5–0.7. Observations of
mantle plume excess temperature and buoyancy flux constrain that
the internal heating ratio of the mantle is ∼70% (Zhong, 2006; Leng
and Zhong, 2008b). If we consider the internal heating ratio of the
mantle varying between 65% and 75%, Eq. (3) provides a possible
range for the total dissipation in the Earth's mantle between
10.0 TW and 15.5 TW, as shown in Fig. 1. Buffett and Rowley (2006)
estimated the bending dissipation for all the major subduction
zones as ∼0.766 TW, which is likely an upper bound given that their
calculations assumed a radius of curvature Rc=200 km and
relatively large lithospheric viscosity of 6×1022 Pa s at the subduc-
tion bending zones. This upper bound of the bending dissipation
suggests that the bending dissipation at subduction zones for the
present-day Earth at most accounts for only 5%–8% of the total
dissipation, which is significantly smaller than ∼40% as suggested in
previous studies (Conrad and Hager, 1999a, 2001). The total
dissipation is larger for smaller internal heating ratio (Fig. 1)
which may be favored by geochemistry-based thermal models (e.g.
Korenaga, 2006).

3. Results from compressible mantle convection models

3.1. Numerical modeling and quantifying model results

We then directly quantify the bending dissipation with numerical
models. We use a 2-D Cartesian finite element mantle convection
code which is modified from Citcom (Moresi et al., 1996) to include
the mantle compressibility with anelastic liquid approximation (ALA)
(Leng and Zhong, 2008a; King et al., 2010). The governing



Fig. 1. The possible range of total viscous dissipation in the Earth's mantle (dotted
region). This range is derived from Eq. (3) with the dissipation number varying
between 0.5 and 0.7 and the internal heating ratio of the mantle varying between 65%
and 75%.
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conservation equations of mass, momentum and energy in non-
dimensional form are as following:

ρruið Þ;i = 0; ð4Þ

−p;jδij + τij;j + ρrαgRa T−Trð Þ− αg
CpΓ

pχ

" #
δi3 = 0; ð5Þ

ρrCpṪ + ρrCpuiT;i + ρrαgDiu3 T + Tsð Þ = kT;i
� �

;i
+

Di

Ra
τijui;j + ρrH;

ð6Þ

where ρr, u, p, τ, α, g, T, Tr, Cp, Γ, Ts, k and H are radial density, velocity
vector, dynamic pressure, deviatoric stress tensor, thermal expansiv-
ity, gravitational acceleration, temperature, reference temperature,
specific heat at constant pressure, Grueneisen parameter, surface
temperature, thermal conductivity and heat production rate, respec-
tively; i and j are spatial indices and 3means vertical direction; δ is the
Kronecker delta function. Ṫ̇ is the derivative of temperature with
Table 1
Model parameters and results.a

Cases Ra Di Vc Qs Urms

A01 107 0.5 105 7.46 544.4
A02 107 0.5 100 23.28 1298.3
A03 107 0.5 101 20.80 1273.5
A04 107 0.5 102 17.66 1138.3
A05 107 0.5 103 13.16 913.8
A06 107 0.5 104 10.14 753.9
A07 107 0.5 106 4.55 440.8
A08 108 0.5 106 10.10 1685.1
B01 106 0.3 105 3.07 118.9
B02 5×106 0.3 105 4.72 337.7
B03 107 0.3 105 5.74 530.7
B04 5×107 0.3 105 10.81 1583.6
B05 108 0.3 105 13.64 2398.4
B11 106 0.5 105 3.70 142.0
B12 5×106 0.5 105 5.36 338.1
B13 5×107 0.5 105 11.93 1564.6
B14 108 0.5 105 13.12 2014.6
B21 106 0.7 105 3.43 136.7
B22 5×106 0.7 105 5.60 284.6
B23 107 0.7 105 6.54 514.5
B24 5×107 0.7 105 11.78 1210.7
B25 108 0.7 105 14.89 2097.8

a Ra, Di, Vc, Qs, Urms, Us, Uum, ε,Φtot and Φb are the Rayleigh number, dissipation number, v
relative difference between the total viscous dissipation and the total adiabatic heating, tota
computed as ε=(Ev−Ea)/Ev, where Ev and Ea are the total viscous dissipation and the tota
respect to time t. The Rayleigh number Ra and mantle compressibility
χ are defined as

Ra =
ρ0α0g0ΔTd

3

κ0η0
; ð7Þ

χ =
Di

Γ0
; ð8Þ

where ρ0, ΔT, κ0, η0 and Γ0 are the surface density, temperature
difference between the surface and the core–mantle boundary,
surface thermal diffusivity, reference viscosity and surface Grueneisen
parameter, respectively. Details of the derivation of these equations
can be found in Leng and Zhong (2008a). Notice that we use mantle
thickness d=2870 km and temperature difference between the
surface and the core–mantle boundary ΔT=3000 K to nondimensio-
nalize the length and temperature in this study.

