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1. Introduction

The Earth’s mantle is currently in a state of active convection such
that mantle flow is accompanied by continual overturn of the upper
thermal boundary layer or lithosphere. It is widely recognized that
subduction of cold, dense oceanic lithosphere supplies the dominant
driving force of plate motion and mantle convection (Hager and
O'Connell, 1981). However, heavy slabs can detach from the overlying
plate, possibly by either a necking instability, plastic-brittle failure, or
plastic yielding (Schmalholz, 2011; Duretz et al, 2012; Andrews and
Billen, 2007). Detached slabs are observed in the upper mantle as
pinched tomographic features (Wortel and Spakman, 2000; Fukao et al,
2001), and could potentially explain precipitous changes in plate mo-
tion (Richards and Lithgow-Bertelloni, 1996). Tectonic events which
occur on timescales shorter than 10–100 Myrs (a typical transit time
across the mantle) are not readily explained by reorientation of mantle
flow. It has been proposed that subduction of thickened crust, such as
an oceanic plateau or a mid-ocean ridge system, could trigger cessation
of subduction and lead to detachment of the downgoing slab (von
Blanckenburg and Davies, 1995; Bercovici et al, 2015). Detachment
may be responsible for observations of abrupt tectonic events if de-
tachment itself is a rapid process. For example, it is possible that the
collision of the Ontong-Java Plateau with the Melanesian arc hindered
further subduction of the Pacific plate and caused a rotation of the
Pacific plate at 6 Ma (Austermann et al, 2011). Another possible ex-
ample is that at 50 Ma, a slab imposing a northward driving force on the
Pacific plate detached, and reorganized plate motion to produce the
bend in the Emperor-Hawaiian seamounts (Bercovici et al., 2015).

For the detachment of a downgoing slab to be a rapid process re-
lative to mantle convection, dynamic weakening on short timescales is
required. In this study, we explore the dynamics of a subducted slab
using damage theory, which may provide a mechanism for abrupt
tectonics (Bercovici et al., 2015). We develop a model based on mantle
rheology with diffusion and dislocation creep including grainsize evo-
lution, following Foley et al. (2012), Ricard and Bercovici (2009), and
Bercovici et al. (2015). The implemented rheology simulates high-
temperature creep in monomineralic and polymineralic grain

assemblages and is consistent with field and laboratory observations
(Montési and Hirth, 2003). We explore the coupling of grainsize-,
temperature- and stress-dependent viscosity, and grainsize evolution
from damage and its effect on slab detachment, while ignoring other
potentially relevant features such as composition, 3D geometry,
melting, hydration, phase changes, deformation by plastic yielding and
shear heating (Gerya et al., 2004; Andrews and Billen, 2007; Billen,
2008; Stegman et al., 2010). Our study aims to address the following
questions. How are grainsize evolution and slab detachment coupled?
Under which conditions do a necking instability and slab detachment
occur, and on what timescale? How is the existence and value of a
minimum grainsize controlled by the damage?

This paper is organized as follows: the methods and models are
presented in Section 2, and the results in Section 3. Our results focus on
three topics: 1) a comparison of the evolution of the slab, focusing on
viscosity, stress, and grainsize in convection calculations, 2) the char-
acteristic timescale on which a necking instability develops, and 3) a
slab decoupling timescale. Discussion and conclusions follow in
Sections 4 and 5, respectively.

2. Methods and models

In this section, we present the model, governing equations and
rheological equations coupled with grainsize evolution. We discuss
solution methods, particularly, a new iterative scheme for non-linear
viscosity and a particle-based method for solving the grainsize evolu-
tion equation.

2.1. Governing equations

Convection calculations are formulated for time-dependent, dyna-
mically self-consistent thermal convection in 2-D Cartesian geometry.
The mantle is treated as an incompressible fluid with constant ther-
modynamic properties and we exclude internal heat production. The
dimensionless conservation equations of mass, momentum, and energy
for mantle convection in the Boussinesq approximation and infinite
Prandtl number limit are
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following Schubert, Turcotte and Olson (2001), where u is the velocity
vector, P the pressure, η the viscosity, êz the unit vector in the vertical
direction, Θ the temperature, and Ra is the Rayleigh number. The non-
dimensionalization of the governing equations is given in Appendix A.

The viscosity in our model is dependent on grainsize, temperature,
and stress. Following Landuyt et al (2008), we use the inverse grainsize
or fineness A. We use the inverse grainsize (fineness) for the sake of
convenience. The non-dimensional viscosity in a composite rheology
form is (see Appendix A)
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where E is the dimensionless activation energy, Θs is the surface tem-
perature, exponent m controls the grainsize-dependence of viscosity
and is either 2 or 3, depending on the mode of grain diffusion, and
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where σ is the 2nd invariant of the stress tensor, exponent n governs the
stress dependence, σr is a reference far-field background stress, σT is the
transition stress at which strain rates from diffusion and dislocation
creep are equal (Hirth and Kohlstedt, 2003), and σTr is a reference far-
field background transition stress (see Appendix A).

The transition stress σT is dependent on fineness, where large fine-
ness corresponds to high transition stress. Dislocation creep is the
dominant deformation mechanism where the stress is larger than the
transition stress, and diffusion creep is the dominant deformation me-
chanism where the stress is less than the transition stress. Eq. (4) can be
used for either purely diffusion creep (Newtonian) with =n 1, or
composite rheology with diffusion and dislocation creep (non-New-
tonian) with =n 3.5 (see Appendix A for full derivation). In Newtonian
models, viscosity is dependent only on fineness and temperature. In
non-Newtonian models, viscosity is dependent on temperature, fine-
ness, and stress.

There are two limiting behaviors in non-Newtonian rheology: in the
diffusion creep limit, < T , and the viscosity becomes independent of
stress; in the dislocation creep limit, > ,T and viscosity becomes in-
dependent of fineness (see Appendix A). The reference transition stress
governs the stress dependence of viscosity in non-Newtonian models,
where a small reference transition stress corresponds to small transition
stress, and hence strong nonlinear weakening and sensitivity to stress in
viscosity.

Grainsize depends on grain damage and healing that is also con-
trolled by temperature (Foley and Bercovici, 2014; Mulyukova and
Bercovici, 2017a). The nondimensional equation for fineness evolution
(see Appendix A) is

=

dA

dt
D HhAp

(6)

where the exponent p is set to either 3 or 5 in this study, D and H are
nondimensional damaging and healing parameters that are defined in
Appendix A, Ψ is the deformational work, and h is the temperature-
dependent healing. h and Ψ are given by
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where Eh is the grain growth activation energy. While a large

deformational work Ψ or damaging parameter D enhances grainsize
reduction (i.e., increase of fineness A), a large healing parameter H

enhances grain growth (i.e., decrease of fineness A). The choice of
=p 3 or 5 governs whether the mineral assemblage is monomineralic

( =p 3) or polymineralic ( =p 5), which empirically leads to grain
growth with the square root of time, or with the quartic root of time,
respectively (Foley et al, 2012).

