
Geophys. J. Int. (2008) 173, 693–702 doi: 10.1111/j.1365-246X.2008.03745.x

G
JI

T
ec

to
ni

cs
an

d
ge

o
dy

na
m

ic
s

Viscous heating, adiabatic heating and energetic consistency
in compressible mantle convection

Wei Leng and Shijie Zhong
Department of Physics, University of Colorado at Boulder, Boulder, CO 80309, USA. E-mail: wei.leng@colorado.edu

Accepted 2008 January 23. Received 2008 January 22; in original form 2007 October 2

S U M M A R Y
Although it has been suggested that the total viscous heating, Qv, should be exactly balanced
by the total adiabatic heating, Qa, for compressible mantle convection, previous numerical
studies show a significant imbalance of up to several percent between Qv and Qa for simple
isoviscous compressible convection. The cause of this imbalance and its potential effects on
more complicated convective systems remain largely unknown. In this study, we present an
analysis to show that total viscous heating and adiabatic heating for compressible mantle
convection with anelastic liquid approximation (ALA) and the Adams–Williamson equation
of state are balanced out at any instant in time, and that the previously reported imbalance
between Qv and Qa for numerical models with a truncated anelastic liquid approximation
(TALA) is caused by neglecting the effect of the pressure on the buoyancy force. Although
we only consider the Adams–Williamson equation of state in our analysis, our method can
be used to check the energetic consistency for other forms of equation of state. We formulate
numerical models of compressible mantle convection under both TALA and ALA formulations
by modifying the Uzawa algorithm in Citcom code. Our numerical results confirm our analysis
on the balance between total viscous heating and total adiabatic heating.
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1 I N T RO D U C T I O N

Although most mantle convection studies assume an incompressible mantle with Boussinesq (Spiegel & Veronis 1960; Mihaljan 1962)

or extended-Boussinesq approximation (Christensen & Yuen 1985; Zhong 2006), mantle compressibility may be needed to better integrate

seismology and mineral physics into dynamic models of the mantle. Mantle compressibility affects not only the average temperature distribution

of the mantle, but also the flow pattern and convective vigour (Jarvis & McKenzie 1980). Jarvis & McKenzie (1980) formulated the first

compressible mantle convection models with an anelastic liquid approximation (ALA). However, most of the studies, including Jarvis &

McKenzie (1980), only use a truncated anelastic liquid approximation (TALA) in which the effect of the pressure on the buoyancy force is

ignored (e.g. Ita & King 1994; Tan & Gurnis 2005).

Viscous heating due to the dissipation and adiabatic heating due to the work done by the fluid in adiabatic volume change are two important

energy terms in compressible mantle convection (Bercovici et al. 1992; Balachandar et al. 1995). Although it has been demonstrated that the

total viscous heating, Qv, should be exactly balanced by the total adiabatic heating, Qa (Turcotte et al. 1974; Hewitt et al. 1975; Zhang &

Yuen 1996a, b), numerical results from simple TALA models with uniform material and thermodynamic properties showed that there can be

some significant, up to several percent, imbalance between Qv and Qa (Jarvis & McKenzie 1980), indicating an energetic inconsistency with

these models. The cause for the imbalance and energetic inconsistency is not well understood. Furthermore, it is unclear how the imbalance

is affected by realistic and variable material properties and thermodynamic properties or different equation of state.

In this study, we investigate the cause for the imbalance between viscous heating and adiabatic heating in TALA models, and examine

the conditions for energetic consistency in compressible mantle convection. In the following sections, we will first present the governing

equations for compressible mantle convection with an ALA. We then analytically demonstrate on the basis of the momentum equation that

the total adiabatic heating and viscous heating must be exactly balanced for ALA formulation at any time for a convective system and that the

imbalance between them for TALA is caused by the neglected pressure term in the buoyancy. Then, we present an algorithm for numerically

modelling compressible mantle convection and show that our numerical models are consistent with our analysis. The main conclusions are

presented at the end.
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2 F O R M U L AT I O N O F C O M P R E S S I B L E M A N T L E C O N V E C T I O N