For simplicity, we assume α, g, Cp, Γ, and k are all constants in the
mantle. As a result, these parameters become 1.0 in non-dimensional
Eqs. (4)–(6). Γ0 is set to be 1.0 in ourmodels, somantle compressibility
χ is the same as dissipation number Di from Eq. (8). We employ
Adams–Williamson equation (Birch, 1952) as the equation of state, so
the radial density profile ρr is given as (Leng and Zhong, 2008a)

ρr zð Þ = exp 1−zð Þχ½ �; ð9Þ

where z is the non-dimensional vertical distance.
We use 257 by 129 grids in a two by one box with mesh

refinements in the top and bottom thermal boundary layers (TBL).
The boundaries are free-slip, and isothermal for top and bottom
boundaries and insulated for sidewalls. For most of our models, we
do not include internal heating generation, but we also test the effect
of internal heating on our results later. The non-dimensional
temperature is fixed as 0.0 and 1.0 at the top and bottom boundaries,
respectively.

We employ a depth- and temperature-dependent rheology as

η T; zð Þ = ηr zð Þ exp −A T−Tadi zð Þð Þ½ �; ð10Þ

where η, T, A and Tadi(z) are the viscosity, temperature, activation
energy and adiabatic temperature at z, respectively. ηr(z) is the depth-
Us Uum/Us ε(%) Φtot/Qs Φb/Φtot

251.1 1.3 2.4 0.422 0.181
1190.1 1.0 −0.6 0.485 0.059
1064.7 1.1 −0.4 0.482 0.098
763.1 1.2 −0.5 0.488 0.134
512.7 1.3 0.2 0.462 0.166
338.1 1.4 −0.5 0.448 0.166
65.6 1.3 −0.3 0.374 0.111

464.0 1.6 4.2 0.447 0.134
14.5 1.1 0.4 0.199 0.098
47.7 1.3 1.5 0.236 0.112
69.2 1.5 1.7 0.243 0.106

367.1 1.6 4.4 0.270 0.155
603.6 1.7 5.3 0.273 0.154
46.4 1.1 1.5 0.350 0.172

101.6 1.2 0.3 0.392 0.152
662.4 1.2 1.3 0.449 0.161
284.1 3.0 −0.6 0.465 0.132
23.1 1.5 −1.5 0.471 0.112

103.2 1.4 −2.5 0.560 0.156
173.4 1.4 −1.6 0.575 0.149
735.3 1.3 0.8 0.661 0.150

1110.3 1.4 1.6 0.678 0.158

iscosity contrast, surface heat flux, rms velocity, surface velocity, upper mantle velocity,
l viscous dissipation and the viscous dissipation in the bending zones, respectively. ε is
l adiabatic heating. All these values are non-dimensional.
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dependent viscosity parameter. We use ηr(z)=1.0 throughout the
whole mantle for most cases unless stated otherwise. However, we
also test the effect of a weak upper mantle on our results by reducing
ηr(z) in the upper mantle. In order to compute Tadi(z), we take the
horizontally averaged temperature at the middle depth of the mantle
as the reference temperature, Tadi(z) is then computed by integrating
Fig. 2. (a) A snapshot of the temperature field after case A01 reaches a statistically steady s
(c) The grey area shows the identified slab region and the black area shows the identified b
included in the slab area. (d), (e) and (f) are similar to (a), (b) and (c), except that they repr
are non-dimensional.
adiabatic temperature gradient to different depth (Turcotte and
Schubert, 2002, page 187). The activation energy A controls the
temperature-induced viscosity variations. We use Vc=exp(A) to
describe the total viscosity contrast for different cases hereafter,
although the actual total viscosity contrast is slightly smaller because
of the removal of the adiabatic temperature in Eq. (10).
tate. (b) The distribution of viscous dissipation for temperature field shown in Fig. 2a.
ending zones for temperature field shown in Fig. 2a. Notice that the bending zones are
esent a snapshot for case D03 after it reaches a statistically steady state. All these values

