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Abstract
Different methods are possible for estimating tidal deformations of Earth and telluric planets.
On the one hand, the codeALMA3 solves analytically the governing equations in considering
symmetrical and incompressible bodies with homogeneous layers and different possible rhe-
ologies. Tidal deformations are considered with periodic excitation functions and the output
of the model is frequency-dependent complex Love numbers. On the other hand, the 3-D
finite element code CitcomSVE integrates numerically the governing equations with possibly
lateral variations in viscoelastic structures on the regional and global scales. In this work, we
present how tidal deformations have been implemented in CitcomSVE by the introduction
of a periodic forcing potential. For validation and benchmarking, we realized comparisons
between the ALMA3 output for Moon tidal deformations and the numerical CitcomSVE
in terms of frequency-dependent Love numbers k2 and h2 real and imaginary parts with
1-D viscoelastic structure. Considering two possible profiles for the Moon,we compared
the frequency-dependent quality factor deduced from ALMA3 with the one obtained with
CitcomSVE. We found that with a sufficient numerical resolution for CitcomSVE (with an
horizontal resolution of about 14km and 10−5 for numerical accuracy), the results of the
two methods for computing tidal deformations (i.e., k2 and h2) and quality factor Q are in
good agreement for different periods including the monthly period (less than 0.025% for the
real part of Love numbers and for the Q, about 1% for periods of excitation from 5 to 108

days). We also computed tidal dissipation energy from CitcomSVE and found it consistent
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with that expected from quality factor calculation. Our study demonstrates the potential for
CitcomSVE to be applied for planetary tidal deformation calculations for a planet with a 3-D
structure.

Keywords Geophysics · Moon interior · Dissipation · Tides · Solid body

1 Introduction

Modeling tidal deformations can be an efficient tool for studying the internal structure of
planets. For example, Briaud et al. (2023a) suggested the presence of a solid inner core of the
Moon by comparing Love numbers estimated from geodetic observations with predictions
from analytical models of tidal deformations. Love numbers give a description of plane-
tary deformations (i.e., radial and tangential deformations and the perturbation of gravity
potential) induced by different sources and origins (e.g., surface loadings, tides) at different
spatial and timescales. Timescales range from the hour, in the case of Mars tidal deforma-
tions, to thousand of years, for the Earth glaciation and deglaciation loading. In most of the
recent publications, analytical models such as ALMA3 (Melini et al. 2022) are used for the
computation of the planetary responses to the loadings and tides. ALMA3 is very conve-
nient and precise with different possible viscoelastic rheologies including Maxwell’s but has
some limitations. In particular, the analytical models assume that the planet is spherically
symmetric with a layered structure, subject to the gravitational pull of a tide-raising body.
However, in the solar system, indications of heterogeneities and asymmetry in planetary
bodies have been well documented, mainly on temperature, density and elasticity anomalies
in their mantles. For the Moon, the existence of heterogeneities in the mantle can be inferred
from mare basalt volcanism and crustal thickness (e.g., Wieczorek et al. 2013). On Earth,
seismic tomography studies have shown that two major anomalies called the large low shear
velocity provinces (LLSVP) are present in the Earth mantle (e.g., Ritsema et al. 2011; French
and Romanowicz 2015; Lau et al. 2017; Maguire et al. 2018; Duncombe 2019). For Mars,
the crustal dichotomy, the Tharsis Rise and the Elysium plateau have long been viewed as
evidence for heterogeneities in the mantle (e.g., Harder and Christensen 1996; Zhong 2009;
Broquet and Andrews-Hanna 2023).

Calculations of deformation of a planetary body with laterally heterogeneous viscoelastic
structure in response to tidal or surface forcing require special techniques including numerical
(e.g., Zhong et al. 2003; Latychev et al. 2005; Klemann et al. 2008; van der Wal et al.
2013) or perturbation methods (e.g., Qin et al. 2014). However, these studies were done
to account for the glacial isostatic adjustment that follows the Earth last ice age, while the
studies of the lunar tidal deformation by Zhong et al. (2012) and Qin et al. (2014) only
considered the effects of heterogeneous elastic structure with Heaviside function forcing
time history. Tidal dissipation, and consequently tidal deformation, may play an important
role in the Lunar evolution (Harada et al. 2014; Briaud et al. 2023a). Lunar tidal forcing
is dominated by monthly, half-monthly and yearly periods. Therefore, it is important for
the numerical models to explore tidal deformation with appropriate periodic forcings and
viscoelastic mantle structure that results in dissipation.

The main objective of this work is to introduce periodic tidal excitation potentials to
compute the planetary deformations of asymmetric bodies with 3-D viscoelastic structure
in the open-source finite element code CitcomSVE. The paper is organized as follows. In
Sect. 2.1, we present the general governing equations that describe the deformation of a
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planetary body under the action of a periodic potential. We present then the two methods
for solving these equations: the semi-analytical approach as it is done with software such as
ALMA3 (Sect. 2.2) and the finite element method in CitcomSVE (Sect. 2.3) both for time
(Sect. 2.3.1) and frequency (Sect. 2.3.2) tidal forcing functions. We also describe how the
total tidal dissipation and the quality factor, Q, are computed in CitcomSVE and ALMA3 in
Sect. 2.3.3 and how they can be compared with those proposed by Efroimsky (2012). Finally,
in Sect. 3, we give the results of the ALMA3 versus CitcomSVE comparisons obtained for a
2-layered and a 4-layered Moon and conclude in Sect. 4.