For thermal convection in a compressible fluid with an ALA and an infinite Prandtl number, the equations of conservation of the mass,

momentum and energy can be written as following (Jarvis & McKenzie 1980):

(ρr ui ),i = 0, (1)

−p, jδi j + τi j, j − �ρgδi3 = 0, (2)

ρr CpṪ + ρr Cpui T,i + ρr gαT u3 = (kT,i ),i + τi j ui, j + ρr H, (3)

where ρ r, u, p, τ , �ρ, g, Cp, T , α, k and H are radial density, velocity vector, dynamic pressure, deviatoric stress tensor, density anomalies,

gravitational acceleration, specific heat at constant pressure, temperature, coefficient of thermal expansion, thermal conductivity and heat

production rate, respectively; i and j are spatial indices and three means vertical direction; δ is the Kronecker delta function. Ṫ is the derivative

of temperature with respect to time t. The gravitational acceleration g and thermodynamic parameters including Cp, α and k are assumed to

be depth-dependent in the mantle.

The radial density distribution in the Earth’s mantle is determined by the equation of state. We use the Adams–Williamson equation of

state by Birch (1952) to describe the adiabatic density distribution in the mantle:

1

ρr

dρr

dz
= − αg

Cp�
, (4)

where z is the vertical (i.e. radial) coordinate (the z-axis pointing upward); � is the depth-dependent Grüneisen’s parameter and is defined as

� = αKs

ρr Cp
, (5)

where K s is the adiabatic bulk modulus. The Adams–Williamson equation is simple, but provides a good approximation for the adiabatic

density distribution in the mantle. However, it should be pointed out that although many studies use the Adams–Williamson equation, other

forms of equation of state may also be used for the compressible mantle convection.

Suppose that density ρ = ρ (T , P), where P is the hydrostatic pressure, the density perturbation is given as (Jarvis & McKenzie 1980):

�ρ = ρr

[ − α(T − Tr ) + K −1
T p

]
, (6)

where T r is a radial reference temperature and K T is the isothermal bulk modulus. Here we assume that in our models K s is approximately

equal to K T . It should be pointed out that this assumption ignores the thermodynamic constraints on K s and K T and simplifies the compressible

mantle convection problem as discussed in Schubert et al. (2001).

Eqs (1)–(4) can be non-dimensionalized with the following characteristic values:

xi = dx ′
i , ui = κ0

d
u′

i , T = �T T ′ + Ts, Ts = �T T ′
s , ρr = ρ0ρ

′
r ,

t = d2

κ0

t ′, H = H ′κ0�T Cp 0

d2
, η = η0η

′, p = η0κ0

d2
p′, α = α0α

′,

g = g0g′, Cp = Cp 0C ′
p, � = �0�

′ , k = k0k ′,
(7)

where symbols with primes are dimensionless; d, κ 0, �T , T s, ρ 0, t, η, η0, α0, g0, Cp 0, �0 and k0 are mantle thickness, reference thermal

diffusivity, temperature contrast across the layer, surface temperature, reference density, time, viscosity, reference viscosity, reference coefficient

of thermal expansion, reference gravitational acceleration, reference specific heat at constant pressure, reference Grüneisen’s parameter and

reference thermal conductivity, respectively. The reference thermal diffusivity is defined as κ0 = k0/(ρ0Cp 0).

The details for non-dimensionalizing the governing equations can be found in Schubert et al. (2001). After dropping the primes, the

dimensionless governing equations for ALA are as following:

(ρr ui ),i = 0, (8)

−p, jδi j + τi j, j +
[
ρrαgRa(T − Tr ) − αg

Cp�
pγ

]
δi3 = 0, (9)

ρr CpṪ + ρr Cpui T,i + ρrαgDi u3(T + Ts) = (kT,i ),i + Di

Ra
τi j ui, j + ρr H, (10)

where Di = α0g0d/Cp 0 is the dissipation number; Ra = ρ 0α0g0�Td3/(κ 0η0) is the Rayleigh number; γ = Di/�0 is defined as the mantle

compressibility.