The values of D and H are determined by scaling factors (Appendix
A, Table 1), and in conjunction with the deviatoric stress level, control
the relative timescales on which damage and healing of grains occur.
From the marginally constrained scaling factors f , the damage parti-
tioning coefficient (10 10

6 1), and Ar , the reference fineness
(10 10

1 3), the damage parameter D may vary from 10 10
7 1, and the

healing parameter H may vary from 10 10
1 15. In the present study, we

choose a subset from the range of D and H for which damage dominates
over healing (i.e., the timescale on which damage occurs is more rapid
than that for healing). This guarantees that the slab always develops a
necking instability and detaches. To isolate the effects of changing the
rate of damage, we choose a constant value of = ×H 2.3 10

5 for all
models and vary the damage parameter = × ×D 4.4 10 4.4 10

4 2.
The damage parameter values used this study are consistent with those
in Foley et al, 2012, whereas the healing parameter values used here
are larger (compare with =D 10 10

3 1, = ×H 8.35 10
3 in Foley

et al., 2012).

2.2. Model characteristics

We compute a series of models with varying D m, and p to de-
monstrate the dynamics of damage, the timescales on which a necking
instability develops, and the timescale on which decoupling of the slab
from the overlying plate occurs. We consider a thermal convection
model in a 2-D Cartesian box with an aspect ratio of 2, which extends to
a depth of 1500 km (Table 1). The boundary conditions are free-slip on
all four sides. The temperature is fixed at 0 at the surface and 1 at the
bottom, while the vertical sidewalls are insulating. The initial tem-
perature field is given by a thermal boundary layer at the surface, and a
subducted slab with the mean temperature of the surface and ambient
mantle that hangs from the lithosphere (Fig. 1). The dimensional
thickness of the thermal boundary layer (i.e., lithosphere) and sub-
ducted slab is 150 km. The governing equations of mantle convection
(i.e. Eqs. (1)–(3) are solved using the finite element code Citcom
(Moresi and Solomatov, 1995). The models use 128 horizontal and 64

vertical elements which gives a 23 km resolution, there are 16 particles
in each element, and the time step is set by the CFL condition.

The equation for evolution of fineness (i.e. Eq. (6)) is similar to the
equation of composition conservation in mantle convection studies,
except for the source terms on the right-hand side. While Eq. (6) has
been solved using a field-based method (Foley and Bercovici, 2014),

Table 1
Values which nondimensionalize and rescale all the relevant
variables.

Parameter Reference value

r
3400 kg/m3

g 9.8 m/s

3 × 10−5 K−1

T 1300 K

d 1500 km

10−6 m2/s

r
1021 Pa s

Ar 100 m−1

0 440 Pa

r 0.44 MPa

Tr 1–10 MPa
E E, h (Newtonian) 120 kJ/mol
E E, h (non-Newtonian) 300 kJ/mol
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here it is solved using a particle method (e.g., Tackley and King, 2003),
similarly to how the compositional field is modeled in mantle convec-
tion studies (McNamara and Zhong, 2004). In our particle-based
method, the fineness field A is represented by a distribution of particles.
To update the field, we update particle positions from the flow velocity
using a predictor-corrector scheme. We also consider the effects of
damage and healing on the field. The particle advection scheme used
here is the same as in McNamara and Zhong (2004), and Zhong et al.,
(2008), but the incorporation of the source terms which produce da-
mage and healing is newly implemented for this study.

Consider that at time =t t0, the flow velocity is u0 and fineness field

A0 is defined by a distribution of particles at coordinates x
i

0 for each
particle i. To solve the updated fineness field A1 at the next time-step

= +t t dt1 0 , we first update the particle’s positions using a pre-
dictor–corrector scheme (Zhong et al., 2008). The source terms of Eq.
(6) depend on temperature and the rate of deformational work. These
quantities are computed on the grid and interpolated onto the particles
using shape functions of the finite elements. The interpolated quantities
are held constant while the fineness field is being updated, using a
second order Runge-Kutta scheme, as follows

=
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where the subscript g marks the first order approximation of the up-
dated rate of change and value of fineness. We then compute the
second-order accurate rate of change, and use it to compute the fineness
of each tracer at the following time-step
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The fineness field is projected from particles onto the grid to de-
termine the viscosity at the grid nodes, where it is used to solve the
momentum equation. This is similar to how the composition is pro-
jected from particles to the grid (Zhong et al., 2008). The main benefit
of using the particle method is to reduce the numerical diffusion and
dispersion errors. However, the field-based method can readily employ
a solver for the energy equation to evaluate fineness evolution, which is
already implemented in any convection code.

Considering the fineness field A is solved at particle locations and
projected onto the grid, the question arises as to how the work term,
which evolves the particle fineness, can best be evaluated. The method
we employ in this study is to solve deformational work directly from
conservation of momentum (i.e. on the grid), and project onto particles.
Different particles accommodate different amounts of strain according
to the linear interpolation of the fields onto the particle location.
Another option, however, is to allow the particle-based fineness to
dictate the work term at each particle location. In this latter method,
the particle fineness introduces nonlinear variation in deformational
work from one particle to the next. This is then accompanied by the
linear interpolation of temperature, and stress or strain rate, since these
parameters are only resolved down to the grid scale. We choose not to
employ a particle-based definition of work because temperature, stress
and strain rate can vary only linearly at the particle scale in our model
(as dictated by the linear shape functions), and hence prefer for work to
also vary only linearly at the particle scale (refer to Appendix B for
more detailed discussion).

Finally, we find that using a Newton-method iterative solver to
compute viscosity significantly improves convergence of the non-linear
solutions of the momentum Eq. (2) in the composite rheology models.
More commonly, non-Newtonian rheology models employ a method in
which the stress (or strain rate and viscosity) from the previous itera-
tion is used to update the viscosity. However, we find that such im-
plementation often leads to relatively slow convergence for the non-
linear iterations, and hence use stress from the previous time-step to
predict the initial guess for a Newton-method root solver.

We modify the stress-dependent term in the viscosity Eq. (4) by
decomposing stress as strain rate multiplied with viscosity, = , and
rearrange the modified viscosity equation with a function f ( ):

= + ++ +f A e( ) 1n
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The root of this non-linear equation =f ( ) 0 can be solved itera-
tively for using the Newton’s method as

Fig. 1. Initial dimensionless temperature (a); stress (b) and viscosity (c) for
Newtonian models; stress (d) and viscosity (e) for non-Newtonian models with
reference transition stress σTr= 5 MPa.
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where idenotes the Newton-method iteration, and
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This procedure is applied to the viscosity calculation for each
Gaussian point of every element. With this implementation, the stress is
always consistent with strain rate and viscosity on the present time-step
(rather than lagging by one time-step). We find that this implementa-
tion significantly improves convergence of the nonlinear iteration for
flow velocity.

3. Results

We calculate a series of models to understand the effects of specific
rheological parameters on the degree of dynamic weakening, and the
timescales on which a necking instability and slab detachment develop.
Each case is run until whichever arises first of the following cutoff
criteria: viscosity contrasts reach a few orders of magnitude across a
single element, or the sinking slab reaches the lower boundary of the
domain. We systematically vary only three parameters in our models
(D, the damage parameter, m, the exponent which controls grainsize
dependence of viscosity, and p, the exponent which controls the
grainsize dependence of healing).