image of Fig.�2


Fig. 3. (a) Horizontally averaged temperature (solid line) and viscosity (dotted line)
and computed adiabatic temperature (dashed line) for the temperature field shown in
Fig. 2a. The dotted-dashed line shows a snapshot of the horizontally averaged viscosity
for case C01 with layer viscosity structure. (b) Horizontally averaged viscous
dissipation for the temperature field shown in Fig. 2a. All these values are non-
dimensional.
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In this study, we run each case for 100,000–200,000 time steps to a
statistically steady state and analyze the steady state results for the
final 20,000 time steps to obtain time-averaged values. It has been
theoretically and numerically demonstrated that in a compressible
mantle convection system the total adiabatic heating and total viscous
heating (i.e. viscous dissipation) should exactly balance out each
other at any instant in time (Leng and Zhong, 2008a). We use this
principle to test the energy consistency of the results of our models. In
all of our models, we typically observe ∼1% or less imbalance between
the total adiabatic heating and total viscous heating. Although for
some cases with high Rayleigh numbers and complicated rheology
this imbalance can be up to 3–5% (details will be presented in the
results section). We thus consider that the energy consistency is
satisfied in our models.

Before we can quantify viscous dissipation in the bending zones,
we first need to define the bending zones in our numerical models.
We use temperature criteria to define the slab region. A region is
defined as slab region if its temperature T satisfies,

TbTaveðzÞ + ft TminðzÞ−TaveðzÞ½ �; ð11Þ

where Tave(z) and Tmin(z) are averaged temperature and minimum
temperature at vertical distance z, and ft is a prescribed threshold
constant. The bending zones are also defined with temperature
criteria shown by Eq. (11), but are confined to a shallow depth
controlled by a non-dimensional bending zone depth fd. We will
discuss the effects of parameters ft and fd on the detection of the slab
region and bending zones later.

3.2. Plate bending dissipation for different lithospheric viscosities

We first present results for a case A01 with Ra=107, Di=0.5,
Vc=105 and no internal heating. The non-dimensional time-averaged
surface heat flux, Qs, root-mean-square (rms) velocity, Urms, and
surface velocity, Us, are determined as 7.46, 544.4, and 251.1,
respectively, after the case reaches a statistically steady state
(Table 1). Fig. 2a shows a typical snapshot of the temperature field
for case A01. The horizontally averaged temperature follows the
adiabatic temperature profiles quite well (Fig. 3a). The horizontally
averaged viscosity is ∼1.0 in the interior of the mantle and gradually
increases to several hundred at the surface (Fig. 3a). For each case in
this study, we also report the relative difference, ε, between the total
viscous dissipation, Ev, and the total adiabatic heating, Ea. ε is defined
as ε=(Ev−Ea)/Ev. A smaller ε reflects better energy consistency as we
discussed above. For case A01, ε is 2.4% (Table 1). We define the
average velocity at ∼300 km depth as the upper mantle velocity, Uum.
The ratio of the upper mantle velocity to the surface velocity reflects
the relative motion between the surface and the upper mantle. For
case A01, Uum/Us is 1.2 (Table 1).

In order to define the slab region and bending zones, we set
parameters ft=0.5 and fd=0.139, the latter implying that the
bending zones only extend to 400 km depth, given that the depth of
the mantle is 2870 km. Viscous dissipation and the detected slab
region and bending zones are shown in Fig. 2b and c. It can be
observed that although the dissipation is large in the bending zone,
strong dissipation also happens in subducted slabs at large depths of
the mantle (Fig. 2b). This can also be seen in Fig. 3b which shows the
horizontally averaged viscous dissipation. Although the dissipation is
maximum near the top surface where the slabs bend, significant
dissipation happens almost uniformly along the depth. We quantify
the dissipation in the bending zone,Φb, and the total dissipation in the
system, Φtot. The ratio of Φb/Φtot fluctuates with time for case A01
after it reaches a statistically steady state (Fig. 4), and the time-
averaged value is 18% (Table 1).

We examined the effects of detection parameters ft and fd on our
results. Varying ft from 0.5 to 0.3 or 0.7 leads to a ∼1.0% difference and
varying fd such that the maximum depth for bending zones change
from 400 km to 300 km or 500 km leads to a ∼3.0% difference for our
results of Φb/Φtot (Fig. 4). We thus keep using ft=0.5 and fd=0.139
(i.e., 400 km depth) hereafter in this study. It is worthwhile to point
out that our detection parameters tend to yield larger bending zones
hence an upper bound of bending dissipation.