The dimensionless Adams–Williamson equation is

1

ρr

dρr

dz
= − αg

Cp�
γ. (11)

It should be noted that the effect of dynamic pressure on the buoyancy force is included in the momentum eq. (9). Ignoring this term

leads to a formulation with TALA, and the momentum equation becomes (Jarvis & McKenzie 1980; Ita & King 1994; Tan & Gurnis 2005)

−p, jδi j + τi j, j + ρrαgRa(T − Tr )δi3 = 0. (12)
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3 V I S C O U S H E AT I N G A N D A D I A B AT I C H E AT I N G I N C O M P R E S S I B L E M A N T L E

C O N V E C T I O N

It has been shown that the total viscous heating and adiabatic heating are exactly balanced out for steady-state convection based on energy

balance argument from the energy equation (Turcotte et al. 1974; Hewitt et al. 1975). Zhang & Yuen (1996a) indicated that the total viscous

heating and adiabatic heating should be balanced out at any instant of time based on the momentum equation. However, none of these studies

provides an explanation to the imbalance between these two energy terms in previous models of compressible mantle convection. Here,

following the suggestion in considering viscous heating and adiabatic heating from the momentum equation by Zhang & Yuen (1996a), we

examine in details the conditions for energetic consistency for compressible mantle convection, that is, the conditions under which the total

viscous heating and adiabatic heating are exactly balanced out.

For the momentum eq. (9), we may multiply velocity ui to both sides and integrate for the whole volume,

−
∫

p,i ui dV +
∫

τi j, j ui dV +
∫ [

ρrαgRa(T − Tr ) − αg

Cp�
pγ

]
u3dV = 0. (13)

Note that∫
τi j, j ui dV =

∮
τi j ui dSj −

∫
τi j ui, j dV, (14)

where the surface integral is for the entire surface bounded the domain and Sj is the outward unit vector normal to the surface. In a closed

system where there is no material exchange between the system and outside, for both free-slip boundary conditions and no-slip boundary

conditions, we have∮
τi j ui dSj = 0 (15)

and∫
τi j, j ui dV = −

∫
τi j ui, j dV . (16)

A similar reasoning leads to∫
p,i ui dV = −

∫
pui,i dV . (17)

Therefore, eq. (13) becomes∫
pui,i dV −

∫
τi j ui, j dV +

∫ [
ρrαgRa(T − Tr ) − αg

Cp�
pγ

]
u3dV = 0. (18)

From the mass conservation eq. (8) and the Adams–Williamson eq. (11),

ui,i = − (ρr ),i

ρr
ui = − 1

ρr

dρr

dz
u3 = αg

Cp�
u3γ. (19)

Substituting eq. (19) into eq. (18) leads to∫
αg

Cp�
pu3γ dV −

∫
τi j ui, j dV +

∫ [
ρrαgRa(T − Tr ) − αg

Cp�
pγ

]
u3dV = 0. (20)

Note that in eq. (20) the first integral associated with dynamic pressure p cancels exactly the pressure term in the third integral. Multiplying

dissipation number Di to both sides of eq. (20) and re-arranging it lead to

Di

Ra

∫
τi j ui, j dV = Di

∫
ρrαg(T − Tr )u3dV . (21)

On any horizontal plane A that slices through the entire domain, due to the mass conservation,∫
ρrαgu3dA = 0. (22)

Consequently, for any depth-dependent reference temperature T r or constant surface temperature T s, we have∫
ρrαgu3Tr dV =

∫
ρrαgu3TsdV = 0. (23)

Upon substituting eqs (23) into (21), we obtain

Di

Ra

∫
τi j ui, j dV = Di

∫
ρrαg(T + Ts)u3dV . (24)

In eq. (24), Qv = Di
Ra

∫
τi j ui, j dV , is the total viscous heating (i.e. the volumetric integral of the second term on the right-hand side of the

energy eq. 10), and Qa = Di

∫
ρrαg(T + Ts)u3dV is the total adiabatic heating (i.e. the volumetric integral of the third term on the left-hand

side of the energy eq. 10). Therefore, combining conservation equations of the mass and momentum, this analysis demonstrates that the total

viscous heating and adiabatic heating exactly cancel each other. The fact that our analysis only involves the conservation equations of the

mass and momentum indicates that the total viscous heating and adiabatic heating should balance each other at any time for steady state and

time-dependent convection in ALA formulation. However, if the pressure effect on the buoyancy force is ignored as done in TALA, it is clear
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from our analysis that the two pressure terms in eq. (20) will not cancel each other, and neither do Qv and Qa cancel each other. This explains

why in TALA models (e.g. Jarvis & McKenzie 1980) the total viscous heating and adiabatic heating are not balanced.