We provide two analyses to motivate a systematic exploration of the
damage model in Section 3.1, present analysis of fineness, viscosity and
stress for two reference cases in the linear rheology regime in Section
3.2 and compare results for different rheology including non-linear
rheology in Section 3.3. In Section 3.4, we explore the characteristic
timescale on which weakening occurs in numerical models. Finally, we
analyze slab decoupling from the lithosphere in Section 3.5.

3.1. Analysis of the model

Before showing numerical modeling results, we present two simple
analyses to place limits on grainsize and estimates on weakening
timescales. We derive an upper bound in fineness from the steady state
solution of the fineness evolution Eq. (6). For models with m p and
linear viscosity, the upper bound of fineness is solved by setting
dA dt/ = 0 to give

=A
D

H
UB

2 p m
1

(16)

This equation predicts a maximum fineness dependent on the de-
viatoric stress level, which, through its effect on the rheology (4), has
implications for whether detachment of the slab can occur.

When =m p, =dA dt/ 0 yields

=D H 0
2 (17)

which predicts no steady state fineness, but rather three distinct da-
mage modes depending on stress, . For >D H

2 , damage occurs, for
=D H

2 , fineness is in steady state, and for <D H
2 healing occurs.

Since = =m p 3 produces a singular steady state (i.e. has no limit on
how much fineness can increase), these cases may not be physical. We
thus predict two distinct damage regimes: one in which fineness is
limited by an upper bound, given by Eq. (16), and the other in which
fineness can increase indefinitely.

When = =m p 3 for linear rheology, it is also possible to derive a
simple analytic solution of fineness as a function of time if we assume
constant stress. We treat the fineness evolution Eq. (6) as a separable,
first-order, ordinary differential equation to solve for fineness as a
function of time,

=A t A h D H t( ) ( 2 ( ) ) ,0
2 2

1
2 (18)

where A0 is the initial fineness (i.e. A0 = 1). Substituting A t( ) from Eq.
(18) into the viscosity Eq. (4) with =n 1 leads to viscosity as a function
of time,
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22
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where 0 is the initial viscosity. Solving for the time at which viscosity
becomes diminishingly small or equals zero (i.e., =t( ) 0c ) gives
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This time, tc, can be viewed as a characteristic weakening time over
which the viscosity is reduced significantly due to damage. If we take
D H

2 in the damage-dominated models we explore, Eq. (20) be-
comes

=t

D h2

.c
0

2

2

3

1

3 (21)

The analytic characteristic weakening time predicts an inversely-
proportional linear relationship between tc and D. For m p, analytic
expressions for the characteristic times are not readily derived. We
expect that the characteristic time for a necking instability to develop
will be predicted by Eq. (21) for models with the same damage para-
meter D, and reflect slight variations depending on the choice of m and
p, which we will test in the following calculations. Since the upper
bound in fineness (Eq. (16)) depends onm and p, the slab is expected to
detach more slowly in models with smaller m and larger p due to a
smaller upper bound in fineness and more limited damage. As to be
discussed later, we will define characteristic weakening times for our
numerical models based on either how viscosity or stress is reduced in
the slab and compare the results with that from Eq. (21).

3.2. Reference cases with linear rheology

Here, we describe the behavior of weakening of the slab in two
reference cases 1a and 1b, with linear rheology ( =n 1) to build an
understanding of how variation of the rheological parameters m and p

affects the rate of damage, the necking process, and to test against the
analytic predictions. For all linear cases, the initial non-dimensional
viscosity is 10

3 in the slab, 10
4 in the shallow lithosphere, and 1 in the

ambient mantle due to the choice of activation energy (Table 1)
(Fig. 1c). The non-dimensional stress is initially high (105) in the slab
and lithosphere due to the negative buoyancy of the slab. Far away
from the slab, the stress is low (102, Fig. 1b).

In case 1a, the rheological parameters are = ×D 4.4 10
4,

= ×H 2.3 10
5, and = =m p 3. Case 1a is run until the viscosity con-

trasts become sufficiently large to make convergence of the velocity
difficult. The results of viscosity, stress, temperature and fineness are
presented at 3 different instants (Fig. 2a–c). As the flow evolves, da-
mage is concentrated most significantly in the neck, and manifested as
high fineness and reduced viscosity in that region (Fig. 2a and b). Fi-
neness increases along the boundary of the slab where shearing occurs.
The necking instability develops where stresses are highest. The slab
begins to thin and elongate, and deformation produces a positive
feedback with damage such that the slab starts to sink in the mantle.
Stress decreases in the slab and overlying lithosphere as the slab de-
couples from the lithosphere at later time (Fig. 2c). Note that although
the core of the slab shows high viscosity due to its low temperature, a
large region surrounding the slab has a very small viscosity as a result of
reduced grain size (Fig. 2c). Also note that the re-normalized times by
characteristic weakening time tc are used in Fig. 2, and = ×t 1.2 10c

5 in
its dimensionless form for case 1a is defined by stress evolution in the
neck as to be discussed below. We renormalize using the characteristic
weakening time to highlight the different phases of damage in the neck.

To analyze the necking process in each model, we isolate 50 150

A. Bellas et al. Physics of the Earth and Planetary Interiors 285 (2018) 76–90

79



tracer particles by scanning the domain for the greatest viscosity re-
duction between the initial and final times, and these tracer particles
are located in the neck. In the necking region and for case 1a, the rate of
increase in fineness is relatively steady until at a point in time when it
accelerates steeply (Fig. 3a). The fineness undergoes a factor of 100 total
increase from start to finish, while the neck viscosity reduces by ap-
proximately 6 orders of magnitude (Fig. 3b). Since the temperature does
not change much over this short time scale, the grainsize evolution has
a dominant effect on viscosity. Note that the fineness increases in-
definitely with no upper bound (Fig. 3a), consistent with the analysis
(Eq. (17)) in the last section for =m p as for case 1a. The stress is
initially very large (>105) but decreases for the majority of the model
run before becoming relatively steady (Fig. 3c). A few tracers in the
necking region are associated with a plunge in stress at the very end of
the model run. This is an example of convergence issues which force us
to terminate the model run (note how closely spaced the time-steps
become).

The characteristic weakening timescale captures the time over

which the viscosity and stress in the neck experiences a rapid, initial
drop, after which the slab begins to sink (the process described here is
also relevant to the plunge which follows the buildup of stress in a
passive margin as explored by Mulyukova and Bercovici (2017b)). For
our numerical models, we define the characteristic weakening time tc as
the time of minimal variation with time in either viscosity or stress after
initial, rapid reduction (i.e. enters approximate steady state). In models
with = =m p 3 (i.e., case 1a), since the fineness or viscosity is not
bounded (Fig. 3a and b), we use the stress evolution to define tc

( = ×t 1.2 10c
5 from triangles in Fig. 3c), while for other models

m pwhere the viscosity reaches a steady state value, time evolution of
either stress or viscosity may be used to define tc, as to be discussed
later. For case 1a, the characteristic weakening time approximates the
timescale on which the necking instability develops (Figs. 2 and 3).
Note that = ×t 1.9 10c

5 for case 1a as predicted from Eq. (21) using
averaged stress in Fig. 3, similar to that determined numerically.

