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S U M M A R Y
Theory has been long established for computing the elastic response of a spherically symmetric
terrestrial planetary body to both body tide and surface loading forces. However, for a planet
with laterally heterogeneous mantle structure, the response is usually computed using a fully
numerical approach. In this paper, we develop a semi-analytic method based on perturbation
theory to solve for the elastic response of a planetary body with lateral heterogeneities in its
mantle. We present a derivation of the governing equations for our second-order perturbation
method and use them to study the high-order tidal effects caused by mode coupling between
degree-2 body tide forcing and the laterally heterogeneous elastic structure of the mantle.
We test our method by applying it to the Moon in which small long-wavelength lateral
heterogeneities are assumed to exist in the elastic moduli of the lunar mantle. The tidal
response of the Moon is determined mode by mode, for lateral heterogeneities with different
depth ranges within the mantle and different horizontal scales. Our perturbation method
solutions are compared with numerical results, showing remarkable agreement between the
two methods. We conclude that our perturbation method provides accurate results and can be
adapted to address a variety of forward and inverse response problems.

Key words: Lunar and planetary geodesy and gravity; Dynamics of lithosphere and mantle;
Planetary interiors.

1 I N T RO D U C T I O N

The interior structure and properties of terrestrial planetary bod-
ies, including the Earth, are important for understanding planetary
dynamic evolution. Seismology, by investigating elastic wave prop-
agation in planetary interiors, is undoubtedly the most powerful
method for exploring planetary interior structures. In the past two
decades, seismological techniques have developed rapidly, and nu-
merous tomographic models of the Earth’s interior structure have
been derived from seismological data (Dziewonski 1984; Van der
Hilst et al. 1997). It has been demonstrated that long-wavelength
lateral heterogeneities exist in the Earth’s mantle, and are concen-
trated mainly at spherical harmonic degree 2. The dominance of
degree 2 is most notable in the deep mantle, caused by two an-
tipodal seismically slow anomalies below the central Pacific and
Africa. However, seismological studies of other planetary bodies
are limited to the Moon by the Apollo missions (e.g. Nakamura
et al. 1982). Even for the Moon, due to limited seismic data, it has
proved challenging to construct a tomographic model of the lunar
interior.

Some knowledge of the interior structure of a planetary body
may be obtained by analysing the elastic and viscoelastic response
to other forces, such as tidal forces. This requires highly accurate
observations of tidal deformation (often done using space geodetic

methods) and efficient analytical or numerical techniques for deter-
mining the dynamic response of planetary bodies. The theoretical
framework for computing the elastic response of a homogenous
or spherically symmetric planetary body (i.e. a 1-D model) has
long been established to help understand the dynamic response of
a spherically symmetric planet to tidal forces at short timescales
(Longman 1962; Longman 1963; Farrell 1972). Later, this for-
mulation was extended to include viscoelasticity in spherically
symmetric models for surface mass loading problem (e.g. Wu
& Peltier 1982). However, finding a general analytic framework
for computing the response of a laterally heterogeneous plane-
tary body is still a challenge. For a planetary body with a 3-D
structure consisting of small lateral heterogeneities, a perturba-
tion theory is generally used. Tromp & Mitrovica (2000) used a
perturbation method to develop a normal-mode formulation for
solving the surface loading response of a viscoelastic aspheri-
cal planet. Wang (1990) applied a perturbation method to study
the Earth’s tidal deformation for a mantle with heterogeneities
in the elastic moduli. More commonly, though, fully numeri-
cal approaches are used to solve for the response of a plan-
etary body with 3-D structures (e.g. Kaufmann & Wu 2002;
Zhong et al. 2003; Latychev et al. 2005; Latychev et al. 2009).
One example is the finite element code CitcomSVE, which was
originally developed to solve the postglacial rebound problem
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for a 3-D incompressible viscoelastic Earth’s mantle (Zhong
et al. 2003) and was later modified to include compressibility
(A et al. 2013).

The main goal of this study is to develop a new perturbation
method that can determine the elastic response of planetary bodies
with 3-D structures. Although the method is generally applicable
to different planetary bodies, we limit our analyses to the Moon’s
tidal response in this paper. The recent GRAIL mission aims to in-
vestigate the interior structure of the Moon by measuring the lunar
gravity field with unprecedented precision (Konopliv et al. 2013;
Lemoine et al. 2013; Zuber et al. 2013). Until future seismological
investigations can be made, studies of the lunar tidal response pro-
vide a possible approach for constraining the long-wavelength struc-
ture and material properties of the lunar mantle (Zhong et al. 2012).
The basic idea relies on the fact that the harmonic degree-2 tidal
force, when applied to the Moon with laterally heterogeneous struc-
ture in the lunar mantle, will excite not only degree-2 terms, but
also non-degree-2 terms, in the response.

The Moon displays a number of hemispherical asymmetries,
including higher topography on the farside of the Moon (Zuber
et al. 1994), and a concentrated distribution of both the mare basalts
(Wieczorek et al. 2006) and deep moon quake (DMQ) events on
the nearside (Nakamura 2005). A recent statistical study of the
correlation between the locations of DMQ epicentres and the high-
concentration mare basalt regions supports the hypothesis that the
long-wavelength features of the early lunar mantle may have sur-
vived to the present day (Qin et al. 2012). By assuming that a
harmonic degree-1 and order-1 structure can best represent such
global asymmetry, Zhong et al. (2012) used CitcomSVE (Zhong
et al. 2003; A et al. 2013) to solve for the response of the lu-
nar mantle to degree-2 tidal forcing, and explicitly determined the
amplitudes of what appeared to be the largest spherical harmonic
coefficients in the solution.

In this paper, we present a new perturbation method that permits
a semi-analytic solution for the elastic tidal response of a planetary
body with a 3-D compressible mantle, and we apply the method to
study the tidal response of a laterally varying Moon. We are moti-
vated by the following considerations. First, we try to understand
mode coupling effects between the tidal forcing and a laterally het-
erogeneous (i.e. 3-D) structure. Those coupling effects tend to be
weak, and can be obscured by noise in numerical analyses. Secondly,
we show that our perturbation method can provide an efficient, al-
ternative method for tidal response calculations, and we use it here
to present the first benchmark of a 3-D numerical model.

Our perturbation analysis can model the effects of lateral het-
erogeneities in a planet’s solid mantle, but not in its fluid core.
Because of the high mobility of a fluid, the core is likely to have
much smaller lateral heterogeneities than the mantle. This, com-
bined with the large depth of the core for most planetary bodies,
implies that in most cases it is reasonable to ignore the impact of
the lateral heterogeneities in the core on the tidal response.

Lateral heterogeneities in the mantle are likely to exist both in the
density and in the elastic moduli, that is the first Lamé parameter
and the shear modulus. To avoid mathematical complications, we
do not include lateral heterogeneities in the density or the Lamé
parameter in this paper, but focus our analysis on the effects of lateral
heterogeneities only in the shear modulus. Lateral heterogeneities
in density and the Lamé parameter will be incorporated into our
formulation in a further study.

The paper is organized as follows. In Section 2, we derive the
governing equations of our second-order perturbation method. In
Section 3, we describe the matrix forms of the governing equations,

illustrate the mode coupling process, and derive a propagator matrix
solution method. In Section 4, we apply our perturbation method to
a laterally heterogeneous Moon and do forward calculations of the
high-order tidal response for a variety of laterally heterogeneous
structures. We also compare our perturbation results with the nu-
merical results (i.e. benchmarks). In the last section, we summarize
our results and discuss some potential future applications of our
perturbation method.

2 G OV E R N I N G E Q UAT I O N S
A N D P E RT U R B AT I O N T H E O RY

2.1 Governing equations

We start from the governing equations for the tidal response of
an elastic, compressible, and spherically symmetric planet. In this
paper, we define the entire mantle and crustal materials overlying
the fluid core as the solid ‘mantle’, and restrict the solution region
to the mantle. The equation of motion in the mantle (Farrell 1972;
Wahr et al. 2009) is

∇ · ↔
τ − ρ0∇φ − ρ1g0r̂ − ∇(ρ0g0ur ) + ⇀

f td = 0, (1)

where
↔
τ is the stress tensor, φ is the incremental gravitational poten-

tial, ρ0 is the reference density of the mantle, g0 is the unperturbed
gravitational acceleration, ur is the radial component of displace-
ment, ρ1 = −∇ · (ρ0

⇀
u) is the Eulerian density perturbation (Wu

& Peltier 1982) due to tidal deformation and
⇀

f td is the body tide
force. The elastic constitutive relation that relates the stress to the
displacement is

↔
τ = λ0(∇ · ⇀

u)
↔
I + μ0(∇⇀

u + (∇⇀
u)T ), (2)

where λ0(r ) and μ0(r ) are the first Lamé parameter and the shear
modulus, respectively, from the spherical reference model. The
gravitational potential φ is governed by Poisson’s equation

∇2φ = 4πGρ1. (3)

The tidal potential in the Moon, caused by the Earth, can be
expressed as an infinite series of spherical harmonics of degree l
and order m (Agnew 2008), with by far the largest terms occurring
at degree l = 2. Here, we only consider the degree-2 terms caused
by the monthly variation in the Earth–Moon distance due to the
Moon’s eccentric orbit; that is the terms in Wahr et al. (2009) that
have a cos(nt+ϕ0) temporal signature:

Vtd(r, θ, φ, t) = 3εGma2

4R3

( r

a

)2

× [(1 − 3 cos2 θ ) + 3 sin2 θ cos (2φ)] cos (nt+ϕ0),

(4)

where r, θ , φ and t are the spherical coordinates and the time,
respectively, ε is the lunar orbital eccentricity, a is the Moon’s
radius, R is the semi-major axis, m is the mass of the Earth, n = 2π

T
where T is the orbital period and ϕ0 is the initial phase. Note that for
an elastic body, the tidal response must have the same cos(nt+ϕ0)
time dependence as the applied tidal force.