This analysis has two implications for the issue of energetic consistency in compressible mantle convection. First, our analysis demon-

strates that the Adams–Williamson equation of state is energetically consistent for compressible mantle convection with depth-dependent

thermodynamic parameters and material properties. It should be pointed out that our analysis does not have any restriction to viscosity and is,

therefore, applicable to variable viscosity structure. Second, our analysis provides a way to analyze energetic consistency in mantle convection.

We think that energetic consistency is an important issue in mantle convection that should be carefully analysed when new formulations of

mantle convection or equation of state (e.g. Connolly, 2005) are employed.

4 N U M E R I C A L E X P E R I M E N T S F O R TA L A A N D A L A M O D E L S

To demonstrate that the imbalance between total viscous heating and adiabatic heating seen in previous numerical models of TALA (Jarvis

& McKenzie 1980) is indeed caused by ignoring the pressure in the buoyancy term, we have formulated numerical models of compressible

mantle convection for both ALA and TALA approximations.

The numerical models are implemented by solving the governing eqs (8)–(10) with a finite element method. We modify the 2-D Cartesian

numerical code Citcom (Moresi & Solomatov 1995) to incorporate the compressibility as well as adiabatic heating and viscous heating terms.

Citcom was originally developed to solve the thermal convection problems for incompressible media with the Boussinesq approximation.

While it is relatively straightforward to modify the energy equation solver to include the additional heating terms, significantly more effort is

needed to deal with the compressibility.

For simplification, we assume that the gravitational acceleration g, mantle viscosity and thermodynamic variables (e.g. α, Cp, � and

k) are constant in our numerical models. Therefore, in eqs (8)–(12), dimensionless g, α, Cp, � and k all become to be one. Eq. (11) can be

integrated to obtain the adiabatic density distribution

ρr (z) = ρ0 exp[(1 − z)γ ]. (25)

Note that if the gravitational acceleration and thermodynamic variables in eq. (11) are considered as depth-dependent, the density

distribution needs to be obtained from properly integrating eq. (11) in order to maintain energetic consistency.

We first discuss solutions of the Stokes flow problem with compressibility (i.e. eqs (8) and (9)). Citcom uses an Uzawa algorithm to

solve the Stokes flow problem. We modified the Uzawa algorithm to take into account of compressibility (see Appendix A). The numerical

solutions for the Stokes flow problem can be checked against the analytic solutions based on a propagator matrix method (Hager & O’Connell

1979; Zhong & Zuber 2000) (see Appendix B).

We start from an isoviscous case TALA1 with truncated ALA and γ = 0.25, which corresponds to a factor of 1.28 density increase from

the surface to the bottom boundaries. The boundary conditions for this case are free-slip boundary conditions for top and bottom boundaries

and reflecting boundary conditions for vertical sidewalls. The buoyancy force comes from temperature perturbation which is given as:

T (x, z) = δ(z − 0.5) cos(πx). (26)

Using the propagator matrix method in Appendix B, analytic solutions for the horizontal velocity and vertical normal stress at the surface

are obtained and shown in Table 1. For the same case, we solve the Stokes flow problem using our modified Citcom in a 1 × 1 box with

resolution 128 × 128 uniform elements. The results are also shown in Table 1. From Table 1, it can be observed that for case TALA1, the

analytic and numerical solutions for the Stokes flow problem agree very well.

After adding the pressure term to the buoyancy force, we compute case ALA1 with γ = 0.25. The difference between analytic and

numerical solutions is also negligible (Table 1). A comparison between TALA1 and ALA1 shows, however, that the difference between results

from TALA and that from ALA is rather notable, 1.8 and 3.8% for surface velocity and stress, respectively.