To test the robustness of the results, we re-compute case 1a with
doubled spatial resolution (from ×128 64 to ×256 128 elements), and

Fig. 2. Dimensionless viscosity, stress, temperature and fineness (from top to bottom) at discrete times (a) 0.6, (b) 1.1, and (c) 1.25 tc in case 1a (D= 4.4 × 10−4,
m= p=3, tc= 1.2 × 10−5). Time is renormalized by the characteristic weakening timescale defined by numerical results of stress in the slab neck (refer to Fig. 3).
Stress inside the rectangles near the surface is averaged to determine the slab-decoupling timescale presented later.
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10 times the temporal resolution as case 1aHR (Table 2, Fig. 3). The
higher resolution calculation confirms the robustness of model results
in case 1a. We find that the spatial pattern and extent of weakening are
well matched, although the high-resolution case evolves more rapidly
due to increased localization (a time lag of t0.1 c resolves any significant
differences). The rate of deformation is dependent on resolution
(Hillebrand et al., 2014), but the influence is weak compared to that of
the damage parameter D, as the following models will demonstrate.

Note from Fig. 2c that due to numerical error, the temperature ex-
hibits an overshoot of the maximum expected ( =T 1.0) by up to several
percent in halos surrounding the slab. To examine whether the tem-
perature-overshoot would affect the general results, we re-compute case
1a in which the temperature is filtered to limit T 1.0 and verify dif-
ferences are negligibly small compared to the original results in case 1a.

Case 1b is formulated identically to case 1a, except = =m p2, 5

(compared to = =m p 3). Results for viscosity, stress, temperature and
fineness are plotted at discrete times =t t/ 1.3, 7.6,c and 11.7 in Fig. 4a–c,
respectively. The slab detachment process is similar to that in case 1a.
For case 1b, tc is ×1.2 10

5 and ×1.5 10
5, based on stress and viscosity

evolution, respectively (Fig. 5d and 5g), which is the similar to that for
case 1a. Damage is less localized, and the rate of damage is slower in
case 1b compared to case 1a.

For case 1b, damage in the necking region is rapid while t t/ c <1, but
for t t/ 1c , damage plateaus, and when >t t/ 1c , healing begins to

compete with and dominate over damage due to the effects of increased
temperature in the slab neck (i.e., the slab neck thins and exchanges
heat with the ambient mantle) (Figs. 4b, c, and 5a). The viscosity in the
slab neck reaches a relatively steady value after tc similar to the fine-
ness, and then decreases at a slow, steady rate consistent with steadily
increasing temperature in the neck (Fig. 5d). The slab neck stress de-
creases rapidly by a factor of 1.5 in the first tc, plateaus, and then at t7 c

decreases rapidly again as deformation in the elongated neck subsides
(Fig. 5g).

The rheological evolution of cases 1a and 1b fall into two distinct
damage regimes. Most importantly, the fineness and viscosity evolve
with increasing rate and with no sign of abatement in case 1a with
= =m p 3 (Fig. 3), while in case 1b with m p the fineness and visc-

osity quickly produce relatively steady values (Fig. 5a and d). This is
consistent with the analysis on an upper bound in fineness as predicted
by Eqs. (16) and (17). We use this dichotomizing feature to describe the
remaining linear models. For case 1b, the upper bound of fineness as
predicted by Eq. (16) using stress for case 1b (Fig. 5g) is similar to
model fineness after tc (black versus gray curves in Fig. 5a), showing the
validity of our analysis.

3.3. Models with different rheological parameters

We can now extend this analysis to the other formulations of
rheology. Based on the prediction of steady state fineness, we divide all
cases to into two groups: those with = =m p 3, and those with m p.
Cases with = =m p 3 are grouped as case-a, and for cases with m p,
three different combinations of m and p are considered: m= 2, p= 5
are grouped as case-b, m= 2, p= 5 as case-c, and m= 2, p= 5 as case-
d (Table 2). For each group, three different damage parameters
= × ×D 4.4 10 , 4.4 104 3 and ×4.4 10

2 are also considered and are
grouped as case 1, 2, and 3, respectively, in the linear regime (e.g.,
cases 1a and 1b considered earlier). Non-Newtonian rheology models
are grouped as case 4.

3.3.1. Models with different m p, and D
In general, increasing the damage parameter D increases the rate of

damage, the total change in viscosity, and produces larger, more loca-
lized viscosity contrasts. Exponent m controls grainsize dependence of
viscosity (Eq. (4)). Exponent p controls grain healing (Eq. (6)), where
systems with larger p typically produce more limited and less rapid
damage due to competition from the healing term. Following this trend,
all case-a models exhibit the fastest and most significant evolution of
damage as they are formulated with = =m p 3 and do not have a
steady state fineness. All case-b models, formulated with = =m p2, 5,

Fig. 3. Dimensionless fineness (a), viscosity (b), and stress (c) for 72 of the most significantly weakened particles in case 1a (black). All tracers plotted here are
located in the slab neck. The triangles superposed on (c) indicate the time of minimal slope after a period of rapid reduction (i.e. the numerical characteristic
weakening timescale used to renormalize time). The circles mark the time at which stress has reduced by a factor of 3 (i.e. the decoupling timescale in Bercovici et al.,
2015). The black ticks on the time axis mark every 10th time step, and time is renormalized by the characteristic weakening timescale for case 1a (tc = 1.35 × 10−5).
We include for comparison the fineness (d), viscosity (e), and stress (f) for a higher resolution test of case 1a in gray (double spatial, and a factor 10 times the
temporal resolution). The characteristic weakening timescale tc = 1.17 × 10−5 in the high resolution test.

Table 2
List of model formulations and run times.

Case Rheology Tr[MPa] D m p Time steps Elapsed time

1a Linear – 4.4 × 10−4 3 3 710 1.51 × 10−5

1b Linear – 4.4 × 10−4 2 5 5000 1.31 × 10−4

1c Linear – 4.4 × 10−4 2 3 14,300 4.81 × 10−5

1d Linear – 4.4 × 10−4 3 5 4000 4.71 × 10−5

1aHR Linear – 4.4 × 10−4 3 3 4600 1.31 × 10−5

2a Linear – 4.4 × 10−3 3 3 1950 7.61 × 10−7

2b Linear – 4.4 × 10−3 2 5 200,000 3.20 × 10−5

2c Linear – 4.4 × 10−3 2 3 4700 1.82 × 10−6

2d Linear – 4.4 × 10−3 3 5 9300 1.14 × 10−6

3a Linear – 4.4 × 10−2 3 3 2500 9.23 × 10−8

3b Linear – 4.4 × 10−2 2 5 40,000 3.13 × 10−6

3c Linear – 4.4 × 10−2 2 3 2300 1.57 × 10−7

3d Linear – 4.4 × 10−2 3 5 1950 7.28 × 10−8

4a Non-linear 5.0 4.4 × 10−4 3 3 230 2.03 × 10−4

4b Non-linear 5.0 4.4 × 10−4 2 5 1950 3.55x10−4

4c Non-linear 5.0 4.4 × 10−4 2 3 1250 3.26 × 10−4

4d Non-linear 5.0 4.4 × 10−4 3 5 2400 2.94 × 10−4

4e Non-linear 1.0 4.4 × 10−4 2 5 5000 2.71 × 10−5

4f Non-linear 10.0 4.4 × 10−4 2 5 850 6.92 × 10−4
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typically exhibit the most limited damage and slowest detachment of
the slab.