This tidal potential in eq. (4) does not include contributions from
the librational tide: that is tidal forcing caused by the fact that
for an eccentric orbit the Moon does not keep exactly the same
face pointed towards the Earth, but rocks back and forth relative
to the Earth–Moon vector. The librational tide has a sin(nt+ϕ0)
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time dependence, and is of the same order as the terms shown in
eq. (4). Our purpose here, though, is simply to describe and assess a
new semi-analytic method of computing the tidal effects of laterally
heterogeneous structure, and this does require we use a complete
description of the tidal potential. So, we have omitted the librational
tidal forcing, for simplicity.

Hereafter, we ignore the time-dependent coefficient cos (nt + ϕ0)
and eq. (4) is simplified to

Vtd(r, θ, φ) = r 2(Z1Y20 + Z2Y22), (5)

where Y20 and Y22 are the real-form spherical harmonic func-
tions of degree l = 2, order m = 0 and m = 2 [i.e., (2, 0) and
(2, 2)], respectively (see Appendix A for the definition of Ylm), and

where Z1 = −
√

9π

5
εGm
R3 and Z2 = −√

3Z1 are constant coefficients.

Below, we will sometimes consider the (2, 0) or (2, 2) tidal forcing
cases separately. The tidal force is given by

⇀

f td = −ρ0∇Vtd. (6)

2.2 Perturbation theory

Eqs (1)–(3), when accompanied by appropriate continuity condi-
tions, can be solved semi-analytically to determine the body-tide-
induced displacement

⇀
u0 and gravitational potential φ0 for a spher-

ically symmetric planetary mantle (e.g. Farrell 1972; Tromp &
Mitrovica 1999). We express that spherically symmetric solution
as (

⇀
u0, φ0) for brevity. When there are small lateral heterogeneities

in the elastic moduli in the planet’s mantle, eqs (1)–(3) are modified
and solving them becomes more complicated. Using a perturbation
method, we reformulate the modified eqs (1)–(3) by treating the lat-
eral heterogeneities in the elastic properties as a perturbation, and
reorganize the differential equations in terms of different orders of
the perturbation. In this paper, we consider effects of lateral het-
erogeneities only in the shear modulus, and we assume they have a
laterally varying pattern described by a specific spherical harmonic
of degree l and order m,

δμ(r, θ, φ) = ζ (r )μ0(r )Ylm(θ, φ), (7)

where μ0(r ) is the reference shear modulus, Ylm is the real-form
spherical harmonic function at (l, m) and ζ (r ) is the relative am-
plitude of the lateral variability, which is chosen below to be either
constant through the entire mantle, or constant through an individ-
ual shell of the mantle and zero outside that shell. Including this
lateral heterogeneity in the shear modulus, the constitutive relation,
eq. (2), becomes

↔
τ = λ0(∇ · ⇀

u)
↔
I + (μ0 + δμ)[∇⇀

u + (∇⇀
u)T ]. (8)

Replacing
↔
τ in eq. (2) with that in eq. (8) leads to a set of

slightly modified differential equations, and we denote the cor-
responding tidal response solution as (

⇀
u, φ). From the perturba-

tion theory point of view (e.g. Richards & Hager 1989), if the
perturbation is small (i.e. ζ � 1), (

⇀
u0, φ0) is slightly modified

to (
⇀
u, φ) = (

⇀
u0 + ⇀

u ′, φ0 + φ′), where (
⇀
u ′, φ′) represents the small

modification to (
⇀
u0, φ0) due to δμ. We call (

⇀
u0, φ0) the zeroth-

order solution and (
⇀
u ′, φ′) the high-order residual. We further

write (
⇀
u ′, φ′) = (

⇀
u1, φ1) + (

⇀
u2, φ2) + (

⇀
u ′ ′, φ′ ′), where (

⇀
u1, φ1) and

(
⇀
u2, φ2) are the first- and second-order (in the amplitude, ζ , of

the lateral heterogeneity) corrections to (
⇀
u0, φ0), respectively, and

(
⇀
u ′ ′, φ′ ′) is the combined correction from all higher orders. This

expansion to (
⇀
u ′, φ′) could be extended to third- and higher-orders,

but a truncation at second order is sufficient for the range of values
of ζ considered below.

We re-write eqs (1) and (3), combined with eq. (8), into three sep-
arate groups of differential equations, representing the equations for
the zeroth, first, and second orders of the perturbation, respectively.
These three sets of equations have the same general form, which
can be expressed as follows,⎧⎪⎪⎨
⎪⎪⎩

∇ · [λ0(∇ · ⇀
u D)

↔
I + μ0(∇⇀

u D + (∇⇀
u D)T )]

− ρ0∇φD + ∇ · (ρ0
⇀
u D)g0r̂ − ∇(ρ0g0uDr ) = −FD

∇2φD = −4πG∇ · (ρ0
⇀
u D)

, (9)

where the subscript D denotes the order of the perturbation, that
is D = 0, 1 or 2, FD is the effective forcing term and is different
for different orders of the perturbation. Specifically, when D = 0,

F0 is just the tidal force and F0 = ⇀

f td. When D = 1 or 2, FD =
∇ · (δμ[∇⇀

u D−1 + (∇⇀
u D−1)T ]), and the equations are forced by the

coupling between δμ and the lower-order displacement field
⇀
u D−1.

To solve eq. (9) for each order of the perturbation, appropri-
ate continuity conditions are needed at the core–mantle boundary
(CMB), the outer surface, and any internal boundary in the mantle.
At any solid–solid spherical internal boundary, the normal traction
r̂ · ↔

τ D , the displacement
⇀
u D , the incremental potential φD and the

normal component of the adjusted incremental gravitational accel-
eration r̂ · (∇φD + 4πGρ0

⇀
u D) are continuous, expressed as

[r̂ · ↔
τ D]+− = [

⇀
u D]+− = [φD]+− = [r̂ · (∇φD + 4πGρ0

⇀
u D)]+− = 0,

(10)

where []+− denotes the jump of the enclosed quantity from the lower
(−) to the upper (+) side of an interface, r̂ is the unit vector in
the radial direction (it enters into these equations because it is the
normal to spherical boundaries) and

↔
τ D is the stress tensor for order

D of the perturbation. The radial traction is

r̂ · ↔
τ D = r̂ · (λ0(∇ · ⇀

u D)
↔
I + μ0

[∇⇀
u D + (∇⇀

u D)T
])+ BD, (11)

where BD = (D) r̂ · [δμ(∇⇀
u D−1 + (∇⇀

u D−1)T )], and (D) = 0
when D = 0 and (D) = 1 when D = 1 or 2 (i.e. a non-vanishing
BD exists in the radial traction, only in the first- and second-order
equations). The continuity conditions at the CMB and the outer sur-
face, however, cannot be fully described by eq. (10), and are given
in matrix form in eqs (A27) and (A32) in Appendix B.

By comparing the zeroth-order equations and the associated
boundary conditions with those of the high-order equations, the
only differences are the two terms, FD and BD . The zeroth-order
motion is driven solely by the tidal force, while the first- and second-
order motions are both driven by an effective force, together with an
inhomogeneous term in the radial traction continuity condition. We
call FD and BD in the high-order equations the high-order forcing
terms or, later, the coupling terms.

The solution to the zeroth-order equations (D = 0) is the tidal
response of a spherically symmetric planet. The spherical response
to any given force is described with the same spherical harmonics

that are present in that force. Since in our case the tidal force
⇀

f td

consists solely of the spherical harmonics (2, 0) and (2, 2) (see eq. 5),
those are the harmonics that enter into the zeroth-order response.
We refer to this zeroth-order tidal response as the primary response.

The solution to the high-order equations represents the response
of a spherically symmetric planet to the high-order forcing terms,
FD and BD(D = 1 or 2). Thus, these solutions are described with
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the same harmonics that enter into those forcing terms. The first-
order response includes harmonics other than (2, 0) and (2, 2), since
the forcing terms couple the (2, 0) and (2, 2) harmonics in

⇀
u0 with

the harmonics in δμ. Similarly, the second-order response results
from the coupling of

⇀
u1 and δμ, and spans an even larger set of

harmonics than those in the first-order response. We refer to the
first- and second-order responses as the high-order (or secondary)
response.

In the next section, we convert eq. (9) and its boundary conditions
eq. (10) into matrix forms, illustrate the mode coupling process,
and present solution strategies for the matrix equations to obtain the
zeroth-, first- and second-order responses.