We increase the compressibility to γ = 0.5 and 1.0, which correspond to a factor of 1.65 and 2.72 density contrast across the layer, and

compute cases TALA2, TALA3, ALA2 and ALA3 (Table 1). Similarly, we observe that the analytic and numerical solutions agree with each

other very well. The difference between TALA and ALA models, however, increases with compressibility. For cases TALA3 and ALA3, the

differences are 10.5 and 19.4% for surface velocity and stress, respectively (Table 1).

Table 1. Benchmarks for the 2-D Cartesian compressible Stoke flow problema.

Cases γ Vs(ana) Vs εV (%) Srr(ana) Srr εS(%)

TALA1 0.25 0.054235 0.054238 0.01 0.56656 0.56651 0.01

TALA2 0.50 0.064294 0.064299 0.01 0.65984 0.65976 0.01

TALA3 1.00 0.090006 0.090012 0.01 0.89406 0.89394 0.01

ALA1 0.25 0.053271 0.053265 0.01 0.54588 0.54569 0.03

ALA2 0.50 0.061732 0.061686 0.07 0.60956 0.60888 0.11

ALA3 1.00 0.081418 0.081159 0.32 0.74864 0.74562 0.40

aγ , Vs and Srr are compressibility, horizontal velocity at the surface and radial stress at the surface, respectively. Values

with ‘(ana)’ represent the results from analytic solutions. εV (%) and εS(%) represent the relative errors between analytic

solutions and numerical solutions for Vs and Srr, respectively.
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Figure 1. The distribution of horizontally averaged temperature versus vertical height. The solid, dashed, dotted and dash–dotted lines are for cases TALA C1,

ALA C1, TALA C2 and TALA C3, respectively.

Table 2. Numerical results for TALA and ALA convection casesa.

Cases Ra γ qave V ave Qv Qa ε E (%)

TALA C1 104 0.25 4.43 39.3 0.8547 0.8523 0.28

TALA C2 104 0.50 3.86 36.1 1.4078 1.3914 1.16

TALA C3 104 1.00 2.57 26.4 1.4614 1.3974 4.38

TALA C4 105 0.50 7.63 165.0 3.2763 3.2484 0.85

TALA C5 105 1.00 3.92 91.2 2.8190 2.7559 2.24

TALA C6 105 2.00 1.58 22.8 0.5702 0.5522 3.16

ALA C1 104 0.25 4.41 38.9 0.8500 0.8504 0.05

ALA C2 104 0.50 3.82 35.0 1.3778 1.3792 0.10

ALA C3 104 1.00 2.47 24.3 1.3542 1.3587 0.34

ALA C4 105 0.50 7.56 161.5 3.2287 3.2322 0.11

ALA C5 105 1.00 3.88 88.9 2.7566 2.7635 0.25

ALA C6 105 2.00 1.41 20.1 0.4727 0.4752 0.53

aRa, γ , qave, Vave, Qv and Qa are the Rayleigh number, compressibility,

horizontally averaged surface heat flux, horizontally averaged surface velocity,

total viscous heating, and total adiabatic heating, respectively. ε E (%) represents

the relative difference between Qa and Qv. The cases are all isoviscous and all the

results are computed after the system reaches to steady state.

After having validated our solver for the Stokes flow problem with compressibility, to examine the validity of our analysis for viscous

heating and adiabatic heating, we compute compressible thermal convection cases in which the energy eq. (10) is also solved. The energy

equation is solved by streamline upwind Petrov–Galerkin method (Brooks & Hughes 1982). In the energy equation, the dimensional surface

temperature and temperature contrast across the layer are 273 and 3000 K, respectively. The heat production rate H is set to be zero. The top

and bottom boundaries are isothermal with dimensionless temperature 0.0 at the top boundary and 1.0 at the bottom boundary. The reference

Grüneisen’s parameter �0 is set to be 1. Since γ = Di/�0, the dissipation number Di is identical to γ . The numerical resolution is 128 × 128

elements in a 1 × 1 box with grid refinements near top and bottom boundaries.