The combinations of m and p associated with case-c ( =m 2, =p 3)
and case-d ( = =m p3, 5) behave similarly to case-b, because they are
formulated withm p, and hence have an upper bound in fineness (Eq.
(16)). The case-c and case-d models eventually produce a relatively
steady value of fineness and hence viscosity (Fig. 5, the middle and
right columns). The magnitude of damage in case-c and case-d models is
intermediate to case-a and case-b.

The results for linear cases with varying D are similar to those of
cases 1a-d, except the timescale on which the slab evolves reduces
dramatically with increasing D. We elaborate on the relationship be-
tween timescale and D in the following section. For now, the important
point is that case-a models evolve differently from case-b, -c, and -d
models, because = =m p 3 in case-a leads to runaway increase in fi-
neness. Between models with m p, the lesser the difference between
m and p, the more extensive the damage and more rapid the evolution
of the slab (Fig. 5).

3.3.2. Non-Newtonian rheology
Here we describe the effect of non-linear or stress-dependent visc-

osity. Case 4b differs from case 1b only in having =n 3.5 (i.e. non-
Newtonian rheology), and a larger viscous activation energy =E 300

kJ/mol (compare with 120 kJ/mol in case 1b). We use a larger viscous
activation energy for non-Newtonian models to be consistent with
geodynamic models of the Pacific upper mantle and lithospheric
seismic structure (van Hunen et al., 2005). Significantly higher viscous
activation energy increases viscosity in cold regions (i.e. the slab),
which is partially balanced by stress-induced weakening. The degree of
weakening is controlled by the value of the reference far-field transition
stress Tr (Eqs. (4), (5) and Appendix A). In cases 4a–d, Tr is set to
5 MPa, which allows for stress-induced weakening to reduce the slab
viscosity to as low as 25% of that in the Newtonian model, despite
higher activation energy. We constrain the viscosity below the litho-
sphere ( =z 0.9) in non-Newtonian models to be equal to or less than
the slab viscosity from Newtonian models.

Results for viscosity, stress, temperature and fineness for case 4b are

Fig. 4. Viscosity, stress, temperature and fineness (from top to bottom) are plotted at discrete times (a) 1.3, (b) 7.6, and (c) 11.7 tc for case 1b (D= 4.4 × 10–4, m= 2,
p =5, tc = 1.2 × 10−5). Stress inside the rectangles near the surface is averaged to determine the slab-decoupling timescale presented later. Time is renormalized by
the characteristic weakening timescale (refer to Fig. 5).
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plotted at discrete (nondimensional) times × ×1.2 10 , 3.4 104 4 and
×3.6 10

4 in Fig. 6a–c, respectively. Between ×3.4 10
4 and ×3.6 10

4,
the slab precipitously detaches from the lithosphere and falls into the
mantle. This is accompanied by rapid reduction of stress and viscosity
in the neck (Fig. 7). The stress field in the neck undergoes an order of
magnitude reduction (Fig. 6b and c), which is corroborated by the
isolated tracers. Non-Newtonian models reproduce the steady state fi-
neness for models with m p in good agreement with the prediction
from Eq. (16) (Fig. 7a).

Considering Fig. 7, the viscosity decreases by only one order of
magnitude over the first ×2 10

4 of the elapsed time, despite one order
of magnitude increase in fineness and cubic fineness-dependence (i.e.,
predicts three orders of magnitude decrease in viscosity). This de-
monstrates that the fineness-dependence of viscosity is damped by high
stress. Without stress-dependence of viscosity, viscosity would decrease
rapidly and then plateau following the fineness. Similarly, the stress
would decrease rapidly and then plateau following viscosity. Non-
Newtonian viscosity does not reflect the total increase in fineness until
the stress reduces dramatically as the slab detaches and falls into the

mantle (after = ×t 2 10
4).

The total elapsed time is ×3.6 10
4 for case 4b, compared with

×1.2 10
4 for case 1b. This demonstrates that even when viscosity in

the slab is constrained to be equal to or less than Newtonian models, the
addition of nonlinear weakening produces evolution less rapid com-
pared to purely linear weakening. In the limit where stress is large, the
viscosity becomes independent of fineness, and so the slab neck remains
relatively stronger despite significant fineness evolution.

Case 4e, with a smaller reference transition stress = 1Tr MPa (but
otherwise identical to case 4b), exhibits more extensive and more rapid
nonlinear weakening in the slab neck, compared with case 4b. Lower
initial viscosity increases the rate of deformation and detachment (e.g.,
slab detachment occurs at ×2.7 10

5 in Fig. 8a and b). Case 4f, with a
larger reference transition stress = 10Tr MPa (but otherwise identical
to case 4b), has a larger initial viscosity in the slab, and hence evolves
more slowly (slab detachment at ×6.9 10

4 in Fig. 8c and d). As the
reference transition stress is increased further, the stress-dependence of
viscosity is reduced, and the formulation approaches Newtonian
rheology. Newtonian rheology models with increased viscous activation

Fig. 5. Fineness (a–c); viscosity (d–f); and stress (g–i) for 50–150 of the most significantly weakened particles in case 1b (first column), case 1c (second column), and
case 1d (third column). The gray curve superposed on the fineness in (a–c) is the analytic upper bound solved by setting dA/dt= 0 (Eq. (16)). The triangles
superposed on viscosity (d–f), and stress (g–i) indicate the time at which the slope becomes minimal after an initial rapid reduction in viscosity and stress, re-
spectively (i.e. the characteristic weakening timescale). The circles superposed on stress (g–i) mark the time at which stress has reduced by a factor of 3 (i.e. the
decoupling timescale in Bercovici et al., 2015). The tracers plotted here are always located in the necking region. Time is renormalized by the characteristic
weakening timescale, which is defined by the time at which the slope of stress becomes minimal after the initial rapid reduction. Characteristic weakening timescale
tc = 1.2 × 10−5, 2.4 × 10−5, 7.8 × 10−6 for case 1b, 1c and 1d respectively.
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Fig. 6. Viscosity, stress, temperature and fineness (from top to bottom) at discrete nondimensional times (a) 1.2 × 10−4, (b) 3.4 × 10−4, (c) 3.6 × 10−4 for
nonlinear case 4b (σTr= 5 MPa, D= 4.4 × 10−4, m= 2, p= 5). Although only 0.2 × 10−4 or 5% of the run time elapses between (b) and (c), the slab evolves very
rapidly as it detaches from the surface.