3 M E T H O D

3.1 Equations in matrix form

To solve for the tidal response, it is convenient to reformulate eqs
(9) and (10) into a matrix form (Wu & Peltier 1982; Tromp &
Mitrovica 1999) that permits propagator matrix solution tech-
niques. The mathematical procedure of converting the zeroth-
order equations into matrix form is well developed (e.g. Dahlen &
Tromp 1998). A similar procedure is applied here to the high-order
equations. We expand the incremental potential φ into spherical har-
monics, while expanding the displacement

⇀
u and the non-coupling

terms in the radial traction r̂ · ↔
τ into vector spherical harmonics

(VSH; see Appendix B), as follows:

⇀
u D =

∑
l,m

(
U D

lm

⇀

Plm + V D
lm

⇀

Blm + W D
lm

⇀

Clm

)
, (12)

φD =
∑
l,m

K D
lmYlm, (13)

r̂ ·
(
λ0

(∇ · ⇀
u D

)↔
I + μ0

[∇⇀
u D + (∇⇀

u D)T
])

=
∑
l,m

(
RD

lm

⇀

Plm + SD
lm

⇀

Blm + T D
lm

⇀

Clm

)
, (14)

where
⇀

Plm ,
⇀

Blm and
⇀

Clm are the orthogonal bases of the VSH
expansion. The expansion coefficients in eq. (14) are

RD
lm = (λ0 + 2μ0)U̇ D

lm + λ0

r

(
2U D

lm − l(l + 1)V D
lm

)
, (15)

SD
lm = μ0

(
V̇ D

lm − V D
lm

r
+ U D

lm

r

)
, (16)

T D
lm = μ0

(
Ẇ D

lm − W D
lm

r

)
, (17)

where a dot denotes d/dr . Note that U D
lm , V D

lm , W D
lm , RD

lm , SD
lm and

T D
lm are functions of r, while the angular dependence is present in

Ylm ,
⇀

Plm ,
⇀

Blm and
⇀

Clm .
The forcing terms FD in eq. (9) and BD in eq. (11) also need

to be expanded into VSH. For the zeroth-order equations, B0 = 0

and F0 = ⇀

f td. The VSH expansion of
⇀

f tdis straightforward, and is
given by eq. (A20). For the high-order equations (D = 1 or 2), FD

and BD refer to the coupling terms. Physically, these coupling terms
demonstrate the mode coupling between the shear modulus hetero-
geneities and the lower-order (i.e. order D-1) tidal deformation field,
and lead to a response of order D at predictable harmonic modes.

The VSH expansion of the coupling terms, derived in Appendix A,
is:

FD =
∑
l,m

(
F p,D

lm

⇀

Plm + Fb,D
lm

⇀

Blm + Fc,D
lm

⇀

Clm

)
, (18)

BD = (D)
∑
l,m

(
Rcp,D

lm

⇀

Plm + Scp,D
lm

⇀

Blm + T cp,D
lm

⇀

Clm

)
. (19)

We discuss the mode coupling process in the next subsection.
We introduce another auxiliary variable

Q D
lm = K̇ D

lm + l + 1

r
K D

lm + 4πGρ0U D
lm, (20)

which is related to the incremental gravitational acceleration. Sub-
stituting eqs (12)–(20) into eqs (9)–(11) for each order D yields
two decoupled sets of ordinary differential equations along with
boundary conditions. The two sets of equations represent two in-
dividual modes of motion, the spheroidal (s) and the toroidal (t)
modes, and can be solved separately. Both sets of equations can be
written in the same general matrix form for each harmonic (l, m),
as

d X D
lm

dr
= Al X D

lm − FD
lm, (21)

where X D
lm is the solution vector for harmonic (l, m), Al is a square

matrix and depends on the harmonic degree l but not on the order
m and FD

lm is the vector form of the expansion of the coupling term
FD . The forms of X, A and F depend on whether the coupling term
excites a spheroidal mode or a toroidal mode (here, and throughout
the remainder of this paper, the subscripts denoting the spherical
harmonic (l, m), and the superscripts/subscripts D denoting the order
of the perturbation, are omitted for simplicity). For a spheroidal
mode, eq. (21) is 6-by-6 and X has six components, while for a
toroidal mode, eq. (21) is 2-by-2 and X has two components. The
explicit forms of X, A, F and the associated boundary conditions at
the CMB, the outer surface, and any internal boundary are given in
Appendix B for both the spheroidal and toroidal modes. In addition,
all the physical quantities in eq. (21) are non-dimensionalized in
order to solve the equations more conveniently.

3.2 Mode coupling

Mode coupling generates the high-order (or secondary) responses.
Based on eqs (9) and (11), the coupling of the lateral heterogeneity
δμ and the degree-2 primary response gives rise to the first-order re-
sponse, while the further coupling of δμ with the first-order response
leads to the second-order response. Here, we call the lower-order
(i.e. order D-1) mode (response) the parent mode (response), and
the higher-order (i.e. order D) mode (response) that results from the
coupling as the child mode (response).

The VSH expansion of the coupling terms F and B makes it
possible to determine the harmonic modes that are present in the
first- and second-order solutions, before actually solving the differ-
ential equations (see Appendix A). For the following, we suppose
that δμ is at harmonic (l1, m1) and the parent response (spheroidal
or toroidal) is at harmonic (l0, m0). These combine into F and B,
and separate into individual spheroidal (s) and toroidal (t) coupling
terms at a few harmonics (l, m). Because the high-order equations
are spherically symmetric, each spheroidal (or toroidal) coupling
term will induce exactly the same spheroidal (or toroidal) mode in
the response, denoted here as s(l, m) [or t(l, m)].

We categorize the mode coupling process into four types of
parent–child mode pairings: s to s, s to t, t to s and t to t, and
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we summarize these processes into generalized selection rules that
can be described by

if sign(m0) · sign(m1) > 0

p (l0, m0) ⊗ (l1, m1) ⇒
⎧⎨
⎩

p (l, m), (l, m) ∈ L1 ⊗ M1

p̄ (l, m), (l, m) ∈ L2 ⊗ M2

if sign(m0) · sign(m1) < 0

p (l0, m0) ⊗ (l1, m1) ⇒
⎧⎨
⎩

p (l, m), (l, m) ∈ L1 ⊗ M2

p̄ (l, m), (l, m) ∈ L2 ⊗ M1

where sign(x) =
{

1

−1

x ≥ 0

x < 0
, and,

L1 : l = |l0 − l1| + 2i, 0 ≤ i ≤ 1
2 (l0 + l1 − |l0 − l1|), i is integer

L2 : l = |l0 − l1| + 2i + 1, 0 ≤ i ≤ 1
2 (l0 + l1 − |l0 − l1|) − 1,

i is integer (l0 = 0, l1 = 0)

M1 : m = ||m0| − |m1|| or ||m0| + |m1|| , and |m| ≤ l

M2 : m =− ||m0| − |m1|| or−||m0| + |m1|| , |m| ≤ l, and m = 0,

(22)

where p denotes the s (or t) mode and p̄ denotes the other mode,
that is the t (or s) mode, L1,L2,M1 and M2 are the sets of the
harmonic degrees and orders that are allowed by the selection rules.

While the selection rules predict the harmonic modes caused
by the coupling, the radially dependent expansion coefficients
(i.e. F p ,Fb,Fc,Rcp,Scp and T cp) in the coupling terms govern the
strength of the coupling, and are expressed by eqs (A12)–(A19) in
Appendix A. The amplitude of each mode in the tidal response
depends on the amplitude, ζ , of the lateral variability. Specifically,
the amplitude of the first-order response is linearly proportional to
ζ , while the amplitude of the second-order response is a quadratic
function of ζ .

3.3 Semi-analytic approach and solutions

Given the matrix forms of eq. (21) and the associated boundary
conditions, the tidal response for each order of the perturbation
can be solved mode by mode using the propagator matrix method
together with a Runge–Kutta numerical scheme (see Appendix C).
For numerical implementation of the propagator matrix method,
we set up a 1-D radial grid that has a fine-enough resolution to
ensure convergence of the Runge–Kutta solution. We make sure
that there are two gridpoints at each radial discontinuity in material
properties. We also make sure that there are two gridpoints at each
radial discontinuity of δμ, so that we can apply the appropriate
boundary conditions at those discontinuities (see Appendix C for
more description).

The basic idea of the propagator matrix method is that, given
the explicit form of eq. (21) and a starting solution X(r0) at radius
r0 in the mantle, the solution X(r ) at any radius r can be deter-
mined by successively propagating X(r0) from r0 to r. To simplify
our solution method, we start the propagation from the CMB (i.e.
r = rc) instead of from the centre of the inner core (i.e. r = 0),
and the starting solution X(rc) is partly unknown (see eqs A27 and
A32). Such simplification proves to produce little inaccuracy to our
calculations. Only a ∼0.1 per cent level difference is found when
comparing our solutions with those calculated using the classical
methods that include a core, for 1-D planetary models with varying
core sizes. To fully determine X(rc), we propagate it to the outer
surface (i.e. r = rs), imposing the appropriate boundary conditions
as we pass across internal discontinuities, and equate the resulting

undetermined solution to the outer surface boundary value X(rs)
(also see eqs A27 and A32). By solving a linear equation relating
the unknowns in X(rc) and X(rs), we are able to solve for X(rc)
and X(rs) and determine the solution, X(ri ), at any gridpoint ri (see
eq. A45). Once we have solved the order D−1 equations, we use
these solutions to construct the order D coupling terms and solve
the resulting order D equations using the same procedure.

It is conceivable that some planetary bodies, including possibly
even the Moon, might not possess a fluid core, in which case there
would be no CMB to start the propagation from. For such a body,
however, we can circumvent this problem by inserting a very small
fluid core at the centre of the planet, and starting our solutions at
the surface of that small sphere.