We then compute a series of cases A02–A07 that are identical to
the case A01, except that the viscosity contrast Vc varies from 1 to 106

(Table 1). The results show thatΦb/Φtot generally increases with Vc for
viscosity contrast between 1 and 103 (Fig. 5). However, for large Vc

which is more appropriate for the Earth's mantle,Φb/Φtot is no longer
sensitive to Vc and varies between 10% and 20% (Fig. 5). With Vc=106,
the top thermal boundary layer becomes very thick and convection
approaches a stagnant-lid convection regime due to strong

image of Fig.�3


Fig. 4. The ratio of the viscous dissipation in the bending region to the total dissipation
versus time for case A01 after it reaches a statistically steady state. Different curves
represent results from different bending region detection criteria.
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lithospheric viscosity (Moresi and Solomatov, 1995). We quantify the
thickness of the top thermal boundary layer for cases A01–A07 with a
simple scheme. The horizontally averaged temperature profile for
Fig. 6. (a) The ratios of the total dissipation to surface heat flux for cases with different
Ra and Di (cases B01–B25 and case A01 in Table 1). (b) The predicted ratios versus the
numerically computed ratios of the total dissipation to surface heat flux (circles: cases
A01–A08, squares: cases B01–B25, diamonds: cases F01–F04).

Fig. 5. (a) The ratios of the viscous dissipation in the bending region to the total
dissipation for cases with different activation energy (i.e. different viscosity contrast
Vc). The circles represent cases with Di=0.5 and Ra=107, (cases A01–A07 in Table 1)
and the square represents a case (A08 in Table 1) with Di=0.5 and Ra=108. The error
bars show the standard deviations over the analyzed time period. (b) The non-
dimensional thickness of the top thermal boundary layer for the cases shown in (a). The
circles represent cases A01–A07, and the square represents case A08.
each case is first computed. Then, the thickness of the top thermal
boundary layer is defined as the distance between the surface and the
depthwhere the average temperature is equal to 1300 °C. Thismethod
Fig. 7. The ratios of the viscous dissipation in the bending region to the total dissipation
for cases with only temperature-dependent viscosity but different Ra and Di (cases
B01–B25 and case A01 in Table 1).

image of Fig.�6
image of Fig.�7
image of Fig.�5
image of Fig.�4
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may not be perfectly precise, but is good enough to show the thickness
variation of the top thermal boundary layer with increased viscosity
contrast (Fig. 5b). For case A07 with Vc=106, the top thermal
boundary layer becomes extremely thick. We increase the Rayleigh
number for the case A07 with Vc=106 from Ra=107 to Ra=108 (i.e.
case A08) to reduce the thickness of the top thermal boundary layer
(Fig. 5b). Φb/Φtot increases slightly as a result of the increase of
Rayleigh number, but still lies between 10% and 20% (Fig. 5).
3.3. Plate bending dissipation for different Rayleigh numbers and
dissipation numbers

Hewitt et al. (1975) and Jarvis and McKenzie (1980) confirmed
Eq. (1) through comparing the surface heat flux and total viscous
dissipation in numerical models with different Rayleigh numbers and
dissipation numbers. However, their calculations were only done for
isoviscous cases. Here we examine Eq. (1) for cases with strongly
temperature-dependent viscosity. We compute a series of cases B01–
B25 with the same viscosity contrast Vc=105 and no internal heating,
but different Ra and Di (Table 1).

Fig. 6a shows the ratios of total dissipation to surface heat flux for
cases B01–B25 and A01. It can be seen that for a given dissipation
number, the ratio approaches the dissipation number, even for cases
which have large Di and strong time variability. This is exactly the
prediction from Eq. (1) and is very similar to the results shown by
Hewitt et al. (1975) and Jarvis and McKenzie (1980) for isoviscous
cases. Fig. 6b plots the predicted ratios from Eq. (1) and the
numerically computed ratios for all the cases shown in Table 1.
Fig. 6a and b show that Eq. (1) provides accurate descriptions of the
dependence of the total viscous dissipation on the dissipation number
and surface heat flux in compressible mantle convection with variable
viscosity, especially for cases with large Rayleigh numbers. For all
these cases, the ratios of the bending dissipation to the total
dissipation, Φb/Φtot, are all between 10% and 20% and insensitive to
the Rayleigh number, mantle viscosity and dissipation number
(Fig. 7).