2 Formulation of the tidal deformation and dissipation

2.1 The governing equations

The governing equations for planetary deformation are the laws of conservation of mass and
momentum, coupled with Poisson’s equation for gravitational potential. With the assumption
that a planetarymantle is an incompressiblemedium, the equations are (e.g.,Wahr et al. 2009;
Zhong et al. 2022)

⎧
⎪⎨

⎪⎩

ui,i = 0, (1)

σi j, j + ρ0φ,i − (ρ0gur ),i − ρE
1 gi + ρ0VT ,i = 0, (2)

φ,i i = −4πGρE
1 , (3)

where ui is the displacement with ur being in the radial direction, φ is the perturbation
to gravitational potential, VT is the applied forcing potential, σi j is the stress tensor, ρ0
is the unperturbed mantle density, gi is the gravitational acceleration with g = √

(gi gi ),
ρE
1 = uiρ0,i is the Eulerian density perturbation,1 and G is the gravitational constant. The

boundary conditions are zero shear and normal force at the surface (at radius r = rs , Eq. (4))
and zero shear and self-gravitating normal forces at core–mantle boundary (CMB) (r = rb,
Eq. (5)).

{
σi j n j = 0, for r = rs, (4)

σi j n j = (−ρcφ + ρcgur )ni , for r = rb, (5)

where ρc is the density of the core and ni represents the normal vector of the surface or
CMB. The boundary conditions at the CMB consider the self-gravitational effect for a fluid
core (Zhong et al. 2003). The boundary conditions for Poisson’s equation (i.e., Eq. (3)) are
the continuity in the potential and its radial gradients at the surface and CMB (Zhong et al.
2003). For an incompressible mantle with a viscoelastic Maxwell rheology, the constitutive
equation relating stress to strain tensors is

σi j + η

μ
σ̇i j = −Pδi j + 2ηε̇i j , (6)

where P is the dynamic pressure, δi j is the Kronecker delta function, and μ and η are the
shear modulus and viscosity, respectively, and εi j is the total strain tensor as a sum of elastic
and viscous strains2 and can be related to displacement ui by εi j = (∂ui/∂x j + ∂u j/∂xi )/2.
Without loss of generality, we consider, in this work, a simplified form of tidal potential

1 An indicial notation is used here with A, i representing the derivative of variable Awith respect to coordinate
xi , and repeated indices indicate summation.
2 the dot over a variable represents time-derivative.
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acting on the Moon at spherical harmonic degree l = 2 and order m = 0 and at tidal period
T (Wahr et al. 2009),

VT (r , θ, t) = 3eGmr2s
2a3

(
r

rs

)2

P20(cos θ) cos

(
2π t

T

)

(7)

where r and θ are the radius and colatitude; t is the time; rs is the Moon radius; a and e
are the semi-major axis and eccentricity of the lunar orbit; m is the Earth mass; P20(cos θ)

is the degree 2, order 0 Legendre polynomial. The governing equations with the bound-
ary conditions, applied tidal potential and viscoelastic mantle structure yield solutions of
displacements, strain and stress in the mantle including the surface. We are particularly
interested in determining the time-dependent radial displacement and gravitational potential
Love numbers h2 and k2 at the surface that are related to degree-2 radial displacement ur2
and gravitational potential φ2 at the surface by

⎧
⎨

⎩

ur2 = h2
VT

g
(8)

φ2 = k2VT (9)

It is interesting to note that at the surface where r = rS , the potential of Eq. (7) can be written
such as

VT (rS, θ, t) = VT0 P20(cos θ) cos

(
2π t

T

)

, (10)

where

VT0 = 3eGmr2S
2a3

. (11)

For solving the governing equations, two approaches are possible: (i) the semi-analytical
solution of the equations using Laplace transform such as with ALMA3 (Melini et al. 2022)
and (ii) the numerical method such as the finite element method used with CitcomSVE
(Zhong et al. 2022). While the semi-analytical method is computationally fast, it can only
be applied to a planetary body with a viscoelastic structure with spherical symmetry (i.e.,
1-D). Numerical models like CitcomSVE work for a planetary body with 3-D viscoelastic
structures.

2.2 The semi-analytical approach

ALMA has been developed since 2006 to estimate Earth deformations induced by surface
loadings through the computation of time-dependent Love numbers (Spada and Boschi 2006;
Spada 2008). Several applications of ALMA can be found in the literature. For example, it
has been used to better understand Glacial Isostatic Adjustment processes (Spada 2011) or,
inversely, to achieve better inferences of Earth mantle properties from geophysical observa-
tions (Boughanemi and Mémin 2024). More recently, tidal periodical deformations (without
contact) and viscoelastic normalmodes have been included in ALMA, leading to the ALMA3

version (Melini et al. 2022).
Here, we only recall the main theoretical background of ALMA3. A full description can

be found in Melini et al. (2022), Briaud et al. (2023a). In all versions, ALMA computes
Love numbers for an incompressible, self-gravitating, radially stratified planetary model,
using as inputs multilayered 1-D rheological profiles (i.e., radius, density, shear modulus and
viscosity) with homogeneous layers. See Table 1 as an example of profile.
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Table 1 Parameters for 2-layered and 4-layered Moon models

R (km) η (Pa s) ρ (kg m−3) μ (Pa)

2-Layers

Mantle Maxwell 1737.0 1021 3300 6.56×1010

Core Fluid 380 − 6000 −
4-Layers

Crust Maxwell 1737.0 1024 3300 1.60 ×1010

Mantle Maxwell 1698.4386 1021 3300 6.56 ×1010

LVZ Maxwell 500 1018 3300 6.56 ×1010

Core Fluid 380 − 6000 −
R stands for the outer radius of each layer, η the viscosity, ρ the density and μ the shear modulus. The density
and shear modulus are constant per layer. In the 2-layer case, the characteristic time scale is the Maxwell time
τM = η