For the special case of the high-order degree-1 spheroidal mode,
an unconstrained translational motion associated with a rigid shift
of the planet is contained in the solution to eq. (21), and needs to
be subtracted to obtain the degree-1 response (Farrell 1972). The
translational mode satisfies the homogeneous form of eq. (21), and
its unit form can be expressed as

X tr(r ) = [1, 1, 0, 0, −g(r ), 0]T , (23)

where g(r ) is the gravitational acceleration at radius r. Note that in
the centre of mass reference frame we consider here, the degree-1
response must have zero gravitational potential at the outer surface.
This condition is applied to determine the degree-1 response by
adding a multiple of eq. (23) to the solution to eq. (21), to obtain

Xnet(r ) = X(r ) + α · X tr(r ), (24)

where α = K (rs)/g(rs), rs is the Moon’s radius and Xnet(r ) is the
actual degree-1 response in the centre of mass reference frame
(Farrell 1972).

4 R E S U LT S

We apply the perturbation method described above to solve for the
tidal response of the Moon. The Moon is modelled with a solid inner
core, a fluid outer core and seven mantle and crust layers of different
properties, according to a recent lunar seismic study (Table 1). In
our calculations, we adopt this seismic model, and refer to the top
seven layers as the lunar ‘mantle’. We assume for most of our
calculations that there are long-wavelength lateral heterogeneities
in the shear modulus throughout some prescribed depth range of
the lunar mantle. For most, though not all, of these calculations
we assume that the heterogeneities can be represented by a (1, 1)
harmonic, since that best represents a nearside-farside asymmetric
structure.

Table 1. Lunar model parameters (Weber et al. 2011).

Depths (km) ρ0 (kg m–3) Vp (km s–1) Vs (km s–1)

0–15 2700 3.2 1.8
15–40 2800 5.5 3.2
40–238 3300 7.7 4.4

238–488 3400 7.8 4.4
488–738 3400 7.6 4.4
738–1257 3400 8.5 4.5
1257–1407 3400 7.5 3.2

1407–1497 (outer core) 5100 4.1 0.0
1497–1740 (inner core) 8000 4.3 2.3

Semi-major axis, R 3.844 × 108 m
Eccentricity, ε 0.0549

Earth’s mass, m 5.97 × 1024 kg
Moon’s radius, a 1.74 × 106 m
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We calculate the tidal response of the Moon for three scenarios
regarding the choice of lateral heterogeneities: (1) a (1, 1) harmonic
pattern throughout the entire mantle, (2) a (1, 1) harmonic pattern
in either the bottom or the top half of the mantle, (3) other long-
wavelength patterns of harmonic (l1, m1) throughout the mantle.
We apply the (2, 0) and (2, 2) tidal force components separately for
the first two scenarios, but apply the sum of those two components
(i.e., eq. 5 for the total tidal potential) for the third scenario. We
calculate the full set of first- and second-order responses for both
the spheroidal and torodial modes. However, we present the results
primarily for the spheroidal modes, since only the spheroidal modes
contribute to the radial displacement and the gravitational poten-
tial, which are the quantities that can be inferred using observations
from current space missions. Note that toroidal modes, when cou-
pled with laterally heterogeneous structure, can induce higher-order
spheroidal motions. For each high-order spheroidal response s(l, m)
at order D, we define the relative tidal response using the normalized
radial displacement hD

lm = U D
lm(a)/U 0

td(a) and the normalized grav-
itational potential k D

lm = K D
lm(a)/K 0

td(a) at the lunar surface, where
U 0

td(a) and K 0
td(a) are the associated primary responses at degree 2.

We also compute the tidal response for the same model using the
finite element code CitcomSVE (Zhong et al. 2012), and compare
the results from the perturbation method with those from the finite
element method.

4.1 (1, 1) lateral heterogeneities throughout the mantle

We define the harmonic (1, 1) lateral heterogeneity in μ as

δμ = ζ · μ0 · Y11 = −� · μ0 sin θ cos φ, (25)

where ζ is a non-zero constant throughout the mantle, and � =√
3

4π
ζ

is the peak amplitude of the lateral variability in the shear modulus.
The value of � is chosen to vary from 2.5 to 40 per cent, so that it
spans a large range of perturbations. (The upper values of this range
are larger than what we would expect for the real Moon.)

Using our perturbation method, we first determine the high-order
response modes from our mode coupling analysis, for (2, 0) and
(2, 2) tidal forcing separately (see Fig. 1). We define the harmonic
(l, m) spheroidal (toroidal) mode of perturbation order D as s D(l, m)
[t D(l, m)]. A (2, 0) tidal force induces a s0(2, 0) primary response.
Based on our selection rules in eq. (22), the coupling of s0(2, 0) with
the (1, 1) lateral heterogeneity gives rise to a first-order response
consisting of two spheroidal modes s1(1, 1) and s1(3, 1) and one
toroidal mode t1(2, –1). These first-order modes couple with the
(1, 1) structure to excite second-order responses that span harmonic
degrees 2 to 4. In particular, all three first-order modes excite s2(2, 0)

and s2(2, 2), while s1(3, 1) generates additional degree-4 spheroidal
modes, which are s2(4, 0) and s2(4, 2). For (2, 2) tidal forcing, the
same three first-order modes are generated as for (2, 0) tidal forcing,
along with an additional s1(3, 3) mode. Thus, the harmonic content
of the second-order response to (2, 2) forcing includes all the same
harmonics as for (2, 0) forcing, plus the harmonics that derive from
the s1(3, 3) mode. Those latter harmonics include s2(4, 4) and an
additional s2(2, 2) contribution (note that s1(3, 3) does not induce
a s2(2, 0) term). Though the responses to (2, 0) and (2, 2) forcing
have nearly the same high-order mode content, the amplitude of
each mode differs in the two cases. Note that the amplitude of the
same mode from different couplings need to be summed together
to obtain the total amplitude of that mode.

We calculate the relative response of the radial displacement hlm

and the gravitational potential klm , of all the high-order spheroidal
modes for different values of �, and show the absolute values of the
results in Figs 2(a) and (b) for (2, 0) forcing, and in Figs 2(c) and (d)
for (2, 2) forcing. The response amplitudes of the first-order modes,
that is s1(1, 1) and s1(3, 1) for the (2, 0) tidal forcing, and s1(1, 1),
s1(3, 1) and s1(3, 3) for the (2, 2) tidal forcing, increase linearly with
�, while the amplitudes of the second-order modes, that is s2(2, 0),
s2(2, 2), s2(4, 0) and s2(4, 2) for the (2, 0) tidal forcing, and s2(2,
0), s2(2, 2), s2(4, 0), s2(4, 2) and s2(4, 4) for the (2, 2) tidal forcing,
are quadratic functions of �. Note that the degree-1 responses in
the gravitational potential are zero in the centre of mass reference
(see eq. 24).

For relatively weak perturbations (i.e. small �), the first-order
responses are generally orders of magnitude stronger than those of
second order (Fig. 2). However, due to their quadratic dependence
on �, the second-order responses become increasingly significant
with increasing �, and some of them approach or exceed the first-
order responses at large � (>20 per cent; Fig. 2). We take s2(2,
0) induced by the (2, 0) tidal forcing and s2(2, 2) induced by the
(2, 2) tidal forcing (i.e. the ‘self-coupling’ modes) as examples.
When � is as large as 40 per cent, the s2(2, 0) gravitational po-
tential response, k2

2,0, is 70 per cent of the associated s1(3, 1) re-
sponse, while the s2(2, 2) gravitational potential response, k2

2,2, is
53 per cent of the associated s1(3, 3) response and is 113 per cent
greater than the s1(3, 1) response (Fig. 2). We also find that these
self-coupling responses are always one order of magnitude stronger
than the other second-order responses, on average. This happens
because these second-order self-coupling responses are generated
through a forward-and-backward mode coupling process. More
specifically, if a child mode s D(l, m) from the forward coupling
of s D−1(l0, m0) ⊗ (l1, m1) → s D(l, m) has the same (or opposite)
sign as its parent mode s D−1(l0, m0), then the backward coupling

Figure 1. Diagrams of the mode couplings (up to second order in the perturbation) between a spherical harmonic (1, 1) laterally heterogeneous structure in
shear modulus and the (a) (2, 0) and (b) (2, 2) tidal forces, respectively, based on the selection rules in eq. (22). In both diagrams, s and t represent spheroidal
and toroidal modes, respectively. The superscript 0, 1 and 2 denote the primary (i.e. zeroth order), the first-order and the second-order modes, respectively.
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Figure 2. Log–log plots of the absolute values of the relative responses for a Moon with (1, 1) lateral heterogeneities in shear modulus, to (2, 0) (a and b)
and (2, 2) (c and d) tidal forces. The amplitude of the lateral variability in the shear modulus is represented by �, and the results are shown for � from 2.5 to
40 per cent. The relative responses in the surface radial displacement (a and c) and the surface gravitational potential (b and d) are shown, respectively, for each
spheroidal harmonic mode s(l, m) from the mode couplings. The straight solid lines represent the response modes predicted by our second-order perturbation
method (denoted by P). The triangles (first order), inverted triangles (second order) and open circles (higher than second order) represent results computed
using CitcomSVE, that we believe to be correct (denoted by C). The dashed lines are also results from CitcomSVE calculations for all the other harmonics of
0 ≤ l ≤ 4 and 0 ≤ m ≤ l, and are believed to be numerical noise (denoted by N_err). Note that k11 from CitcomSVE (b and d) are highlighted.

s D(l, m) ⊗ (l1, m1) → s D+1(l0, m0) must generate a s D+1(l0, m0)
mode that also has the same (or opposite) sign as s D(l, m). There-
fore, the self-coupling responses always have the same sign as their
primary response, which may not be true for the other second-order
responses. Since it is guaranteed that the contributions from all the
first-order modes to the self-coupling modes add constructively, the
self-coupling response is always the largest among the second-order
responses.