One point we want to point out is that the surface velocity for the
case B14 is anomalously small (e.g. compared to the case B13). This is
because with increased Rayleigh number, the convection wavelength
decreases for this case with more convection cells formed and the
surface velocity significantly decreases.
Table 2
Model parameters and results for cases with more realistic physics.a

Cases ηum ηweak μ(%) Qs Urms

C01 1/10 – 0 7.19 1136.1
C02 1/20 – 0 7.53 1401.1
C03 1/30 – 0 7.78 1646.1
C04 1/50 – 0 8.16 2214.5
D01 1/30 100.0 0 7.75 1632.9
D02 1/30 30.0 0 8.89 1625.5
D03 1/30 10.0 0 11.11 1605.3
D04 1/30 3.0 0 14.46 1564.3
D05 1/30 1.0 0 17.16 1516.1
E01 1/30 3.0 0 13.17 1879.5
E02 1/30 1.0 0 14.93 1832.3
E03 1/30 0.3 0 17.19 1804.4
E04 1/30 0.1 0 18.53 1704.1
E05 1/30 0.03 0 18.91 1597.7
F01 1 – 19.9 6.70 460.8
F02 1 – 42.0 6.17 378.3
F03 1/30 10.0 18.9 10.91 1386.5
F04 1/30 10.0 35.5 10.96 1291.0

a ηum, ηweak and μ are theηr(z) in the uppermantle, viscosity in theweak zone, and internal he
Qs, where Qs and Qb are surface heat flux and bottom heat flux. For cases C01–C04, D01–D05 an
reduced to 104.
3.4. Plate bending dissipation with layered viscosity, weak zones and
internal heat generation

We have so far only considered temperature-dependent viscosity
and neglected internal heat generation and depth-dependent viscos-
ity that may be important to the Earth's mantle convection. In this
subsection, we add more realistic rheology and internal heat
generation to our models to study their effects on the ratio of the
bending dissipation to the total dissipation.

First, an upper mantle with smaller viscosity relative to the lower
mantle is proposed from the studies of the Earth's long-wavelength
geoid (Hager and Richards, 1989). We incorporate the viscosity
stratification in our models by reducing ηr(z) in the upper mantle (i.e.,
between 100 km and 660 km depths). Cases C01–C04 are the same as
case A01, except that ηr(z) in the upper mantle is reduced from 1 to 1/
10, 1/20, 1/30 and 1/50, respectively (Table 2). A snapshot of the
horizontally averaged viscosity profile for case C01 is shown in Fig. 3a.
The ratio of the bending dissipation to the total dissipation, Φb/Φtot,
for cases C01–C04 is ∼5% (Fig. 8a, Table 2), which is much smaller
than that for case A01. This is because the viscosity contrast between
the surface and the upper mantle increases significantly due to the
reduced uppermantle viscosity, so does the velocity contrast between
the surface and the upper mantle (Table 2). The convection therefore
approaches a stagnant-lid convection regime with very small surface
velocity and plate bending dissipation (Table 2) (Moresi and
Solomatov, 1995). Another reason for the reduction of the bending
dissipation is that the convective velocity in the upper mantle with
reduced viscosity is greatly enhanced, thus thinning the downwelling
slabs and reducing the area of the bending zones.

To achieve more realistic surface plate behavior, we introduce
weak zones into our layered viscositymodels to simulate the effects of
nonlinear deformation at plate margins (e.g., Gurnis, 1989). Case
D01–D05 are the same as the case C03, i.e. also with a weak upper
mantle, except that we add two weak zones at the upper-left and
upper-right corners (See Fig. 9 for the position of weak zones). The
weak zones are 200 km by 200 km in size, and the non-dimensional
viscosity in the weak zones is fixed as a constant, ηweak, for each case
(see Table 2). For case D01, the weak zone viscosity is fixed as 100.0,
which does not deviate much from the viscosity structure in case C03.
As a result, the surface heat flux, rms velocity and the ratioΦb/Φtot for
case D01 are quite similar to those for case C03 (Table 2). Fig. 8b
shows the ratio Φb/Φtot and the averaged surface velocity versus the
Us Uum/Us ε(%) Φtot/Qs Φb/Φtot

166.1 4.1 −0.8 0.437 0.059
149.0 8.3 −3.3 0.441 0.042
130.8 13.3 −4.5 0.445 0.039
145.7 20.7 1.2 0.477 0.035
140.5 12.4 −3.4 0.440 0.029
282.6 6.6 −2.1 0.454 0.056
598.5 3.5 −4.5 0.461 0.083