μ , which is about 484 years for mantle viscosity η = 1021 Pa s and shear modulus μ = 6.56 × 1010

Pa used here. The surface gravitational acceleration gs is 1.616 m s−2 and the CMB gravitational acceleration
gcmb is 0.637 m s−2

The original version of ALMA evaluates time-dependent Love numbers for a Heaviside-
like forcing potential. Within the framework of viscoelastic normal modes (VNM), the
computation of Love numbers is performed in the Laplace domain, followed by a numer-
ical inverse Laplace transform to retrieve Love numbers in the time domain. Considering
tidal periodic potential, ALMA3 computes the Laplace-transformed solution of the equilib-
rium equations for a given harmonic degree n, leading to frequency-dependent Love number
estimations. The dependency in frequency ω = 2π

T corresponds to the frequency of the
forcing potential, introduced here as eiωt , of the fundamental equations (see Eq. (7)). If
xδ(t) is the time-domain response to an impulsive load, the solution vector, xω(t), for the
frequency-depend forcing potential is then given by (Melini et al. 2022)

xω(t) = x0(ω)eiωt , (12)

where x0(ω) is the Laplace transform of xδ(t) evaluated at iω. It is then possible to deduce
Love numbers for the global gravitational response k, radial and tangential displacements
(h and l, respectively) for a periodic forcing of frequency ω as direct functions of the three
components of the vector x0(ω) (see Eqs. (22, 23, 24) in Melini et al. (2022)). By design,
ALMA3 uses sequential values of ω, producing Love numbers estimated for a range of
frequencies defined by the user. Furthermore, Love numbers produced here are complex
numbers with a phase shift corresponding to the delay between the external periodic potential
and the planet response, related to the energy dissipation within the planetary mantle. As
described for example by Murray and Dermott (2000), the phase shift ε associated with the
dissipative process is usually defined according to Love numbers such as

hn(t) = ‖hn(ω)‖ei(ωt−ε) (13)

One can then identify

tan(ε) = − Im(hn(ω))

Re(hn(ω))
. (14)

The ratio between the energy loss by dissipation and the total energy of the body is often
given in terms of quality factor Q which also depends on the excitation frequency ω such as
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Efroimsky (2012):

Q(ω) = − ‖hn(ω)‖
Im(hn(ω))

(15)

For hn determined from the semi-analytic method ALMA3, such defined Q is referred to as
QALMA and when one uses the hn deduced from CitcomSVE, Q is referred to QSVE.

2.3 CitcomSVE numerical model

CitcomSVE is an open-source finite element package for modeling deformation of a vis-
coelastic planetary mantle and crust in response to surface and tidal loadings (Zhong et al.
2022). This package was developed out of the mantle convection code CitcomS (Zhong et al.
2000, 2008) by replacing a viscous rheology and Eulerian grid in CitcomS with a viscoelas-
tic rheology and Lagrangian grid (Zhong et al. 2003). CitcomSVE has been used to study
glacial isostatic adjustment process and its associated sea-level change for the Earth with 3-D
viscosity structure (Zhong et al. 2003; Paulson et al. 2005; A et al. 2013) and non-Newtonian
viscosity (Kang et al. 2022) and also for tidal response of theMoon with 3-D elastic structure
(Zhong et al. 2012; Qin et al. 2014). CitcomSVE has been demonstrated to be accurate,
robust and computationally efficient with recent test calculations on more than 6000 CPU
cores (Zhong et al. 2022, 2003). The packagewasmade publicly available via github recently
https://github.com/shjzhong/CitcomSVE.
With the free surface boundary conditions at the top boundary and zero shear stress and
self-gravitating normal forces at the CMB (Eqs. (4) and (5)), CitcomSVE in principle works
only for a single solid layer (e.g., the silicate mantle/crust for rocky planetary bodies or ice
for icy satellites) of a spherical shell bounded by inviscid fluids above and below the solid
layer. However, CitcomSVE may also work for a solid metallic core inside a rocky planetary
bodies if the core viscosity is sufficiently smaller than that of the mantle or for two layers of
ice with a fluid layer in between for icy satellites. In the latter case, CitcomSVE will need to
include a layer with much smaller (e.g., several orders of magnitude) viscosity than those of
the icy layers above and below. Vigorous numerical tests and benchmarks for CitcomSVE
are required before it can be applied to these scenarios.

2.3.1 Time-varying deformation due to periodic tidal forcing

For a viscoelastic Maxwell medium, a characteristic timescale is the Maxwell time τM = η
μ
,

and as an example, the Maxwell time is about 484 years for mantle viscosity η = 1021