We also compute the tidal responses numerically using the finite
element code CitcomSVE (Zhong et al. 2003; A et al. 2013). In
CitcomSVE, the mantle is modelled as a series of spherical shells
overlying a fluid core, and the combined volume of those shells
is divided into 12 × 483 elements. The same 1-D model of the lu-
nar mantle is used in CitcomSVE as in the perturbation method.
Here, the tidal response is quantified by hlm and klm , which are
the spherical harmonic expansion coefficients of the surface radial
displacement field and surface gravitational potential field, respec-
tively. hlm and klm are determined for harmonic degrees and orders
of 0 ≤ l ≤ 4 and 0 ≤ m ≤ l in this scenario, and are normalized
(i.e. relative response) in the same way as in our perturbation cal-

culations. Note that, when lateral heterogeneities are added into the
numerical model, hlm and klm are obtained by subtracting the 1-D
response (i.e. without heterogeneities) from the 3-D response (i.e.
with heterogeneities), in order to suppress the numerical errors that
may be significant at very small perturbations. By comparing the
CitcomSVE results with those from the perturbation method, we
categorize the numerical results into three types: (1) those that are
correct and are predicted by our second-order perturbation method
(triangles in Fig. 2), (2) those that are probably correct but that are
not predicted by our perturbation method (open circles in Fig. 2)
and (3) those that are probably caused by numerical noise (dashed
lines in Fig. 2).

We find that the most significant responses from CitcomSVE
are all predicted by our perturbation method, and that they agree
remarkably well with those from the perturbation method (both
in their amplitude and in their linear or quadratic dependence on
�, see Fig. 2) for small and moderate values of �. As shown in
Table 2, when � = 10 per cent, the relative difference between the
hlm (or klm) values of the two methods is no greater than 1 per cent
for all non-degree-1 responses. The degree-1 responses h11 from
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Table 2. Comparisons of h and k between the results from the perturbation method and those from the finite
element methods, for � = 10 per cent.

Ia II III

Modeb εh (per cent)c εk (per cent) εh (per cent) εk (per cent) εh (per cent) εk (per cent)

s1(1, 1)(2,0) 5.56 N/A 10.1 N/A 1.46 N/A
s1(3, 1)(2,0) 0.51 0.51 0.31 0.33 0.36 0.33
s2(2, 0)(2,0) 0.48 0.48 0.10 0.10 0.06 0.04
s2(2, 2)(2,0) 0.59 0.65 0.19 0.26 0.65 0.57
s2(4, 0)(2,0) 0.58 0.19 0.23 0.51 0.13 0.15
s2(4, 2)(2,0) 0.74 0.70 0.12 0.12 0.63 0.51

s1(1, 1)(2,2) 8.82 N/A 9.14 N/A 0.94 N/A
s1(3, 1)(2,2) 0.28 0.26 0.34 0.50 0.24 0.17
s1(3, 3)(2,2) 0.49 0.45 0.28 0.32 0.41 0.34
s2(2, 0)(2,2) 0.64 0.51 0.46 0.81 0.26 0.28
s2(2, 2)(2,2) 0.41 0.42 0.33 0.35 0.62 0.53
s2(4, 0)(2,2) 0.46 0.51 0.34 0.49 0.35 0.21
s2(4, 2)(2,2) 0.44 0.26 0.66 0.70 0.48 0.27
s2(4, 4)(2,2) 0.77 0.82 0.33 0.44 0.66 0.64
aLateral heterogeneity in: I, the entire mantle; II, the bottom half of mantle; III, the top half of mantle.
bSpheroidal response of harmonic (l, m), to the (2, 0) and (2, 2) tidal forcing, respectively.
cRelative difference εX = ∣∣(XCitcom − Xpert)/Xpert

∣∣.
CitcomSVE show a ∼10 per cent deviation from those computed
using the perturbation method, although h1

1,1 is small. This devi-
ation may be attributed to numerical errors in CitcomSVE. We
notice that although the gravitational potential response k1

1,1 should
be zero by definition, the k11 results from CitcomSVE display a
linear dependence on �, and so behave like a first-order response
(see Figs 2b and d). The CitcomSVE values for k11 are ∼10−6

for � = 10 per cent. Considering that the primary response is 1,
a ∼10−6 numerical error is small and not unexpected.

The CitcomSVE results gradually deviate from the semi-analytic
results as � increases, as the perturbation theory suggests. As
� = 20 per cent, the difference between the numerical results and
the semi-analytic results is at the 3 per cent level, for all the first- and
second-order modes (i.e. triangles and solid lines in Fig. 2). When
� is as large as 40 per cent, the differences grow to larger than
10 per cent. This is because for large perturbations, contributions
from effects higher than second order become significant in the nu-
merical results, and our second-order perturbation method is unable
to predict them. According to our selection rules, the higher-order
contributions to the first- and second-order responses start from the
third and the fourth orders in the perturbation, respectively, so they
grow slowly as � increases and are not obvious in Fig. 2 even for
large values of �. Clear evidence of higher-order (D > 2) effects
can be seen in Figs 2(a) and (b) [i.e. for (2, 0) forcing], which show
significant s(3, 3) and s(4, 4) (open circles) responses in the Cit-
comSVE results that are not predicted by our second-order theory.
As � ≥ 10 per cent, these s(3, 3) and s(4, 4) responses display ap-
proximately cubic and quartic dependence on �, implying that they
are third- and fourth-order effects, respectively. More specifically,
s3(3, 3) is from the coupling between s2(2, 2) and (1, 1) structure,
while s4(4, 4) is from further coupling between s3(3, 3) and (1, 1)
structure. However, no such individual higher-order responses are
observed for (2, 2) tidal forcing (e.g. Figs 2c and d). This is because
all the higher-order effects in that case are coincidently buried in
the first- and second-order responses, which are dominant.

Of all the other modes from CitcomSVE (dashed lines in Fig. 2),
the hlm and klm are at a level of 10−6 or less and display pseudo-
random behavior with respect to increasing �. Considering that they
are six orders of magnitude smaller than the primary response, and
that they are not predicted to exist from our perturbation method, we

believe them to be numerical noise. Additionally for (2, 0) tidal forc-
ing, both the s3(3, 3) and s4(4, 4) responses are at the level of ∼10−6

when � < 10 per cent and contain significant errors (Figs 2a and b).
We believe that a relative amplitude of ∼10−6 for both hlm and klm

is approximately the limit of accuracy that CitcomSVE can reach,
given that the numerical models use 12 × 483 elements (or ∼40 km
surface resolution) and a 10−3 convergence tolerance. However, it
is still surprising to see the high accuracy (six orders of magnitude)
of CitcomSVE.

Having shown that our perturbation method can determine
the spheroidal responses accurately, its accuracy in solving for
the toroidal responses is not examined directly. Here we consider
the t1(2, –1) mode and its contributions to s2(2, 0) and s2(2, 2) re-
sponses for both (2, 0) and (2, 2) tidal forcing. s2(2, 0) and s2(2, 2)
are also excited from the degree-1 and 3 spheroidal modes (Fig. 1)
and this portion of the responses from s to s couplings are believed
to be calculated accurately. With the total responses of s2(2, 0)
and s2(2, 2) being accurate (Table 2), we argue that the t1(2, –1)
solutions should also be accurate. Fig. 3 compares the gravita-
tional responses of both the s2(2, 0) and s2(2, 2) modes with (solid
lines) and without (dashed lines) the contribution from t1(2, –1),
for 10 per cent ≤ � ≤ 40 per cent. Without t1(2, –1), the s2(2, 0)
and s2(2, 2) responses deviate significantly from the CitcomSVE
results. Adding the contribution by t1(2, –1) eliminates this devi-
ation in the response, which implies that our perturbation method
can also determine the toroidal responses accurately.

4.2 (1, 1) lateral heterogeneities in either the bottom or the
top half of the mantle

We have shown that our second-order perturbation method accu-
rately solves for the tidal response of a laterally varying Moon with
(1, 1) lateral heterogeneities throughout the lunar mantle (case I).
To investigate how a Moon with lateral heterogeneities localized to
different depth ranges within the mantle would respond to the tidal
force, and to test the robustness of our perturbation method, we ex-
plore two additional cases that assume the same (1, 1) lateral struc-
ture but restrict it to either the bottom (case II) or the top (case III)
half of the mantle, respectively.
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Figure 3. Comparison of the gravitational responses of the self-coupling
modes s2(2, 0) (red) and s2(2, 2) (blue) with (solid lines) and without
(dashed lines) the contribution from t1(2, –1), for � from 10 to 40 per cent.
Panels (a) and (b) are for (2, 0) and (2, 2) tidal forcing, respectively. The
triangles and inverted triangles are the s2(2, 0) and s2(2, 2) responses from
the CitcomSVE calculations.