We first present results for case TALA C1 which uses a TALA, Ra = 104 and γ = 0.25. We use our modified Citcom and compute this

case till it reaches a steady state. Outside of the top and bottom thermal boundary layers, the horizontally averaged temperature increases

adiabatically with depth due to the compressibility (Fig. 1). The dimensionless horizontally averaged surface heat flux qave and surface velocity

V ave are 4.43 and 39.3, respectively (Table 2). For this case, the relative difference between total adiabatic heating Qa and total viscous heating

Qv, εE , is 0.28% (Table 2). We then compute case ALA C1 which uses ALA and is identical to case TALA C1 except that the pressure effect

on the buoyancy force is included. The horizontally averaged temperature is slightly higher for case ALA C1 than that for case TALA C1

(Fig. 1). Now, the relative difference between Qa and Qv, εE, is reduced to 0.05% for case ALA C1. Note that εE for both TALA C1 and

ALA C1 are negligibly small.

For cases TALA C2 and TALA C3, γ is increased to 0.50 and 1.0, respectively, while other parameters remain the same as in case

TALA C1. The increased γ leads to increased adiabatic temperature gradient (Fig. 1). For these two TALA cases, εE increases and is as large
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as 4.38% for case TALA C3 (Table 2), which is similar to that found by Jarvis & McKenzie (1980). However, for the two corresponding

ALA cases ALA C2 and ALA C3, εE are 0.10 and 0.34%, respectively (Table 2), which are about one order magnitude smaller than those

for TALA cases.

We computed additionally three sets of TALA and ALA models with γ = 0.50, 1.00 and 2.00, but Rayleigh number of 105 (case

TALA C4, TALA C5, TALA C6 and ALA C4, ALA C5, ALA C6 in Table 2). The results show similar features: for TALA cases, the relative

difference between Qa and Qv, εE increases with γ and can be as large as 3.16%; but for ALA cases, εE are about one order magnitude

smaller (Table 2). Note that due to numerical errors that exist for any numerical solutions, slight imbalance between Qa and Qv is expected

even for ALA cases. These results are in a complete agreement with our analysis presented in the last section that for steady state convection,

the imbalance between total viscous heating and total adiabatic heating seen in previous TALA models is caused by neglecting the pressure

effect on the buoyancy term. Note that for cases TALA C6 and ALA C6, we increase the resolution from 128 × 128 elements to 256 × 256

elements to better resolve the large density variation from the surface to the bottom.

It is also interesting to examine how the total viscous heating and adiabatic heating are balanced for non-steady state or time-dependent

convection. We take the steady state temperature field from case TALA C3, arbitrarily increase the dimensionless temperature by 0.2 everywhere

but limiting temperature no greater than 1.0, and compute this model till it returns to a steady state. We then decrease the dimensionless

temperature everywhere by 0.2 but limiting temperature no less than 0.0, and again compute it to a steady state. The bulk average temperature

and total viscous heating versus time for this experiment are shown in Figs 2a and b. Significant imbalance between Qa and Qv exists not
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Figure 2. The time-dependence of bulk average temperature (a), the total viscous heating Qv (b), and the relative difference between total viscous heating and

total adiabatic heating εE (c), for the transient modelling of cases TALA C3 (solid line) and ALA C3 (dashed line).
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only for steady state convection, but also for transient convection (Fig. 2c for εE ). We repeated this sequence of modelling for the ALA model

case ALA C3, and the relative difference between Qa and Qv, εE , is one order of magnitude smaller compared with TALA C3 (Fig. 2c),

completely agreeing with our analysis.

5 C O N C L U S I O N S

In this study, we present an analysis to demonstrate that compressible mantle convection with an ALA, the Adams–Williamson equation of

state, and depth-dependent thermodynamic parameters, is energetically consistent with total viscous heating and total adiabatic heating that

are exactly balanced at any instant in time. Our analysis also shows that the previously reported imbalance between total viscous heating and

adiabatic heating for compressible mantle convection with a TALA results from neglecting the effect of the pressure on the buoyancy force.