1245.9 1.7 −3.1 0.475 0.104
1930.8 1.2 −1.1 0.483 0.085
967.2 2.7 −2.4 0.480 0.086

1365.1 1.9 −1.9 0.478 0.100
1891.6 1.3 −2.3 0.483 0.106
2279.3 1.0 5.0 0.482 0.128
2493.9 0.8 1.5 0.480 0.121
185.7 1.2 −1.2 0.371 0.173
133.3 1.2 −4.2 0.316 0.151
130.5 4.5 −3.4 0.413 0.078
85.4 6.2 −2.9 0.376 0.080

ating ratio, respectively. All the values are non-dimensional.μ is computed as μ=(Qs−Qb)/
d F01–F04, Ra=107, Di=0.5 and Vc=105. For cases E01–E05, Ra=107, Di=0.5, but Vc is



Fig. 8. (a) The ratios of the bending dissipation to the total dissipation versus upper
mantle viscosity for cases with layered viscosity structure (cases C01–C04). (b) The
ratios of the bending dissipation to the total dissipation versus weak zone viscosity
(circles) for cases with both layered viscosity and weak zones (cases D01–D05, see
Fig. 9 for the weak zone geometry). Squares show the non-dimensional surface velocity
for these cases. (c) The ratios of the bending dissipation to the total dissipation versus
weak zone viscosity (circles) for cases with curved weak zones (cases E01–E05, see
Fig. 10a for the weak zone setup). Squares show ratios of the viscous dissipation in the
curved bending slab region to the total dissipation. Diamonds show ratios of the viscous
dissipation in the curved weak zones to the total dissipation.

Fig. 9. The weak zone geometry for cases C01–C04. The shaded region shows the
lithosphere and the dotted region shows the weak zones.
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weak zone viscosity for cases D01–D05. When we gradually reduce
the weak zone viscosity from 100.0 to 3.0 for cases D01–D04, Φb/Φtot

gradually increases from 2.9% to 10.4% due to the increased surface
velocity and subduction (Fig. 8b). However, further reducing the
weaker zone viscosity to 1.0 (e.g. case D05) does not significantly
affect Φb/Φtot any more (Fig. 8b). Fig. 2d, e and f show snapshots of
temperature, viscous dissipation, and slab region and bending zones
for case D03 after it reaches a statistically steady state.

It is worthwhile to further modify our weak zone setup to form a
curved weak zone above the subducting slabs to better simulate the
bending slabs. Starting from the case D03, we modify the weak zone
setup at the upper-left corner (i.e. subduction zone, see Fig. 2d) but
keep the weak zone at the upper-right corner unchanged. First, we
significantly increase the numerical resolution to 10 km for this
200 km by 200 km zone through mesh refinement. The zone is then
divided into four different regions by three circular arcs (Fig. 10a). Take
the bottom-right corner as the center of a circle, and r as the distance to
the center. The region with rb100 km is defined as the normal upper
mantle region with reduced viscosity or ηr(z)=1/30; the region with
100 kmbrb200 km is defined as the bending slab or lithospheric
regionwith ηr(z)=1; the regionwith 200 kmb rb240 km is the newly
definedweak zonewith a constant viscosity, ηweak, that represents the
weak subduction zone fault; and the remaining region is defined as the
overriding plate region with ηr(z)=1 (Fig. 10a). Through the weak
zone setup in Fig. 10a, we obtain a bending slab regionwith a radius of
curvature of 200 km.

We take the temperature field from the case D03 (Fig. 2d) as the
initial condition and start a new case E03 with the weak zone setup
discussed above. Case E03 is similar to the case D03, except that Vc is
reduced to 104 and that the weak zone viscosity is reduced to 0.3
(Table 2). Fig. 10b shows a snapshot of viscosity and velocity
distribution for case E03. It can be observed that the bending
curvature is well simulated in our model. Fig. 10c and d show the
corresponding viscous dissipation and detected bending zone in this
200 km by 200 km box. The Φb/Φtot is determined as 10.6% for case
E03. However, it can be noticed that significant parts of viscous
dissipation are generated in theweak zone outside of the bending slab
region (Fig. 10c). Therefore the quantified bending dissipation of
10.6% should be taken as an upper bound. We also quantify the
viscous dissipation generated in the bending slab region and the weak
zone region as defined in Fig. 10a. The resulting viscous dissipation is
4.6% and 2.2% of the total viscous dissipation in these two regions,
respectively (Fig. 8c). The sum of these two is smaller than Φb/Φtot