For both cases II and III, the tidal responses to the (2, 0) and
(2, 2) tidal forces are calculated for � from 2.5 to 40 per cent using
both the perturbation method and CitcomSVE. Results for both
cases II and III continue to show an overall <1 per cent relative
difference in hlm and klm between these two methods (see Table 2
for � = 10 per cent). In Fig. 4, we show the displacement responses,
hlm , of each high-order mode for all three cases for both (2, 0) and
(2, 2) tidal forcing as � = 10 per cent. hlm for cases II and III
are added to compare with those in case I. Since case I includes
lateral heterogeneities throughout the entire mantle, the high-order
responses in case I are generally greater in amplitude than those in
cases II and III separately (Fig. 4). However, exceptions exist. The
responses h1

1,1 for both (2, 0) and (2, 2) tidal forcing in case III are
greater than those in cases I and II. However, since cases II and III
have non-overlapping depth ranges, and since the sum of their ranges
equals the depth range for case I, we expect the sum of the first-order
responses from cases II and III to be equal to those from case I, due
to linearity of the first-order responses. This is consistent with what
we have found in the first-order solutions (Fig. 4). Therefore, it is
evident that the responses h1

1,1 in cases II and III have opposite signs
and thus partially offset one another, explaining the reduced h1

1,1 in
case I. However, such simple addition cannot be applied to second-

Figure 4. The radial displacement responses of the Moon with (1, 1) shear
modulus lateral heterogeneities (I) throughout the entire mantle (blue),
(II) in the bottom half of the mantle (green) and (III) in the top half of
the mantle (red), for � = 10 per cent, to (a) (2, 0) and (b) (2, 2) tidal forcing,
respectively. The x-axis lists all the high-order spheroidal response modes.
The responses of the same harmonic from cases II and III are summed into
one column for comparison with those from case I.

order responses (e.g. self-coupling responses), due to non-linear
effects (Fig. 4).

4.3 Other long-wavelength structures throughout
the mantle

We also use our perturbation method to calculate the tidal response
of the Moon for long-wavelength structures other than (1, 1). We
consider lateral heterogeneities in the shear modulus throughout the
mantle for nine long-wavelength structures, which are harmonics
(l1, m1) for 1 ≤ l1 ≤ 3 and 0 ≤ m1 ≤ l1. Here, we use ζ (given in
eq. 7), instead of �, as our measure of the lateral variability of
the shear modulus. Note that we use the total tidal potential that
includes both (2, 0) and (2, 2) terms in this scenario.

Fig. 5 shows the high-order gravitational tidal responses of
the Moon for all nine laterally heterogeneous structures as
ζ = 10 per cent. All the responses are normalized by the pri-
mary s0(2, 0) response. Figs 5(a)–(i) show global maps of the lunar
surface gravitational potential anomaly contributed by all the first-
and second-order responses, with the sub-Earth point at the centre
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Figure 5. High-order gravitational responses of the Moon to the entire degree-2 tidal force [i.e. the (2, 0) forcing plus the (2, 2) forcing] for each of the
long-wavelength laterally heterogeneous structures considered in our paper, with ζlm = 10 per cent in each case. Panels (a)–(i) are gravitational anomaly maps
for the lateral heterogeneities of harmonic (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2) and (3, 3), respectively. The centre of the map is the sub-Earth
point of the Moon. Panel (j) shows the response spectrum for each harmonic structure. The x-axis represents the high-order spheroidal modes that span from
(0, 0), (1, 0), (1, 1), (2, 0), . . . , to (8, 8) in harmonics. The y-axis lists the nine long-wavelength harmonics of the structure. The maps (a)–(i) and the spectral
plot (j) use different colour scales.

 at U
niversity of C

olorado on A
ugust 29, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


A perturbation method and its application 641

of the map. Fig. 5(j) demonstrates the spectrum of the gravitational
responses that spans harmonic degrees 0 to 8 for each associated
structure. We make the following observations from our calcula-
tions. First, consistent with our selection rules (eq. 22), a degree-1
harmonic structure generates degree-3 first-order and degree-2 and
4 second-order responses; a degree-2 harmonic structure generates
degree-2 and 4 first-order and degree-2, 4 and 6 second-order re-
sponses; and a degree-3 harmonic structure generates degree-3 and
5 first-order and degree-2, 4, 6 and 8 second-order responses. Sec-
ondly, all nine gravitational potential anomaly patterns are dom-
inated mostly by first-order responses with amplitudes ranging
from ∼0.2 per cent to less than 2 per cent, relative to the s0(2, 0) re-
sponse. Thirdly, the second-order self-coupling modes s2(2, 0) and
s2(2, 2) show up in all cases, with relative amplitude ranging from
0.04 to 0.07 per cent for s2(2, 0) and from 0.09 to 0.14 per cent for
s2(2, 2), which are approximately one order of magnitude weaker
than most of the first-order modes. However, for some structures,
the s2(2, 0) and s2(2, 2) responses are comparable with first-order
responses that are relatively weak [e.g. s1(3, 1), 0.2 per cent, in
Fig. 5g; s1(5, 0), 0.14 per cent, in Fig. 5h; s1(5, 1), 0.04 per cent and
s1(5, 3), 0.19 per cent, in Fig. 5i]. The other second-order responses
are two to three orders of magnitude smaller than the first-order
responses. Therefore, for lateral variability of 10 per cent or less,
we can neglect the second-order non-self-coupling responses. For
much larger values of ζ , all the second-order responses become
significant and should all be taken into account.

5 C O N C LU S I O N A N D D I S C U S S I O N

We have developed a semi-analytic method based on perturbation
theory, to solve for the tidal response of a planetary body with
3-D elastic structure in the mantle. The method can be applied
to a planetary body where there are weak lateral heterogeneities
in the elastic moduli (in this paper, in the shear modulus only)
superimposed on a radially stratified reference model. Our second-
order perturbation method predicts all the spherical harmonic modes
resulting from first- and second-order couplings between the body
tide force and the 3-D elastic structure, and determines the responses
at these modes. We apply our second-order perturbation method to
the Moon to calculate the responses to degree-2 tidal forcing for a
variety of laterally heterogeneous lunar mantle structures, including
harmonic (1, 1) structure restricted to different depth ranges in
the mantle, and other long-wavelength structures with harmonic
degrees up to 3.

We also compute the tidal responses for the same models us-
ing the 3-D finite element model CitcomSVE. We find remarkable
agreement between our perturbation method and the finite element
method for small and moderate magnitudes of the perturbation, sug-
gesting that our perturbation method provides accurate solutions to
the tidal response problem. Furthermore, our perturbation method
provides the first true 3-D benchmark for the finite element code
CitcomSVE. The benchmark results show that our finite element
model, which has a resolution of ∼40 km at the outer surface with
12 × 483 elements, achieves a relative error of ∼10−6. Since the
primary responses (i.e. the tidal love numbers) are generally at the
order of 10−2, the high-order responses can be determined accu-
rately down to the level of ∼10−8, which is remarkable. Such a
surprisingly small relative error deserves more study from a com-
putational science point of view.

Our perturbation method, which can be used as an alternative to
a fully numerical approach, has advantages for solving a tidal re-

sponse problem. First, our perturbation method is much more time
efficient than CitcomSVE in doing forward calculations. For the
same problem setup with single harmonic lateral heterogeneity, our
perturbation calculation only costs less than 1/10 of the time cost
by a CitcomSVE run with 12 × 483 elements. Secondly, our pertur-
bation method is able to directly predict all the spherical harmonic
modes in the tidal solution, and the effects of different laterally het-
erogeneous model parametrizations on each modal coefficient can
be investigated individually. This type of mode coupling analysis
cannot be easily done using grid-based numerical methods. Thirdly,
given observational measurements of the tidal response, inverse
modelling to constrain the laterally varying mantle structure would
be more efficient using our perturbation method than using a fully
numerical approach. Monte Carlo sampling in the parameter space
could be easily done to look for plausible long-wavelength pat-
tern(s) and depth range(s) for the mantle lateral heterogeneities that
could explain the observations.

A potential application of our perturbation method is to constrain
the elastic structure of the present-day lunar mantle, by inverting
the gravitational tidal solutions from the GRAIL mission (Zhong
et al. 2012). Due to the unprecedented accuracy of the GRAIL satel-
lites in measuring the near-surface gravity field, long-wavelength
gravitational tidal terms can be determined accurately enough that
small tidal variations among different harmonics can be observed
and evaluated (Konopliv et al. 2013; Lemoine et al. 2013). The
gravitational tidal signal can be interpreted as a surface represen-
tation of the lateral heterogeneities in the lunar interior, and an
inversion analysis can thus be performed to determine possible lat-
erally varying structures. It is also important to note out that the
degree-2 self-coupling response may cause significant variations in
degree-2 Love numbers, thus complicating the usage of degree-2
tidal response to constrain the lunar core size (e.g. Williams 2007).