Pa s and shear modulus μ = 6.56 × 1010 Pa. When a tidal excitation timescale (e.g., the
period T) is larger than or comparable with τM , mantle deformation including the surface
deformation is controlled by viscous process, which is accompanied by significant viscous
dissipation. On the other hand,when the tidal excitation timescale is significantly smaller than
τM , the deformation is largely elastic. For example, in studying the effects of 3-D structure
on lunar tidal deformation, because the dominant tidal period is about a month, Zhong et al.
(2012) and Qin et al. (2014) only considered the elastic deformation and completely ignored
viscous dissipation. However, the lunar laser ranging studies indicate a significant lunar
tidal dissipation (e.g., Williams and Boggs 2015), and viscous dissipation effects have been
considered in some tidal deformation calculations (e.g., Briaud et al. 2023a; Tan and Harada
2021; Harada et al. 2014). The viscous dissipation in a viscoelastic Maxwell medium affects
not only the amplitude of deformation but also the phase difference between the deformation
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and the tidal force. The larger the viscous dissipation, the larger the phase shift ε, and the
phase shift helps determine the tidal dissipation and tidal Q factor (see Sect. 2.2).While semi-
analytical solutions have been routinely used to compute tidal Love numbers, Q and viscous
dissipation in viscoelastic models (e.g., Roberts and Nimmo 2008), calculations of the phase
shift and tidal Q have not been done in numerical models. In a 2-D Cartesian finite element
modeling study, Devin and Zhong (2022) showed that the phase shift between the surface
deformation and periodic loading force is significant for relatively large loading periods and
is responsible for viscous dissipation. However, they did not quantify either the phase shift
or the Q factor.

In this study, we use CitcomSVE to compute tidal deformations of the lunar mantle
induced by a periodic tidal forcing (i.e., Eq. (7)) with different viscoelastic structures (for 2-
layered and 4-layeredMoon) and tidal periods (from 1 to 108 days). The surface displacement
computed from CitcomSVE is used to determine the phase shift and tidal quality factor Q
(i.e., QSVE) that will be compared with those determined from semi-analytical solutions
provided by ALMA3 (i.e., QALMA).

In order tomake such comparisons, we treat the lunarmantle as an incompressiblemedium
with 1-D viscosity structure but constant density and shear modulus (see Table 1).

The accuracy of a numerical method such as CitcomSVE depends on spatial and temporal
resolutions of the finite element grid. For relatively short tidal period T (i.e., comparable
with or less than τM ), we set the time increment 
t for each time step to be 
t = T /N ,
with N=20 or more. However, for T significantly larger than τM , we will generally limit 
t
to be smaller than τM . CitcomSVE uses a non-Gauss–Legendre grid to generate a relatively
uniform element size on a spherical surface and to avoid the excessive resolution near the
polar regions induced by the conventional Gauss–Legendre grid. The spherical surface is first
divided into 12 spherical caps with each cap as a solid angle sector of a spherical shell. Each
cap is then further divided into grid cells or elements (Zhong et al. 2000). In our calculations,
we employed different spatial resolution, e.g., 12× (32× 32× 128), where the last number,
128, in the parenthesis indicates the number of elements in radial direction, while the first
and second numbers are for the numbers of elements in two horizontal directions. For each
model calculation, CitcomSVE computes 3-D displacement, strain and stress fields on the
finite element grid points and at each time step. The displacement field on the grid points is
then expanded into a spherical harmonic domain in which CitcomSVE computes and outputs
time-dependent surface radial displacement (h) and gravitational potential (k) Love numbers
at desired spherical harmonic degrees (e.g., degree 2) (Zhong et al. 2022).

2.3.2 Frequency-dependent Love numbers and Q factor

In order to validate the implementation of the tidal forcing in CitcomSVE, we compare
the obtained Love numbers with the one produced by ALMA3 as described in Sect. 2.2.
By construction, CitcomSVE computes in the time-domain displacements and gravitational
potential anomalies whenALMAgives frequency-dependent Love numbers. In this work, we
have chosen to transform the time-dependent CitcomSVE outputs into frequency-dependent
values, comparable with ALMA3 ones. This is a convenient approach as the user can provide
the tidal frequency ω (and the corresponding period T = 2π

ω
) as an input of the numerical

code and can then fit the periodic signal (corresponding to the given ω) in the normalized
radial displacement at the surface, ūr2 (or gravitational potential anomalies, φ̄2) time series
L(t) provided by CitcomSVE. ūr2 (resp. φ̄2) is related to radial displacement at the surface
ur2(t) (see Eq. (8)), the amplitude of periodic forcing VT0 (see Eq. (11)) and gravitational
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acceleration at the surface g as

ūr2(t) = ur2(t) × g

VT0

Note that the subscript 2 indicates degree 2, given thatwe only consider degree-2 tidal forcing.
We have the equivalent definition for φ̄2 with φ̄2 = φ2

VT0
. L(t) stands either for ūr2 or φ̄2.

The fitted cosine and sine terms give the real and the imaginary parts of Love numbers,
respectively, such as:

L(t) = A(ω) × cos

(
2π t

T

)

+ B(ω) × sin

(
2π t

T

)

(16)

where A = A(ω) and B = B(ω) lead to the real and the imaginary parts of Love numbers.
The tidal phase shift is then ε = − arctan B

A (as given by Eq. (14)) and the quality factor Q

is given by QSVE = −
√
A2+B2

B , as in Eq. (15). With the determination of A and B, it is also
possible to estimate the fit uncertainties for the two terms. These uncertainties depend on the
CitcomSVE numerical accuracy but also on the time resolution of the outputs. As for all least
square fit, a sufficient number of points (i.e., results obtained for a given time step) is indeed
required for estimating the parameters with a good accuracy (see Sect. 3.1). Experimentally,
we set up this number to a minimum of 20 steps per period.