(i.e. 10.6%) because the bending zone from our detection scheme
includes region outside of the 200 km by 200 km box. The viscous
dissipation in the weak zone (i.e. subduction zone fault) depends on
the weak zone viscosity (Conrad and Hager, 1999a). We compute
cases E01–E05 with weak zone viscosity varying from 3.0 to 0.03
(Table 2). The bending dissipation for these cases are similar, ∼10%
(Fig. 8c, Table 2). But the viscous dissipation in the weak zone
decreases significantly compared with the viscous dissipation in the
bending slab region (Fig. 8c). Notice that the detected bending zones
from our detection scheme become quite small with smaller weak
zone viscosity. Therefore we change the detecting parameter ft from
0.5 to 0.3 for case E04 and E05 to ensure that the bending slab region

image of Fig.�8
image of Fig.�9


Fig. 10. (a) The geometry setup for the upper-left weak zone and curved subducted slab in case E01–E05. (b),(c) and (d) show a snapshot of viscosity, viscous dissipation and
detected bending zones for case E03. All these values are non-dimensional. In (b), the arrows show the velocity field. In (c) and (d), the curved bending slab region is illustrated by
the solid lines.
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defined in Fig. 10a is completely included in the detected bending
zones. As a result, we want to point out again that the Φb/Φtot we
obtained here should be taken as an upper bound.

Althoughwe only consider basal heating for all the cases discussed
above, strong internal heating ratio, ∼70%, is suggested for the Earth's
mantle from the studies of mantle plumes (e.g., Davies, 1999; Zhong,
2006; Leng and Zhong, 2008b). Here we present cases with moderate
internal heating ratio to show thatΦb/Φtot are not sensitive to internal
heating effects, although the ratio of total dissipation to surface heat
flux is dependent on internal heating ratio (see Eq. (1)). Cases F01 and
F02 are the same as case A01, except that we vary H in the energy
Eq. (6) to add internal heating effect (Table 2). The internal heating
ratio μ is computed as μ=(Qs−Qb)/Qs, where Qs and Qb are time-
averaged surface heat flux and bottom heat flux after the model
reaches a statistically steady state. For cases F01 and F02, μ is 19.9%
and 42.0%, respectively. It can be observed that Φb/Φtot for cases F01
and F02 are similar to that for case A01, i.e. between 10% and 20%
(Table 2). Similarly, cases F03 and F04 are the same as case D03,
except that internal heating effects are included. μ is 18.9% and 35.5%
for cases F03 and F04, respectively. Φb/Φtot for cases F03 and F04 are
similar to that for case D03, i.e. less than 10% (Table 2). We also
compute the ratios of the total dissipation to surface heat flux for
these cases with internal heating and plot them in Fig. 6b. Note that
although these cases all have Di=0.5, according to Eq. (1), the ratio of

image of Fig.�10


163W. Leng, S. Zhong / Earth and Planetary Science Letters 297 (2010) 154–164
the total dissipation to surface heat flux should be different due to
their different internal heating ratio. Fig. 6b shows that Eq. (1) also
works well for these internal heating cases.

4. Discussion

Buffett and Rowley (2006) estimated the bending dissipation for
all the subduction zones as ∼0.766 TW, and suggested that, if taking
the Pacific plate as an example, the bending dissipation accounts for
40% of the gravitational potential energy released by slab buoyancy in
the upper mantle. This bending dissipation would only account for
25% of the potential energy release for the uppermantle slabs, if all the
major plates are considered (Buffett and Rowley, 2006). Conrad and
Hager (1999a, 2001) concluded that 40% of the mantle's total
dissipation happened in the plate bending zones. However, they
only considered slabs penetrating to a shallow depth (∼800 km) and
ignored slab buoyancy flux in the deepmantle. The total dissipation in
the Earth's mantle is equivalent to the total buoyancy flux of both
sinking slabs and rising plumes in both upper mantle and lower
mantle (Turcotte et al., 1974; Hewitt et al., 1975; Leng and Zhong,
2008a). Since the buoyancy flux structure in the Earth's mantle is not
well constrained, it is difficult to estimate the total dissipation in the
whole mantle. However, Eq. (3) enables us to estimate the total
dissipation in compressible convection from the surface heat flux and
dissipation number, both of which are known reasonably well.
Considering the possible range of the total dissipation in the Earth's
mantle that we estimated, 10.0–15.5 TW, the bending dissipation of
0.766 TW for present-day subduction zones estimated by Buffett and
Rowley (2006) would only account for 5%–8% of the total dissipation.
This relatively small ratio of bending dissipation to the total
dissipation is consistent with our numerical results with more
realistic viscosity structures including layered viscosity structure
and weak plate margins (Table 2, Fig. 8).