Fig. 7. Fineness (a), viscosity (b), and stress (c) for 39 of the most significantly weakened particles in case 4b. All tracers plotted here are located in the necking
region. The dots on the time axis mark every 50th time step. The sharp drop in stress, viscosity and fineness at 3.4 × 10−4 corresponds to the slab descending rapidly
in the mantle after it has detached. The gray curves superposed on (a) are the steady state fineness (Eq. (16)).All times are nondimensional and not renormalized,
because a characteristic weakening timescale is not evident from the evolution of stress nor viscosity in the neck.
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energy evolve very slowly (e.g., t40 c for =E 216 kJ/mol) due to very
high initial viscosity in the slab and lithosphere.

We have computed nonlinear rheology cases ( =n 3.5) with
= 5Tr MPa, and different m and p as done for linear rheology cases

( =n 1) (Table 2). The trends in weakening are similar to what we ob-
serve in linear cases, where = =m p 3 produces runaway fineness, and
m p does not. However, we find that the stress and viscosity do not
approach a steady value after an initial phase of rapid reduction, de-
spite relatively steady fineness. Rather, the stress remains relatively
steady while the slab neck undergoes damage and gradual reduction of
viscosity, until the neck is weak enough for the slab to detach. Upon
detachment, the stress reduces dramatically, as does the viscosity as it
transitions from high-stress limit (fineness-independent) into the low
stress-limit (stress-independent). This allows the total increase of fine-
ness to be reflected in the viscosity.

3.4. Characteristic weakening timescale

We compare numerical results with the analytic prediction (Eq.

(21)) in the following. The characteristic weakening timescale measures
the time taken to weaken the neck sufficiently for a necking instability
to develop. It has important geophysical implications pertaining to slab
detachment and abrupt tectonics (e.g., Bercovici et al., 2015), and is
insightful to each rheology. We quantify this timescale as the time taken
for viscosity and stress in the neck to reach a relatively steady value.

We find the characteristic weakening timescale is inversely pro-
portional to D, follows a linear trend in log–log scale, and ranges from

× ×6.5 10 2.7 10
8 5 (Fig. 9). Characteristic weakening time is mostly

controlled by D, while the effect of m and p appears secondary. The
numerical viscosity- and stress-based characteristic weakening time-
scales are similar, and as an example are ×1.5 10

5 and ×1.2 10
5 ,

respectively, for case 1b (Fig. 5d and g). An order of magnitude var-
iation in D produces approximately one order magnitude change in
timescale. The timescales defined by numerical results of stress and
viscosity are consistent with that predicted by the analytic character-
istic weakening timescale. Non-Newtonian models do not as clearly
exhibit an initial phase of weakening like the Newtonian models, so we
will not include them in this analysis.

Fig. 8. Viscosity, stress, temperature and fineness (from top to bottom) at discrete nondimensional times (a) 0, and (b) 2.7 × 10−5 for nonlinear case 4e
(σTr= 1 MPa), and (c) 0, and (d) 6.9 × 10−4 for nonlinear case 4f (σTr= 10 MPa). For both cases plotted above, D= 4.4 × 10−4, m= 2, p= 5. The rapid evolution
of the slab in case 4e compared to case 4b is caused by a smaller reference transition stress, and increased nonlinear weakening.
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3.5. Slab decoupling and lithospheric stress response

As the slab neck is weakened by damage, the slab eventually de-
couples from the lithosphere. Following Bercovici et al. (2015), we can
define characteristic timescale for slab decoupling using stress reduc-
tion in the slab neck, similar to our characteristic timescale defined in
the preceding section. It would be interesting to examine whether the
lithospheric stress responds on the same timescale, given that litho-
spheric stress may be more directly responsible for surface tectonics
such as changes in plate motion. In the following, the timescale asso-
ciated with stress reduction by a factor of 3 in the neck (as in Bercovici
et al., 2015) is compared with the timescale associated with stress re-
duction by a factor of 2 in the lithosphere (this study).

The case-a models ( = =m p 3) experience gradual reduction in li-
thospheric stress for the majority of the model run, followed by a sharp
drop (Fig. 10a). In case 1a, while stress in the slab decreases by a factor
of 3 after t0.5 c, appreciable reduction of stress in the lithosphere does
not occur until t1.25 c. Cases 1c and 1d also exhibit significant lag of
stress reduction in the lithosphere relative to stress reduction in the
neck (Fig. 10c, d). For case 1b with =m 2 and =p 5, the decoupling
timescales defined by stress in the slab neck and lithosphere are about
the same at ∼11tc (Fig. 10b).

The decoupling timescale defined by stress in the surface litho-
sphere is inversely proportional to the damage parameter D, ranging
from ×9.6 10

8 to ×1.2 10
4 for the linear rheology models, and from

×2.9 10
4 to ×3.5 10

4 in nonlinear rheology (Fig. 11). Compared with
the timescale to reduce stress in the slab neck by a factor of 3 (i.e., the
timescale as in Bercovici et al., 2015), the decoupling timescale defined
by surface stress reduction is generally longer for linear rheology
(Fig. 11b), but these two decoupling timescales tend to agree with each
other for b-cases with = =m p2, 5, and for nonlinear rheology
(Fig. 11).

4. Discussion

Rheology that produces dynamic weakening plays an important role
in lithospheric deformation and dynamics. Evolution of viscosity due to
grain-damage allows localization of deformation, and provides a
simple, physical mechanism for rapid weakening. Relevant geodyna-
mical processes may include the decoupling of a subducted slab from
the overlying plate, subsequent reorientation of plate-driving forces,
abrupt tectonics (Bercovici et al., 2015), collapse of passive margins
(Mulyukova and Bercovici, 2017a), and weakening of the deep litho-
sphere with potential influence on the emergence of plate tectonics
(Bercovici and Ricard, 2005, 2012, 2013, 2014, 2016; Ricard and
Bercovici, 2009; Bercovici and Skemer, 2017; Mulyukova and

Bercovici, 2017b).
In this study, we investigate the timescale, extent, and spatial dis-

tribution of weakening in a subducted slab under the influence of the
slab buoyancy. When damage is incorporated with grainsize-dependent
viscosity, slabs may quickly detach from the surface by necking in-
stability in both Newtonian and non-Newtonian rheology. The rate and
extent of detachment is governed to first order by the damage para-
meter D. A large damage parameter produces rapid damage, great
contrasts in grain fineness and mantle viscosity, and localization of
deformation. The viscous activation energy and type of deformation
(Newtonian or non-Newtonian) also impose controls on how quickly
the slab evolves, where enhanced stress-induced weakening from non-
Newtonian rheology increases the rate of deformation, and larger ac-
tivation energy decreases the rate of deformation by increasing the
viscosity at a given temperature. The exponent m governs the fineness-
dependence of viscosity and rate of damage, while exponent p governs
the rate of healing. An important characteristic of the rheology is
whether =m p, in which case damage is unbounded, or m p, in
which case there is an upper bound or steady state in fineness.

In non-Newtonian rheology models, the viscous activation energy is
significantly higher. High viscosity is partially balanced by nonlinear
weakening to produce slab viscosity equal to or less than Newtonian
models. Due to higher viscous activation energy and the high-stress
limit of non-Newtonian rheology, in which viscosity becomes in-
dependent of fineness, evolution of the slab is slower in non-Newtonian
models compared to Newtonian models.