In the future, our perturbation method can be improved and ex-
panded in the following ways. First, lateral heterogeneities not only
in the shear modulus μ (as considered in this paper), but also in the
first Lamé parameter λ and density ρ need to be incorporated into
our formulation. Secondly, 3-D surface mass loading problems can
be solved using our perturbation method by changing only the outer
surface boundary condition. Thirdly, our perturbation method can
be adapted for tidal or surface loading problems for a planet with
an elastic shell of variable thickness (A et al. 2014).
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A P P E N D I X A : V E C T O R S P H E R I C A L H A R M O N I C E X PA N S I O N
O F T H E C O U P L I N G T E R M S

Any 3-D vector can be expanded in terms of vector spherical harmonics (VSH). In our case, we focus on the VSH expansion of the two
vector coupling terms, FD = ∇ · (δμ[∇⇀

u D−1 + (∇⇀
u D−1)T ]) in eq. (9) and BD = r̂ · [δμ(∇⇀

u D−1 + (∇⇀
u D−1)T )] in eq. (11), for high-order

differential equations (i.e. D = 1 or 2). We omit the subscripts D for simplicity.
The real-form spherical harmonic function is defined as

Ylm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2Nlm Pm

l (cos θ ) cos mφ m > 0

Nlm Pm
l (cos θ ) m = 0

√
2Nl|m| P

|m|
l (cos θ ) sin |m| φ m < 0

, (A1)

where Pm
l (cos θ ) is the associated Legendre polynomial of non-negative m, Nlm is the normalization constant of non-negative m, and

Nlm =
√

(2l+1)
4π

(l−m)!
(l+m)! . The associated derivatives of Ylm are defined as

Y θ
lm = ∂θ Ylm, Y φ

lm = 1

sin θ
∂φYlm, Y θθ

lm = ∂θ Y θ
lm, Y φφ

lm = 1

sin θ
∂φY φ

lm, Y θφ

lm = 1

sin θ
∂φY θ

lm . (A2)

The three orthogonal bases of the VSH are defined as (Dahlen & Tromp 1998)

⇀

Plm = r̂Ylm,
⇀

Blm = ∇1Ylm,
⇀

Clm = r̂ × ∇1Ylm, (A3)

where ∇1 = θ̂ ∂

∂θ
+ φ̂ 1

sin θ

∂

∂φ
is the reduced gradient operator. An arbitrary vector

⇀

V can be expanded into VSH as

⇀

V (r, θ, φ) =
∑
l,m

[plm(r )
⇀

Plm + blm(r )
⇀

Blm + clm(r )
⇀

Clm], (A4)

where the expansion coefficients plm , blm and clm are functions of r.
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We break the two vector coupling terms into spherical components, as

F = C1r r̂ + C1θ θ̂ + C1φφ̂,

B = C2r r̂ + C2θ θ̂ + C2φφ̂, (A5)

where

C1r = ∂rτrr + 1

r

(
∂θ τrθ + 1

sin θ
∂φτrφ + 2τrr − τθθ − τφφ + cot θτrθ

)
,

C1θ = ∂rτrθ + 1

r

[
∂θ τθθ + 1

sin θ
∂φτθφ + 3τrθ + cot θ (τθθ − τφφ)

]
,

C1φ = ∂rτrφ + 1

r

(
∂θ τθφ + 1

sin θ
∂φτφφ + 3τrφ + 2 cot θτθφ

)
. (A6)

Here, the τ ′
i j s represent the spherical components of the second-order tensor

↔
τ = δμ(∇⇀

u + (∇⇀
u)T ) (note that τi j = τ j i ), and δμ represents

the lateral heterogeneities in the shear modulus μ and is defined by eq. (7) in Section 2.2.
Suppose that δμ has the harmonic pattern (l1, m1), and the parent mode is spheroidal, that is s(l0, m0). Then, we have

τrr = 2ζμ0U̇ (r )Yl0m0 Yl1m1 ,

τθθ = 2

r
ζμ0

[
U (r )Yl0m0 + V (r )Y θθ

l0m0

]
Yl1m1 ,

τφφ = 2

r
ζμ0

[
U (r )Yl0m0 + V (r )

(
Y φφ

l0m0
+ cot θY θ

l0m0

)]
Yl1m1 ,

τrθ = ζ S(r )Y θ
l0m0

Yl1m1 ,

τrφ = ζ S(r )Y φ

l0m0
Yl1m1 ,

τθφ = 2

r
ζμ0V (r )

(
Y θφ

l0m0
− cot θY φ

l0m0

)
Yl1m1 , (A7)

and

C2r = 2ζμ0U̇ (r )Yl0m0 Yl1m1 ,

C2θ = ζ S(r )Y θ
l0m0

Yl1m1 ,

C2φ = ζ S(r )Y φ

l0m0
Yl1m1 . (A8)

For a toroidal parent mode t(l0, m0), we have

τrr = 0,

τθθ = 2

r
ζμ0W (r )

(
cot θY φ

l0m0
− Y φ

l0m0

)
Yl1m1 ,

τφφ = −τθθ ,

τrθ = −ζ T (r )Y φ

l0m0
Yl1m1 ,

τrφ = ζ T (r )Y θ
l0m0

Yl1m1 ,

τθφ = 1

r
ζμ0W (r )

(
Y θθ

l0m0
− Y φφ

l0m0
− cot θY θ

l0m0

)
Yl1m1 , (A9)

and

C2r = 0,

C2θ = −ζ T (r )Y φ

l0m0
Yl1m1 ,

C2φ = ζ T (r )Y θ
l0m0

Yl1m1 . (A10)

The VSH expansion coefficients of F and B at (l, m) are

(F p
lm, Fb

lm, Fc
lm) = 1

l(l + 1)

∫∫
(

⇀

Plm,
⇀

Blm,
⇀

Clm) · Fd�,

(Rcp
lm, Scp

lm, T cp
lm ) = 1

l(l + 1)

∫∫
(

⇀

Plm,
⇀

Blm,
⇀

Clm) · B d�, (A11)
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respectively. In general, a parent mode (s or t) can generate both spheroidal and toroidal child modes. A set of non-zero expansion coefficients
at (l, m) from eq. (A11) represents a specific child mode caused by the coupling. Particularly, if a child mode is spheroidal, Fc

lm and T cp
lm are

zero; if a child mode is toroidal, F p
lm , Fb

lm , Rcp
lm and Scp

lm are zero.
For each type of parent–child mode pair, the generalized expressions of the non-vanishing r-dependent expansion coefficients are given as

follows (the subscript lm is neglected):

(1) s(l0, m0) ⊗ (l1, m1) → s(l, m)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F p(r ) = c1ζμ0

(
Ü + 2U̇

r
− 2U

r 2
+ c2

V

r 2
+ c3

S

μ0r

)

Fb(r ) = c4ζμ0

(
Ṡ

μ0
+ 3S

μ0r
+ c5

U

r 2
+ c6

V

r 2

) , (A12)

⎧⎨
⎩

Rcp(r ) = c1ζμ0U̇

Scp(r ) = c4ζ S
. (A13)

(2) s(l0, m0) ⊗ (l1, m1) → t(l, m)

Fc(r ) = c1ζμ0

(
Ṡ

μ0
+ 3S

μ0r
+ c2

V

r 2

)
, (A14)

T cp(r ) = c1ζ S. (A15)

(3) t(l0, m0) ⊗ (l1, m1) → s(l, m)⎧⎪⎪⎨
⎪⎪⎩

F p(r ) = c1ζ

(
T

r

)

Fb(r ) = c2ζμ0

(
Ṫ

μ0
+ 3T

μ0r
+ c3

W

r 2

) , (A16)

⎧⎨
⎩

Rcp(r ) = 0

Scp(r ) = c2ζ T
. (A17)

(4) t(l0, m0) ⊗ (l1, m1) → t(l, m)

Fc(r ) = c1ζμ0

(
Ṫ

μ0
+ 3T

μ0r
+ c2

W

r 2

)
, (A18)

T cp(r ) = c1ζ T . (A19)

Here, c1, c2, . . . , c6 are constant coefficients that measure the strength of the parent–child mode coupling.

For the zeroth-order equations (D = 0), F0 = ⇀

f td. Given the degree-2 tidal force in eq. (6), the VSH expansion of F0 can be simply
obtained using eq. (A11) for (2, 0) or (2, 2) tidal forcing separately, as

F p(r ) = −2Zρ0r, Fb(r ) = −Zρ0r, Fc(r ) = 0, (A20)

where Z = Z1 for (2, 0) tidal forcing while Z = Z2 for (2, 2) tidal forcing, and Z1 and Z2 are defined in eq. (5). Since B0 vanishes,

Rcp(r ) = Scp(r ) = T cp(r ) ≡ 0. (A21)

Apparently from eqs (A20) and (A21), the body tide force, when acting on a spherically symmetric planet, can only induce a spheroidal
response.

APPENDIX B: NON–DIMENSIONAL EQUATIONS FOR SPHEROIDAL AND TOROIDAL MODES

We first normalize eq. (21) using the following scalings,

r = ar ′, ρ0 = ρcmbρ
′
0, μ0 = μcmbμ

′
0, λ0 = μcmbλ

′
0, g0 = 4πGρcmbag′

0,

U = aU ′, V = aV ′, W = aW ′, R = μcmb R′, S = μcmb S′, T = μcmbT ′,

Rcp = μcmb Rcp ′, Scp = μcmb Scp ′, T cp = μcmbT cp ′,

K = 4πGρcmba2 K ′,Q = 4πGρcmbaQ ′,F = μcmb/aF ′, (A22)
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where the primed variables are non-dimensional, a is the Moon’s radius, g0 is the gravitational acceleration, and ρcmb and μcmb are the density
and the shear modulus on the mantle side of the CMB. The vector F is determined by the VSH expansion of the mode coupling term, F.