Our analysis is derived from considerations of the conservation equations of the mass and momentum with no involvement of the energy

equation, although viscous heating and adiabatic heating terms are directly related to the energy equation. To better study the energy balance

for compressible mantle convection, ALA formulation is preferred over TALA, especially for planetary mantles with large compressibility

(e.g. within giant planets). Furthermore, the analysis presented in this study provides a method to check whether a given equation of state or

a formulation of mantle convection is energetically consistent in compressible mantle convection.

We formulate numerical models of compressible mantle convection under both TALA and ALA formulations by modifying the Uzawa

algorithm in Citcom code. By comparing with analytic solutions for the compressible Stokes flow problem, our benchmark studies validate our

numerical solutions. Our numerical models of compressible mantle convection for both TALA and ALA confirm our analysis on the balance

between total viscous heating and total adiabatic heating. Our modified Uzawa algorithm for compressible mantle convection is sufficiently

general and is already extended to 3-D Cartesian and spherical models in codes CitcomCU and CitcomS.
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A P P E N D I X A : A M O D I F I E D U Z AWA A L G O R I T H M F O R S O LV I N G

T H E C O M P R E S S I B L E S T O K E S F L O W P RO B L E M

The momentum and mass equations for compressible Stokes flow problem are:

τi j, j − p, jδi j = −[ρr Ra(T − Tr ) − pγ ]δi3, (A1)
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Yes 

Yes 

Compute force vector F and Guess 

initial velocity V0 and pressure P0 

Solve KV1 = F - KV0 - GP0 to obtain V1, 

Let residual r0=GTV1 + CV0 

Δ P/P0< ε and 

Δ V/V0<ε ?   

Get the final 

solution P and V 

No 

TALA ? No, ALA 

Compute force vector WP0 

using pressure P0, and minus 

WP0 from F 

Compute the difference between P and P0, 

Δ P, and difference between V and V0, Δ V. 

Suppose a given tolerance ε  

Using residual r0 for Uzawa algorithm to solve 

for the new velocity V and new pressure P  

Multiply C to V0 to get CV0 

Let V0=V and P0=P 

Figure A1. The flow chart of the modified Uzawa algorithm.

ui,i + (ρr ),3

ρr
u3 = 0. (A2)

Following Hughes (2000), the corresponding matrix equation in finite element formulation is:[
K G + W

GT + C 0

] [
V
P

]
=

[
F
0

]
, (A3)

where V , P, K, G, GT and F are the velocity vector, pressure vector, stiffness matrix, discrete gradient operator, discrete divergence operator

and force vector, respectively. In contrast with the incompressible Stokes flow problem, we now have two additional terms: CV from the

second term in eq. (A2) and WP from the buoyancy force associated with the dynamic pressure. Note that for TALA, vector WP is ignored.

In order to solve eq. (A3) with these additional terms, we modify the Uzawa algorithm. Fig. A1 shows the flow chart for the modified

Uzawa algorithm. The key to our algorithm is to move the additional terms associated with compressibility to the right-hand side as part of

the force term and to use an iterative method for a final stable solution. This is different from the bi-conjugate gradient method as employed

recently in Tan & Gurnis (2007). The positive definite nature of the stiffness matrix K is preserved and the algorithm converges rapidly and

appears to be stable. Our tests also show that our modified Uzawa algorithm does not add significant computational cost. Typically, after

the first tens of time steps, it takes nearly the same computation time per time step for the compressible convection as for incompressible
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convection calculations. Our modified Uzawa algorithm for compressible mantle convection is sufficiently general and is already extended to

3-D Cartesian and spherical models in codes CitcomCU and CitcomS.

A P P E N D I X B : A N A LY T I C S O L U T I O N F O R 2 - D C O M P R E S S I B L E S T O K E S

F L O W P RO B L E M

The 2-D compressible Stokes flow problem under ALA formulation can be described by the following equations:

∂u

∂x
+ ∂v

∂z
− vγ = 0, (B1)

∂σzz

∂x
+ ∂τxz

∂z
+ 4η

∂2u

∂x2
− 2ηγ

∂v

∂x
= 0, (B2)