The timescale on which the slab neck reaches approximately steady
state in viscosity and stress has significant implications for the dy-
namics of geophysical systems involving slabs. We find the character-
istic weakening timescale tc, defined by the time at which time varia-
tions of viscosity and stress become minimal, is inversely proportional
to D. For the sake of comparison with geophysical observations, in this
section we rescale time to dimensional time using time scale of

= ×d / 7.1 102 4 Myrs in our model. Our results indicate that damage
is a rapid process compared to mantle convection and occurs on time-
scales ranging 0.005–1.9 Myrs (Fig. 9) for linear rheology, and thus is a
viable explanation of abrupt tectonic events.

We find that stress reduction in the lithosphere following slab de-
tachment typically occurs on a longer timescale compared to stress in
the slab neck, excluding = =m p2, 5, and nonlinear rheology. The
rescaled slab decoupling timescale defined using lithospheric stress at
the surface ranges from 0.007 to 8.6 Myrs for linear rheology with
= ×D 4.4 (10 10 )4 2 , and 20.7 to 25.0 Myrs for nonlinear rheology

with constant = ×D 4.4 10
4. This range overlaps with the timescales

associated with abrupt tectonic events, such as the bend in the
Emperor-Hawaiian seamount chain. Furthermore, since the grainsize-

Fig. 9. Nondimensional characteristic timescale based on viscosity (a) and stress (b) in Newtonian-rheology models. For cases with m= p= 3, the characteristic
weakening timescale defined by viscosity (a) is the analytic solution (Eq. (21)) using the average of stress for the critical tracers in the slab neck.
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dependent rheology produces slab decoupling on timescales 25Myrs,
our results support the hypothesis that rapid slab detachment may re-
sult from grain-damage, as proposed by Bercovici et al. (2015).

To compare with previous work, we note that Schmalholz (2011)
found that necking and slab detachment would occur only for nonlinear
(i.e. stress-dependent) viscosity. Andrews and Billen (2007), and Duretz

et al. (2012) also reported that slab detachment did not occur for linear
viscosity. In contrast, our study produces necking and slab detachment
for linear viscosity because of grainsize dependence. Our results are
consistent with Schmalholz (2011) in that increasingly nonlinear
rheology produces more rapid weakening and detachment. Duretz et al.
(2012) showed that necking or viscous thinning of the slab is the

Fig. 10. The average stress in the lithosphere directly overlying the slab for case 1a (m= p= 3) (a) and case 1b (m= 2, p= 5) (b), case 1c (m= 2, p=3) (c) and case
1d (m= 3, p= 5) (d). D= 4.4 × 10−4 for all. The circle marks the time at which the average lithospheric stress has reduced by a factor of 2 (i.e. the decoupling
timescale). The superposed patch shows the time over which stress in the neck reduces by a factor of 3 (i.e. the decoupling timescale in Bercovici et al., 2015).

Fig. 11. The slab decoupling timescale based on reduction of lithospheric stress by a factor of 2 for linear rheology (a), and the decoupling timescales as defined in
Bercovici et al., 2015 (b). Nonlinear results are plotted as open symbols. Notice that it typically takes longer for the stress to reduce by a factor of 2 in the lithosphere
than by a factor of 3 in the slab (except for m= 2, p=5, and nonlinear rheology models).
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dominant mechanism of slab detachment and is a rapid process on
geologic timescales for power law rheology (< 5 Myr). Our study
considers only viscous deformation in the form of high temperature
creep, and neglects brittle, semi-brittle, and low-temperature plasticity.
Due to the differences in rheology, we find rapid slab detachment
timescale consistent with Duretz et al. (2012) for some models, but
significantly longer for others (∼50 Myrs).

Our models with their simplifications and approximations also have
limitations. We consider only 2D geometry in this study, while the 3D
geometry of slabs may affect the detachment timescale as the necking
process evolves as a lateral tear along the slab (Crameri and Tackley,
2014). The healing and damaging parameters are only marginally
constrained and are expected to vary significantly. Our models only
explore a subset of model parameters. Our simplified model does not
account for interaction of the slab with the endothermic phase change
660 km depth in Earth’s mantle, which may provide additional upward
buoyancy and hinder detachment. We also do not consider the effect of
water content on damage, which is expected to enhance weakening.
Our models assume a simplified (e.g., vertical) slab geometry and in-
itially uniform grainsize. Future studies need to consider more realistic
situations. Finally, due to strong non-linearity in rheology, models with
higher numerical resolution show more localization of weakening and
more rapid damage. However, the effects are rather modest, and par-
ticularly, the overall dynamics of the necking process do not change.

5. Conclusions

In this study, we have formulated a dynamic model of slab evolution
with grainsize-dependent viscosity and grainsize evolution from da-
mage using a particle method. We have explored the characteristics of
convection and the evolution of viscosity in a subducted slab using 18
model formulations (Table 2). Our findings can be summarized as fol-
lows:

1) Grain damage can occur with no apparent bound on how small
grainsize can get for rheology with equal exponents ( = =m p 3).
This leads to very rapid weakening and the largest contrasts in grain
fineness and viscosity. The grainsize is limited, however, by an

upper bound that depends on stress, such that viscosity contrasts
and localization tend to be weaker for rheological models with
m p.

2) The characteristic weakening timescale defined by viscosity or stress
in the slab is sensitive to the damage parameter D and shows a
linear, inverse proportionality. The characteristic weakening time-
scale ranges from 0.005 to 1.9 Myrs for damage parameter D from

×4.4 10
4 to ×4.4 10

2 in linear rheology. This timescale describes
the time taken to sufficiently weaken the slab for a necking in-
stability to develop (i.e. for the slab to begin to fall in the mantle).

3) Stress reduction in the overlying lithosphere typically lags behind
stress reduction in the neck. The timescale defined by surface stress
reduction ranges from 0.007 to 8.5Myrs for linear rheology and da-
mage parameter D from ×4.4 10

4to ×4.4 10
2, and 20.7 to

25.0 Myrs for nonlinear rheology with constant = ×D 4.4 10
4. The

results overlap with geological observations of abrupt tectonic
events such as the bend in the Emperor-Hawaiian seamounts at
50 Ma, and rotation of the Pacific plate at 6Ma.

4) On the technical side of numerical modeling, we evaluate the de-
formational work on the finite element grid from solutions of the
momentum equation, and then use linear shape functions to project
it onto the particles to evolve the grainsize. This approach is the
most consistent with the assumption of a continuously smooth
medium.

We also find that the convergence of the mantle flow solution using
the non-Newtonian rheology is greatly improved by the implementation
of a Newton method for the viscosity iteration.
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Appendix A. . Non-dimensionalization of the governing equations

We begin by presenting all governing and rheological equations in dimensional form, followed by their nondimensionalization. The governing
equations are given by conservation of mass, momentum, and energy in the Boussinesq approximation and infinite Prandtl number limit

=u 0 (A1)

+ + +u uP ge[ ( )]T
z (A2)

+ =u

T

t
T

k

c
T ,

p

2

(A3)

where u is the velocity vector, P the pressure, η the viscosity, ρ the density, g the acceleration due to gravity, ez the unit vector in the vertical
direction, T the temperature, k the thermal conductivity, and cp the heat capacity.