For illustration, we show, in Fig. 1, the normalized surface radial displacement ur2(t)
obtained with CitcomSVE for the same viscoelastic 2-layered structure (see Table 1) but
with two periods of excitation: 104 years (Fig. 1A) and 100 years (Fig. 1B). The values of the
h2 real and imaginary parts are plotted on Fig. 2 that also shows results for other periods from
1 to 108 days. For each of the plots of Fig. 1, we plotted with dots the values obtained from
CitcomSVE with the phase shift induced by the viscoelastic contribution of the 2-layered
rheological structure and with crosses the values without phase shift. One can see, for the
simulations with 104 year-excitation period, a very large phase shift (of about 70◦), whereas
for the shorter period of excitation, the phase shift is smaller (of about 2◦) and almost not
visible. This example illustrates why the uncertainty in computing the imaginary part of the
Love number and consequently the phase shift and the energy dissipation is bigger when the
period of excitation decreases. Note that for periods greater than 104 years, we use a time
buffer of about 1.5 periods in order to reach a stable state for the solution. We have applied
this method for different ranges of frequencies. The results are presented in Sects. 3.1 and
3.2.

2.3.3 Calculations of the total dissipation energy

Tidal dissipation energy for the mantle can be calculated using two different approaches. The
first is based on the quality factor Q (e.g., Efroimsky 2012), and the second is from direct
integration of viscous dissipation for the mantle (e.g., Devin and Zhong 2022; Hanyk et al.
2005).
Quality factor-based method The energy balance dictates that for an incompressible vis-
coelastic medium under external force (e.g., tidal force or surface loading) on its boundaries,
the rate of work or power done at the boundaries by the external force is equal to the sum
of powers of stored elastic energy and dissipative energy in the medium (Devin and Zhong
2022). For a periodic tidal forcing that is considered here, the stored elastic energy over a
full loading period is zero, and the total tidal dissipation energy occurred in the planetary
body is equal to the work done by the tidal force at the boundaries. According to Efroimsky
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Fig. 1 Normalized surface radial
displacement ūr2 (red dot-lines)
as a function of time computed
from CitcomSVE for a 2-layered
Moon model and two different
tidal excitation periods T : 104

years (A) and 100 years (B). The
black cross-lines are obtained
from the red lines by removing
the sine contribution (see Eq.
(16)). Note that ūr2 in red dot-line
shows clear phase shift (about
70◦) for T=104 years relative to
the tidal force (the black
cross-lines), but the phase shift is
significantly smaller (about 2◦)
for the short period case. The
phase shifts are controlled by the
rheological structure (Table 1)
and the excitation period

(2012) and Goldreich (1963), the power by the tidal forcing to a homogeneous (i.e., no core)
and incompressible planetary body is given by a surface integral

P =
∫

S
ρVT (rS, θ, t)vsds (17)

where ρ is the density of the planet, VT (rS, θ, t) is the potential defined in Eq. (10) at
the surface and vs is the rate of radial displacement or radial velocity at the surface, and
the integration is over the planetary surface. The radial displacement ur2 can be written as
Efroimsky (2012) using Eq. (8) for Love number h2 and considering the phase shift ε, such
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Fig. 2 The real (A and B) and imaginary (C and D) parts of Love numbers h2 from ALMA3 (black line) and
CitcomSVE (colored points) for a 2-layeredMoonmodel for different excitation periods, numerical resolution
and accuracy. B is for the difference in real part of h2 between CitcomSVE and ALMA3 zoom-in for short
periods. D is the zoom-in of C for short periods

as

ur2 = h2
g
VT 0P20(cos θ) cos

(
2π t

T
− ‖ε‖

)

Considering the relationship between vs and ur2 , vs is

vs = dur2
dt

= −h2
g
VT 0

2π

T
P20(cos θ) sin

(
2π t

T
− ‖ε‖

)

(18)

Substituting Eqs. (10) and (18) to Eq. (17), we can compute the power P

P = −4π

5g
ρh2V

2
T 0r

2
s
2π

T
sin

(
2π t

T
− ‖ε‖

)

cos

(
2π t

T

)

. (19)
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Integrating the power P for a full period T gives us the total dissipative energy over the period,


E =
∫ T

0
Pdt = −4π2

5g
ρh2V

2
T 0r

2
s sin ‖ε‖

where we considered
∫ T
0

2π
T sin( 2π tT − ‖ε‖) cos( 2π tT )dt = −π sin ‖ε‖ (Efroimsky 2012).

The quality factor is defined following Efroimsky (2012) such as Q = 1
sin ‖ε‖ . Then, we have

that the total dissipation energy over one period T is


E = −4π2

5g
ρV 2

T0r
2
s
h2
Q

= K × h2
Q

(20)

with

K = −4π2

5g
ρV 2

T 0r
2
s

For the parameters given by Table 1, K ≈ −1.47 × 1017 joules.
Given that two quality factors QALMA and QSVE are computed here, we will compute and

compare two different dissipation energies
EALMA and 
ESVE, each using its correspond-
ing h2 and Q. It is worthwhile to point out that the power by the tidal forcing P in Eq. (17)
and the total dissipative energy 
E in Eq. (20) are for a homogeneous and incompressible
planetary body without a core (Efroimsky 2012; Goldreich 1963), and that when a core is
present, the work done at the core–mantle boundary (CMB) by tidal force would affect the
dissipative energy (Devin and Zhong 2022).
Direct integration method The total dissipation power for the lunar mantle at different time
can be computed directly from CitcomSVE (e.g., Devin and Zhong 2022) using

PSVE-I =
∫

V

τi jτi j

2η
dV (21)

where τi j is the deviatoric stress tensor, η is the viscosity, and the volume integral is for the
whole computational domain or the lunar mantle. Because a CitcomSVE run is computed
for multiple periods, we can calculate the total dissipative energy per period 
ESVE-I by
averaging PSVE-I from time mT to nT as


ESVE-I = 1

n − m

∫ nT

mT
PSVE-I dt (22)

where T is the forcing period, m and n are integers chosen for reducing the numerical error
in the integral computation. In our case, we use m = 2 and n = 5.