∂τxz

∂x
+ ∂σzz

∂z
+ RaT exp[(1 − z)γ ] − pγ = 0, (B3)

where u and v are velocity components in x and z directions; σ ij is the stress tensor; τ ij is the deviatoric stress tensor; the dynamic pressure p
can be expressed as

p = 4η

3

∂v

∂z
− 2η

3

∂u

∂x
− σzz . (B4)

Also note that

τxz = η

(
∂u

∂z
+ ∂v

∂x

)
. (B5)

We use trigonometric functions with wave number k to express these variables (Hager & O’Connell 1979).

u(x, z) = U (z) sin(kx), (B6)

v(x, z) = V (z) cos(kx), (B7)

τxz(x, z) = Yxz(z) sin(kx), (B8)

σzz(x, z) = Szz(z) cos(kx), (B9)

T (x, z) = T0(z) cos(kx), (B10)

where U(z), V (z), Y xz(z), Szz(z) and T 0(z) are functions which only depend upon z. Substituting these variables into eqs (B1), (B2), (B3) and

(B5), we obtain:

dU

dz
= kV + 1

η
Yxz, (B11)

dV

dz
= −kU + γ V, (B12)

dSzz

dz
= −2ηkγU + 4η

3
γ 2V − γ Szz − kYxz − Ra�, (B13)

dYxz

dz
= 4ηk2U − 2ηkγ V + kSzz, (B14)

where � = T 0(z) exp [(1 − z)γ ].

We can also write eqs (B11), (B12), (B13) and (B14) in matrix form as following:

d

dz

⎡
⎢⎢⎢⎣

V
U

Szz/(2k)

Yxz/(2k)

⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎝

γ −k 0 0

k 0 0 2k
η

2η

3k γ 2 ηγ 2 −γ −k
−ηγ 2kη k 0

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎢⎣

V
U

Szz/(2k)

Yxz/(2k)

⎤
⎥⎥⎥⎦ +

⎛
⎜⎜⎜⎝

0

0

− Ra�

2k

0

⎞
⎟⎟⎟⎠ , (B15)

Or
dχ

dz
= Aχ + b, (B16)

where χ = [V , U , Szz/(2k), Y xz/(2k)]T , b =
(

0, 0, − Ra�

2k
, 0

)T

, and

A =

⎛
⎜⎜⎜⎝

γ −k 0 0

k 0 0 2k
η

2η

3k γ 2 ηγ 2 −γ −k
−ηγ 2kη k 0

⎞
⎟⎟⎟⎠ . (B17)
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The solution of eq. (B16) can be expressed as:

χ (z) = exp[A(z − z0)]χ0 +
∫ z

z0

exp[A(z−ξ )]b(ξ )dξ

= PA(z, z0)χ0 +
∫ z

z0

PA(z, ξ )b(ξ )dξ, (B18)

where χ0 is the starting vector at z = z0, and PA(z, z0) is the propagator matrix. For isoviscous cases with free-slip boundary conditions, η =
1, and V and Y xz are both zeros at the top and bottom boundaries. Given �, Ra, k and γ , the horizontal velocity U and vertical stress Szz at

the top and bottom boundaries can be solved. We use Ra = 1.0 and k = π in our models. T 0(z) in � is given as a delta function in z direction

at the middle depth of the system [i.e. T 0(z) = δ(z − 0.5)].

For TALA, the analysis is the same except that the effect of dynamic pressure on the buoyancy term is ignored. The eq. (B3) therefore,

becomes

∂τxz

∂x
+ ∂σzz

∂z
+ RaT exp[(1 − z)γ ] = 0 (B19)

Consequently, the matrix equation becomes

d

dz

⎡
⎢⎢⎢⎣

V
U

Szz/(2k)

Yxz/(2k)

⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎝

γ −k 0 0

k 0 0 2k
η

0 0 0 −k
−ηγ 2kη k 0

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎢⎣

V
U

Szz/(2k)

Yxz/(2k)

⎤
⎥⎥⎥⎦ +

⎛
⎜⎜⎜⎝

0

0

− Ra�

2k

0

⎞
⎟⎟⎟⎠ . (B20)

It should be pointed out that similar analyses were given by Tan & Gurnis (2007) and also in an unpublished note by Ita and Zhong.
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