From Eq. (3), the dissipation number controls the total dissipation
in the Earth's mantle. In Eq. (2), given α0=3×10−5/K, g0=10 m/s2,
d=2870 km, and Cp0

=1200 J/(kg K), the dissipation number is
computed as 0.72. However, the thermal expansivity decreases with
the pressure (or depth) and can be as small as 1×10−5/K just above
the core–mantle boundary (Chopelas and Boehler, 1989). Supposing
that α decreases by a large factor of 5 from the surface to the core–
mantle boundary, the averaged α is 1.8×10−5/K, which corresponds
to a dissipation number of 0.43. The range of dissipation number from
0.43 to 0.72 is consistent with the range explored in this study.

Due to the 2-D Cartesian geometry, the temperature variation
across the bottom TBL is relatively small in our compressible mantle
convection models and upwelling plumes are weak (e.g. Figs. 3a
and 2a). Adding internal heating can further reduce the temperature
contrast across the bottom TBL to unrealistically small values for the
Earth's mantle. This is different from spherical models that produce
larger temperature contrast in the bottom TBL for the same internal
heating ratio (e.g. Leng and Zhong, 2008b). For our current study, we
only consider a few cases with moderate internal heating ratio
(Table 2). However, these cases have already shown that our results
on the ratio of bending dissipation to total dissipation,Φb/Φtot, are not
sensitive to the internal heating ratio. We therefore consider our
results robust, even for cases with higher internal heating ratio.

Finally, for our compressible mantle convection cases with
temperature-dependent viscosity (cases B01–B25 and case A01), we
also use their surface heat flux (or Nusselt number) and Rayleigh
number to fit the scaling law, Qs∼Raβ, to determine the exponent β.
For these cases withDi=0.3, 0.5 and 0.7, β is determined to be 0.3305,
0.2887 and 0.3201, respectively. This is similar to the results for
incompressible convection (e.g. McKenzie et al., 1974), except that β
is significantly smaller than 1/3 for cases with Di=0.5. We consider
that this is caused by case B14, which has a smaller convection
wavelength and surface velocity as we discussed before.
5. Conclusion

Our main conclusions can be summarized as following.

1) We provide an estimate for the total dissipation in the Earth's
mantle as 10.0–15.5 TW based on the energetics of mantle
convection (Hewitt et al., 1975) for reasonable ranges of mantle
dissipation number (0.5–0.7) and internal heating ratio (∼70%).
The total dissipation is larger for smaller internal heating ratio.

2) Taking the bending dissipation for present-day subduction zones
estimated by Buffett and Rowley (2006), we suggest that the
bending dissipation only accounts for b10% of the total dissipation
of Earth's mantle convection. Our estimated total dissipation and
our conclusion on the relatively small fraction of bending
dissipation in the total dissipation are independent of details of
mantle convection such as mantle rheology and convection
planform.

3) We quantified the relations between the total dissipation and the
surface heat flux in 2-D Cartesian models of compressible mantle
convection with strong temperature-dependent viscosity and
different Rayleigh numbers and dissipation numbers. The results
confirmed the relationship on the ratio of the total dissipation to
surface heat flux derived by Hewitt et al. (1975).

4) We quantified the ratio of the bending dissipation to the total
dissipation in our 2-D numerical models of compressible convec-
tion. The bending dissipation accounts for 10% to 20% of the total
dissipation for the cases with only temperature-dependent
viscosity. After including a weak upper mantle, the bending
dissipation only accounts for less than 10% of the total dissipation.
Adding weak zones at the plate margins and internal heating
effects to themodels does not significantly affect our results. These
results from numerical models further support the conclusion that
the bending dissipation only accounts for a small fraction (b10%)
of the total dissipation from an independent method as outlined in
conclusions 1 and 2. Collectively, our results are consistent with
recent numerical, observational, and experimental studies on the
bending dissipation (Wu et al., 2008; Capitanio et al., 2007, 2009;
Krien and Fleitout, 2008; Schellart, 2009) and have important
implications for thermal evolution models (Davies, 2009).
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