The total dissipation energy per period from CitcomSVE 
ESVE-I can then be compared
with
ESVE and
EALMA from Eq. (20) derived from using the energy balance but ignoring
the work done at the CMB. It should be noted that the direct integration for computing
dissipation energy was also used in semi-analytical solution (Roberts and Nimmo 2008) and
other numerical solution methods (Hanyk et al. 2005).

3 Results of the comparisons

Previous methods of computation are valid for gravitational k, radial h and tangential l Love
numbers. As we are mainly focusing on degree-2 deformation and as k2 and h2 present very
similar behaviors, we limit the presentation of the results to only h2.
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Table 2 Grid setup for CitcomSVE

Grid # elements XY resolution Z resolution Accuracy Time
X × Y × Z km2 km mn

Low-res 32 × 32 × 128 3085 13 1 × 10−3 66

1 × 10−5 78

High-res 128 × 128 × 128 192 13 1 × 10−3 120

1 × 10−5 300

Columns 3 and 4 give the resolution in km2 in X and Y directions and in km in Z radial direction. The
last column gives the execution time for a 2-layered Moon, with an excitation period of 27 days and for
each configuration of numerical accuracies given in Column 5. The execution took place on 12 nodes (192
processors) with Dual Intel Xeon Gold 6248 at 2.5GHz

3.1 2-LayeredMoon

Table 1 presents the main characteristics of the 2-layeredMoon (i.e., the mantle and the core)
considered for these tests.

The mantle is considered as a viscoelastic Maxwell material with uniform viscosity and
shear modulus, and the core is a fluid. Note that in CitcomSVE calculations, the core is not
explicitly included, although the core–mantle boundary is considered as described in Eq. (5).

Comparatively, in ALMA, the core properties are considered. Furthermore, as in Cit-
comSVE, the mantle is divided into a large number of finite elements, it is important to have
a significant number of nodes for using the appropriate spatial resolution. Figure2 gives an
example of the effect of the spatial resolution on Love number h2. Two setups are considered.
The first one runs on 192 processors with a grid of 128×128×128 elements (indicated with
XYGrid = 128 in Fig. 2 or high-res in the rest of the text) for each of the 12 caps. A second
setup (marked as XYGrid = 32 on Fig. 2 or low-res grid in the rest of the text) uses also 192
processors but with a grid of 32×32×128 elements for each of the 12 caps. The advantages
of the second setup are to speed up the calculation with coarser grids in horizontal directions.
High-res computations were performed only when low-res appear to be not efficient enough.
Table 2 lists the characteristics of the two grids (high-res and low-res) together with execution
times for each configuration. A factor of almost 5 difference in the execution times exists
between the lowest and highest space resolution and numerical accuracy.

Another important parameter of the simulations is the accuracy level of the solution of the
governing equations given inColumn5 of Table 2. It represents the tolerance level for iterative
solution procedure in the CitcomSVE solver. The smaller the parameter, the more accurate
the solution is. This numerical accuracy can be tuned in CitcomSVE and in our calculations
here, it varies from 10−3 to 10−5. Finally, as explained in Sec2.3.1, the resolution in time is
also an important factor that has to be accounted for the CitcomSVE computation. A trade-
off between 
t , the time increment and N, the number of time steps per period T has to
be found in order to have a finer enough time resolution for the considered tidal period but
also a limited propagation of the numerical error in CitcomSVE computation and for the
conversion between time-dependent Love numbers to frequency-dependent imaginary and
real Love numbers (see Sect. 2.3.2).

In Fig. 2, one can see the global behaviors of the imaginary and real parts of h2 compared
to ALMA3 solutions for the two grid setups and two accuracies, and Fig. 3 gives the relative
differences in percentage between CitcomSVE and ALMA3. The error bars plotted in Fig. 2
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Fig. 3 Relative differences in the real and imaginary parts of h2 between CitcomSVE and ALMA3 for the
2-layered Moon model and for different excitation periods, numerical resolution and accuracy. A and B (resp.
C and D) present the differences in real part (resp. imaginary part). B (resp. D) is a zoom-in of A (resp. C)

are uncertainties of the least square fit of the cos and sin terms of Eq. (16) for, respectively,
the real and the imaginary parts of Love numbers. For the real part, with both grid setups and
accuracies, the difference in h2 between ALMA3 and CitcomSVE is far below (< 5× 10−6)
the accepted differences between Love numbers deduced from different modelings (i.e.,
Saliby et al. (2023) and Spada (2008) for discussion). One can also notice that (i) the error
bars are larger for the second setup in comparison with the first one, clearly indicating an
increase in the numerical noise with the decrease in grid resolution, and (ii) these very low
differences are obtained for a wide range of excitation periods (from 1 to 3 × 107 days).

For the same large range of excitation periods, the imaginary part (or the phase shift)
also varies by 7 orders of magnitude (from −4 × 10−7 down to −0.97) and CitcomSVE
reproduces also well the results of ALMA3 for nearly all the cases (see Figs. 2 and 3).
Imaginary parts appear to be, however, more affected by the spatial resolution and accuracy
with an increase in the differences between CitcomSVE andALMA3 for periods of excitation
smaller than 10 days. On the one hand, the impact of the spatial resolution is clearly visible in
particular in Fig. 2D, where the drift between values obtained with the lowest and the highest
spatial resolutions increases significantly. On the other hand, the impact of the accuracy
is illustrated in Fig. 3B for example with the 27-day excitation periods for which the use
of the 10−5 accuracy induces a decrease of the differences by a factor 8. More generally,
the differences between CitcomSVE and ALMA3 imaginary parts can be explained by the
small amplitudes of the imaginary part, especially for periods of excitation below 10 days
(with Im(h2) < 10−6) that make them more sensitive to numerical noise. For a 1-day
period, the differences are greater than 50%, even in considering the highest spatial resolution
and accuracy. For tidal periods greater than 10 days, the differences between ALMA3 and
CitcomSVE imaginary h2 are below 10% (see Fig. 3) for the highest spatial resolution and
accuracy and are compatible with a null difference when one accounts for the error bars of the
method (see Sect. 2.3.2). In the opposite, for the low-res grid and with the lowest accuracy,
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Fig. 4 Comparisons between Love numbers (h2) obtained with ALMA3 (black line) and CitcomSVE (colored
points). Same as Fig. 2 but for the 4-layered Moon model