The non-dimensional form of eq. (21) is given by

dX ′

dr ′ = A′ · X ′ − F′. (A23)

Hereafter, all variables are non-dimensional and we omit the primes for simplicity. Note that we do not include the (0, 0) response in our
formulation.

1. Spheroidal mode

The spheroidal system has six dimensions.

X = (U, V, R, S, K , Q)T , (A24)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2λ0
rβ

l(l+1)λ0
rβ

1
β

0 0 0

− 1
r

1
r 0 1

μ0
0 0

4
r

(
γ

r − ξ
) − l(l+1)

r

( 2γ

r − ξ
) − 4μ0

rβ
l(l+1)

r − ξ (l+1)
g0r

ξ

g0

1
r

(
ξ − 2γ

r

) − 1
r2 [2μ0 − l(l + 1)(γ + μ0)] − λ0

rβ − 3
r

ξ

rg0
0

−ρ0 0 0 0 − l+1
r 1

−ρ0
l+1
r ′ ρ0

l(l+1)
r 0 0 0 l−1

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A25)

where β = λ0 + 2μ0, γ = μ0(3λ0+2μ0)
λ0+2μ0

, ξ = ηρ0g0, l is the harmonic degree, and η = 4πGρ2
cmba2

μcmb
is a non-dimensional coefficient. The vector F

has the form

F = (0, 0, F p, Fb, 0, 0)T , (A26)

where F p and Fb are the VSH expansion coefficients defined in eq. (A11). In our calculations, we start the solution process from the CMB
and propagate up through the mantle. To find a unique solution to eq. (A23), the boundary conditions at the CMB, the outer surface, and all
internal boundaries are needed. The CMB and surface boundary values, X(rc) and X(rs), are given, respectively by

X(rc) =
[
Uc, Vc, ηρ0c(Kc+g0Uc), 0, Kc,

2l+1
rc

Kc + ρ0cUc

]T
,

X(rs) = (Us, Vs, 0, 0, Ks, 0)T ,
(A27)

where ρ0c is the density of the fluid core. The last component of both X(rc) and X(rs) is different from the classical form of the boundary
conditions used in tidal forcing problems (Tromp & Mitrovica 2000). The last component in X(rc) has been mathematically simplified by
assuming a uniform fluid core below the CMB instead of a solid inner core overlain by a fluid outer core. This simplification has little effect
on the results. For X(rs), which represents the boundary conditions at a free outer surface, the last component is zero instead of the non-zero
constant usually used for tidal forcing in the classical form. This classical non-zero constant comes from redefining the gravitational potential
variable so that it includes the tidal potential. In that case the effects of the tidal force appear in the outer surface boundary condition instead
of in the differential equations. However, in this paper we do not include the tidal potential in the gravitational potential variable, and so the
effects of the tidal force appear in the differential equations rather than in the boundary condition.

At any solid–solid internal boundary in the mantle,

[U ]+− = [V ]+− = [K ]+− = [Q]+− = [R + Rcp]+− = [S + Scp]+− = 0. (A28)

Eq. (A28) ensures the continuity of the displacement, the gravitational potential/acceleration, and the radial traction, everywhere in the mantle.
Solving for the six unknowns, Uc,Vc,Kc,Us,Vs and Ks, uniquely determines the spheroidal response.

2. Toroidal mode

For the toroidal mode,

X = (W, T )T , (A29)

A =
⎡
⎣ 1

r
1

μ0

(l+2)(l−1)μ0
r2 − 3

r

⎤
⎦ , (A30)

F = (0, Fc)T , (A31)
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where Fc is defined in eq. (A11). The CMB, outer surface, and internal boundary conditions are given respectively by (Tromp &
Mitrovica 2000)

X(rc) = (Wc, 0)T ,

X(rs) = (Ws, 0)T ,

[W ]+− = [T + T cp]+− = 0. (A32)

Solving for Wc and Ws determines the toroidal response.

APPENDIX C: PROPAGATOR MATRIX METHOD

Given eq. (21) (or the non-dimensional form eq. A23) and the associated boundary conditions, we apply the fourth-order Runge–Kutta
numerical scheme to establish the framework of our propagator matrix method described in Secton 3.3.

In Section 3.3, a 1-D radial grid is set up from the CMB to the outer surface of the mantle. Since continuity conditions must be applied
at every internal boundary, we define the grid so that there are two gridpoints at each boundary: one just inside and one just outside. The
internal boundaries occur wherever there is a discontinuity, due either to (I) a discontinuity in material properties of the spherical background
structure, which causes the matrix A to be discontinuous, or (II) a radial discontinuity in δμ. In the latter case, although there is continuity of
the radial traction components (see eqs A28 and A32), X and F are discontinuous due to the jump of δμ in the coupling terms. The entire
mantle is divided into n layers by all the non-overlapping discontinuity boundaries (Type I plus Type II), and each layer L (1 ≤ L ≤ n) is
equally divided into fine layers with step size hL . We number all the gridpoints in order from the CMB to the outer surface.

According to the fourth-order Runge–Kutta method, an unknown solution vectorX(ri+1) can be evaluated from knowledge of X(ri ), as

X(ri+1) = X(ri ) + hL

6
(K 1 + 2K 2 + 2K 3 + K 4), (A33)

where ri and ri+1 are two neighbouring gridpoints that belong to layer L, and ri+1 = ri + hL . K 1, K 2, K 3 and K 4 are defined as

K j = M j (A)X(ri ) + N j (F), j = 1, 2, 3, 4, (A34)

where M j (A) and N j (F) are given as

M1(A) = A(ri ),

M2(A) = A(ri+1/2)
[
I + h

2 M1(A)
]
,

M3(A) = A(ri+1/2)
[
I + h

2 M2(A)
]
,

M4(A) = A(ri+1) [I + h M3(A)] ,

N1(F) = F(ri ),

N2(F) = F(ri+1/2) + h
2 A(ri+1/2)N1(F),

N3(F) = F(ri+1/2) + h
2 A(ri+1/2)N2(F),

N4(F) = F(ri+1) + h A(ri+1)N3(F),

(A35)

Here, ri+1/2 = (ri + ri+1)/2, and I is the identity matrix. Eq. (A33) can be rewritten as

X(ri+1) = P(ri , ri+1)X(ri ) + G(ri , ri+1), (A36)

where

P(ri , ri+1) = I + h

6
[M1(A) + 2M2(A) + 2M3(A) + M4(A)], (A37)

and

G(ri , ri+1) = h

6
[N1(F) + 2N2(F) + 2N3(F) + N4(F)]. (A38)

Eqs (A36)–(A38) are the fundamental equations for our propagator matrix method. P(ri , ri+1) is the differential form of the propagator
matrix, and G(ri , ri+1) is the differential contribution of the vector F from ri to ri+1. Note that when ri = ri+1, P(ri , ri+1) = I and
G(ri , ri+1) = 0.

The differential propagation can be easily generalized to perform the propagation of X from ri to ri+k (k > 1) in the same layer L as

X(ri+k) = P(ri , ri+k)X(ri ) + G(ri , ri+k), (A39)

where

P(ri , ri+k) = P(ri+k−1, ri+k) · P(ri+k−2, ri+k−1) · · · · · P(ri , ri+1), (A40)

and

G(ri , ri+k) = G(ri+k−1, ri+k) + P(ri+k−1, ri+k) · G(ri+k−2, ri+k−1) + · · · + P(ri+1, ri+k) · G(ri , ri+1). (A41)
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However, when the propagation reaches a Type II discontinuity boundary at rb (here, rb includes the CMB at rc and the outer surface at rs),
a correction needs to be made to include the discontinuity of X. This correction, derived from eqs (A28) and (A32), is

X(r+
b ) = X(r−

b ) + ε (rb) , (A42)

where ε (rb) is the correction term that relates the solution vectors X at r−
b and r+

b . Specifically, for a spheroidal mode,

ε(rb) = (0, 0, Rcp(r−
b ) − Rcp(r+

b ), Scp(r−
b ) − Scp(r+

b ), 0, 0)T , (A43)

while for a toroidal mode

ε(rb) = [0, T cp(r−
b ) − T cp(r+

b )]T , (A44)

where Rcp, Scp and T cp are the VSH expansion coefficients defined in eq. (A11). Note that if rb is equal to rc (or rs), Rcp, Scp and T cp on the
r−

c (or r+
s ) side are zero since r−

c (or r+
s ) is out of the solution region. Once across a Type II discontinuity boundary, successive propagation

of X continues until reaching another such boundary.
Starting from the CMB boundary value, that is X(rc), the generalized expression of the solution X(ri ) at any gridpoint can be obtained

through

X(ri ) = P(rc, ri ) · X(rc) + G(rc, ri ) + E(ri ), (A45)

where P(rc, ri ) and G(rc, ri ) are the propagator matrix and the propagation of F from rc to ri that are defined in eqs (A40) and (A41),
respectively. E(ri ) is the total contribution of the correction terms at ri from all the Type II boundaries below ri , and

E(ri ) =
∑
rb≤ri

P(rb, ri ) · ε(rb) − δri ,ri+1ε(ri ), (A46)

where δri ,ri+1 = 1 if ri = ri+1 and zero otherwise.
Let ri in eq. (A45) be rs, and solve the resulting linear equations eq. (A45), with X(rc) and X(rs) given by eq. (A27) for the spheroidal

case and eq. (A32) for the toroidal case. After X(rc) and X(rs) are fully determined, eq. (21) can be solved at every gridpoint by applying eq.
(A45) repetitively.
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