the differences remain greater than 10% for periods smaller than 1 year but decrease with the
periods. This result shows that for periods of excitation between 1 day and 1 year, to reach a
good accuracy, high spatial resolutions and accuracies are requested for this 2-layer model
with mantle Maxwell time of 484 years. It is interesting to note that in the case of a 4-layered
body (see Sect. 3.2), this issue is less stringent as the imaginary parts of Love numbers are
bigger and less affected by numerical noise.

3.2 4-LayeredMoon

From the 2-layered Moon presented in Table 1, we add two additional layers: a 38-km-thick
crust with viscosity of 1024 Pa s located at the top of the mantle and a 119-km-thick low
viscosity zone located above the fluid core, with a viscosity of 1018 Pa s. The shear modulus
is constant for all the layers and equal to 6.56 ×1010 Pa as well as the density (3300 kg m−3)
except for the core (6000 kg m−3). Figures4 and 5 give, respectively, the global trend and

123



Tidal dissipation with 3-D finite element deformation... Page 15 of 20    43 

0

1

2

3

1e+02 1e+04 1e+06
Periods [days]

R
e(

h2
) a

bs
[%

]
A

0.000

0.005

0.010

0.015

0.020

0.025

10 30 100 300
Periods [days]

R
e(

h2
) a

bs
[%

]

B

−10

0

10

20

1e+02 1e+04 1e+06
Periods [days]

Im
(h

2)
 a

bs
[%

]

C

−10

0

10

20

10 30 100 300
Periods [days]

Im
(h

2)
 a

bs
[%

]

D

Accuracy
1E−5
1E−3

XYGrid
32
128

Fig. 5 Relative differences in absolute value and percentage for the real and imaginary parts of h2 between
CitcomSVE and ALMA3 for the 4-layered Moon model and for different excitation periods, numerical res-
olution and accuracy. A and B (resp. C and D) present the differences in real part (resp. imaginary part). B
(resp. D) is a zoom-in of A (resp. C)

the differences in percentages between CitcomSVE h2 imaginary and real parts and ALMA3

values for different periods of excitation in days. Same results are obtained for k2.
The newly obtained differences between CitcomSVE and ALMA3 are smaller than those

computed for the 2-layered Moon mainly because the viscous response is now larger. This is
due to the reduced viscosity for the layer above the core which induces larger dissipation and
larger values in the imaginary part of Love numbers. Indeed, in Fig. 2, for a tidal period of 10
days, the imaginary Love number is of about 5 × 10−7, whereas for the 4-layered case, the
imaginary Love number is almost 2 order of magnitude larger (about 1 × 10−5). This gain
of amplitude of the phase shift explains the improved accuracy in the numerical solutions of
the imaginary parts of Love numbers and the smaller differences between CitcomSVE and
ALMA3 results as one can see in Fig. 5. Even for periods smaller than 10 days, the differences
remain smaller than 5% for high-resolution calculations with no significant bias. Again, the
spatial resolution also plays an important role as it appears in Fig. 5. For example, for the
10-day excitation period, the use of the high-res grid reduces the differences by a factor 3
(from 12% down to 4%) and the increase in the numerical accuracy level of CitcomSVE
from 10−3 to 10−5 reduces further the differences from 4 to less than 1%. This is true for
all periods and, at the end, all considered periods of excitation (from 5 to 107 days), the
differences between CitcomSVE and ALMA3 remain below 1% for both real and imaginary
parts when one uses the high-res grid and 10−5 for the numerical accuracy.

The Moon h2 is estimated from Lunar Laser Ranging (LLR) observations (Williams
and Boggs 2015; Viswanathan et al. 2019) and satellite altimetry measurements using the
Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO,
e.g., Mazarico et al. 2014; Thor et al. 2021). The derived h2 value is 0.04394 ± 0.0002
(0.5%) and 0.0386 ± 0.0022 (5.7%), respectively, using LLR and LOLA (Viswanathan
et al. 2018; Thor et al. 2021). The resulting difference between LLR and LRO estimates
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Fig. 6 A Comparisons between QSVE (orange circles) and QALMA (black) for different excitation periods.
B Relative differences in percentages and absolute values between QSVE (orange circles) and QALMA for
different excitation periods, accuracy and spatial resolutions. Both plots are for the 4-layered Moon model.
The light dashed line indicates the 27 days period and the dark dashed indicates the yearly period

is therefore 0.00534 ± 0.0024 that is 12.2 ± 5.5% of the LLR estimated value. The k2
for the Moon is mainly derived from the GRAIL mission or LLR observations within the
range 0.0227–0.0310 (Williams et al. 2005, 2014). It is interesting to stress that the monthly
forcing term being the most important in amplitude (Williams and Boggs 2015), most of the
observed tidal signature corresponds to this monthly period (Hu et al. 2023). This means that
the Love number estimations deduced from observations give mainly the amplitude of the
monthly term. Consequently, the differences between Love numbers estimated numerically
withCitcomSVEandALMA3 at themonthly period (27 days) are lower than the uncertainties
of Love numbers estimated from observations.

3.3 Dissipation energy for the 4-layeredMoon

In Sect. 2.3.3, we have seen that we can compute the total dissipation energy in the mantle
over a period 
E using two different methods: (i) the Q-based method in Eq. (20) and (ii)
the direct integration for the mantle in Eq. (21) and (22). With the Q-based method, we may
compute 
EALMA and 
ESVE using QALMA and QSVE, respectively. The second method
is only applicable to CitcomSVE calculations and computes 
ESVE-I.

By comparing QALMA and QSVE, we assess the differences between CitcomSVE and
ALMA3 in using the same assumption of incompressible and homogeneous planetary body
with no core in the computation of the tidal dissipation energy. The result of this comparison
should be similar to the comparisons of Love numbers h2 between CitcomSVE and ALMA3

(seeFig. 5). It is indeedwhat one can see inFig. 6where a good agreement is evident both in the
global behavior of QALMA and QSVE (Fig. 6A) and in the relative differences between them
(Fig. 6B). As for the imaginary parts, the main differences occur for short periods (smaller
than 1 year). In this case, the numerical accuracy used for solving the governing equations
with CitcomSVE plays a major role. The agreement between QALMA and QSVE is better than
1% for all the periods considered with high spatial resolutions and numerical accuracy. For
periods greater than 1 year, even with low resolutions and accuracy the differences remain
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Fig. 7 Relative differences in percentages and absolute values between
ESVE-I and
ESVE (A) and between

ESVE-I and 
EALMA (B) for the 4-layered Moon and for different excitation periods, accuracy and spatial
resolutions

smaller than 1%. We stress that because Q is defined by surface radial displacement Love
number h2 (see Eq. (15)), the excellent agreement between QALMA and QSVE indicates the
agreement in Love number h2 from CitcomSVE and ALMA3.

Now let us investigate dissipation energy over one period by considering three different
formulations: 
EALMA, 
ESVE, and 
ESVE-I. Again, while the first two Q-based 
E ′s
ignore the effects of the CMB, 
ESVE-I includes the CMB’s contribution. The differences
between 
ESVE-I and 
ESVE, plotted in Fig. 7, would indicate the possible effects of the
CMB on dissipation energy and also how the Q-based approach may differ from the full
integral of the work and consequently from the total energy dissipation. For periods greater
than 5 years, there is a good agreement between the two quantities with relative differences
smaller than 5%. For periods smaller than 5 years, an average difference of about 14% is
present with more numerical noise for periods smaller than 3 months. In this case, as with
Fig. 6, a numerical accuracy of about 10−5 is required. The differences between 
ESVE-I

and 
EALMA are plotted in Fig. 7B. As expected, they follow the same trends as in Fig. 7A
but with less noise for smaller than 3-month periods for all accuracies and resolutions. This
stresses the very good numerical accuracy of the 
ESVE-I which appears to be less sensitive
to numerical accuracy than 
ESVE.

For both comparisons, relative differences of about 14% between the Q-based 
E and

ESVE-I exist for periods smaller than 5 years. One possible explanation is the impact of the
CMB as it has been shown (Briaud et al. 2023b) that a fluid Newtonian core with or without
an elastic inner core may affect the dissipation more at short periods, while at longer periods
the dissipation is more sensitive to the mantle.
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4 Conclusion

In this work, we have presented the first results obtained in using the finite element solutions
of the governing equations in the case of periodic tidal excitations using the software Cit-
comSVE. Comparisons with semi-analytical methods and the software ALMA3 (Melini et al.
2022) were done in using the formalism of the complex frequency-dependent Love numbers
and for two different 1-DMoon viscoelastic profiles (a 2-layered body and a 4-layered body).

For the vast majority of the profiles, they show very good agreement between the finite
element and the semi-analytical solutions. For short periods (less than 7 days) and for a
2-layered body with an uniform mantle, the differences can be large since the imaginary part
of Love numbers is small. But, by using optimal space and time resolutions, the differences
can be significantly reduced. The spatial resolution and the numerical accuracy are then
important for obtaining the best agreement with semi-analytical solutions. For the 4-layered
Moon, with a 12 × 1283 spatial resolution and 10−5 accuracy, the differences for real and
imaginary parts of Love numbers between CitcomSVE and semi-analytical solutions are
below 1% for periods of excitation from 5 to 108 days.

We also estimated the total dissipation energieswith the quality factorQ approach (Efroim-
sky 2012), 
EALMA and 
ESVE, and with the formalism proposed by Devin and Zhong
(2022) and implemented in CitcomSVE, 
ESVE-I. Comparisons indicate that 
ESVE-I is
less noisy than the Q-based
ESVE.This is consistent with the numerical uncertainties iden-
tified in the frequency-dependent Love numbers decomposition presented in Sect. 2.3.2 and
discussed in Sect. 3.1.

Furthermore, we note a difference of about 14% between
ESVE-I and Q-based
EALMA

for excitation periods smaller than 104 days. The main difference in their defining equations
is the dissipation energy associated with the deformation of the CMB—accounted for in

ESVE-I but not in 
ESVE or in 
EALMA—suggesting that the influence of the core con-
tribution needs to be more better accounted for in the Q-based method. Based on these
results, it would be interesting to continue these comparisons for icy satellites for which the
contribution of the core is supposed to be more important than in the case of the Moon.
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