Depending on deformation mechanism (i.e. diffusion and dislocation creep), the viscosity and strain rate may take different forms. When both
diffusion and dislocation creep mechanisms are present, a composite rheological formulation can be developed. The total strain rate is given by

= +e A( )
E
RT l

n
f

m
(A4)

where
l
and f are the pre-factors associated with dislocation creep and diffusion creep, respectively, A is the fineness or inverse grainsize (Bercovici

and Ricard, 2005), the exponent m is set to either 2 or 3 depending on the mode of diffusion creep, E the viscous activation energy, R the universal
gas constant, σ the square-root of the 2nd invariant of the stress tensor, and exponent n for dislocation creep is 3.5. Diffusion of grains along the grain
boundary (Coble creep) corresponds to =m 3, and diffusion through a grain (Nabarro-Herring creep) corresponds to =m 2. The effective viscosity
for the composite rheology can be derived from Eq. (A4) as, following (Podolefsky et al., 2004)

= +A e
1

1

f

m

T

n 1 1

E
RT

(A5)

where T is the transition stress. In the composite regime, the relative contribution from each of the two creep mechanisms is governed by the stress
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field and the transition stress. In Newtonian models, the deformation mechanism is purely diffusion creep, so = 0
l

in (A4), and viscosity in (A5) is
reduced to

= A e
1

f

m E
RT

(A6)

We use a larger viscous activation energy in non-Newtonian models compared to Newtonian (Table 1).
We define the transition stress T as the stress at which strain rates from diffusion and dislocation creep are equal (Hirth and Kohlstedt, 2003;

Podolefsky et al., 2004)

=e A ef T

E
RT

m
l T

n E
RT (A7)

solving for transition stress

= AT
f

l

m
n
1

1

(A8)

Note that T depends on grainsize. Where the stress is larger than the transition stress, dislocation creep is the dominant deformation mechanism,
and fineness-dependence of viscosity reduces with increasing stress. Where the stress is less than the transition stress, diffusion creep is the dominant
deformation mechanism, and stress dependence of viscosity reduces with reducing stress. Note this only applies for non-Newtonian rheology.

Viscosity evolves with changing grainsize, temperature, and stress. The evolution of fineness, equated to the inverse grainsize, is governed by

=

dA

dt

f
hAp

(A9)

following (Landuyt et al., 2008) where h is the healing parameter given by

=h h e ,
E

RT0

h

(A10)

and f is the damage partitioning function which can vary from zero to one, γ the free surface energy, Ψ the deformational work, the exponent p is
set to either 3 or 5, Eh the grain growth activation energy, and h0 the healing pre-factor. When pis set to 3, the model grain assemblage is mono-
mineralic, whereas when =p 5, the model grain assemblage is polymineralic (Bercovici and Ricard, 2012).

To nondimensionalize the governing equations we define nondimensional parameters =

T T

T

s , where =T T Tm s is the temperature dif-

ference across the mantle, = =P P, ,
r t

' 'r

r

and =t t t,r

' where =tr
d2 and r is the reference viscosity that is chosen to be the far-field background

viscosity (i.e., 1021 Pa s in Table 2). The dimensionless equations of mass, momentum and energy conservation follow from simply introducing these
parameters, and are given by Eqs. (1)–(3) in the main text, in which Ra is the Rayleigh number that governs the vigor of convection, given by

=Ra
g Td

r

3

(A11)

To nondimensionalize viscosity Eq. (A5), we define = ,
r

'
=s

T

T

s , =E R TE
', with reference temperature =T Tm or equivalently = 1, re-

ference fineness =A A Ar
', stress = 0 , and transition stress =T T0 ’, and the reference viscosity

r
is given as

= +A e 1 ,r f r
m r

Tr

n 1 1
E
RTm

(A12)

where r and Tr are reference far-field mantle stress and transition stress. In this study, r is chosen to be 0.44 MPa for all non-Newtonian models (to
be consistent with the average of the rescaled far-field background stress), and we choose Tr from 1MPa to 10 MPa which is significantly larger than

r. The dimensionless viscosity follows simply and is given by Eqs. (4) and (5) in the main text. Dimensionless viscosity far away from the slab is
always close to 1 (Fig. 1c and e). The only constraint we impose is the reference viscosity, = 10

r

21 Pa s, and it is evident from Eq. (A12) that we
cannot uniquely determine the reference fineness Ar due to trade-off with f and other parameters.

To non-dimensionalize the fineness evolution equation, we define =

t

'r

r
2

, and =h h h'm with reference healing parameter hm defined at = 1

(i.e. dimensionless ambient mantle temperature), to give Eqs. (6) and (7) in the main text, where D and H are dimensionless damaging and healing
parameters

=D
f

t A

r

r r (A13)

=H t h Ar m r
p 1 (A14)

The values of D and H are determined by scaling factors which we reference from the literature (i.e. Hirth and Kohlstedt, 2003): r =10
21 Pa s,

=f 10
1– =10 , 1,6

=t 71.3r Gyr, =A 100r m−1, and =h 10m
19. Damage parameter D is varied from ×4.4 10

4 to ×4.4 10
2, and healing para-

meter H is held at a constant value of ×2.3 10
5 for all models. For the sake of simplicity, we do not explore the effects of temperature- or fineness-

dependence of the damage partitioning coefficient, f .

Appendix B. Solution methods

Here, we discuss in detail the subtleties of evaluating the deformational work in convection calculations. The grid-specific quantities (e.g.,
temperature, strain rate, and stress) that enter the fineness evolution equation (i.e., Eq. (6)) are interpolated onto the particles to update the fineness
field. The interpolation of temperature is straightforward and is done using the linear shape functions of the finite elements. However, the fact that
different particles can have different fineness values means that there are sub-grid scale viscosity variations in our model. To what degree the sub-
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grid scale variations should be included in the evaluation of deformational work is a matter which requires some scrutiny.
The grid-scale viscosity and the strain rate obtained from solving the momentum equation can be used to estimate the grid-scale stress field,

according to the constitutive relation (Eq. (A4)). When projecting the strain rate (or stress) field from the grid onto the particles, the question arises
as to whether particles with different viscosities (due to the fineness variation) will experience different stress (or accommodate a different amount of
strain rate). This will determine the variation in the deformational work on the particle scale.

On the one hand, we can project the grid-scale variations in stress, strain rate, viscosity, and hence deformational work onto the sub-grid scale.
This corresponds to computing all quantities on the grid (i.e. solving the momentum equation) and projecting onto particle locations using linear
shape functions. The work will thus vary from one particle to next, but it will do so smoothly, as dictated by the element-wise continuous shape
functions. Note that this is the approach we use in the advection scheme when updating the positions of the particles.

On the other hand, we can allow for sub-grid scale variations in viscosity to dictate the deformational work. Assuming the particles see the stress
interpolated from the grid but accommodate the strain rate as dictated by their individual viscosities, is analogous to assuming that damage is
dictated by the weakest part of the material. Alternatively, if the strain rate is interpolated from the grid onto the particles, but the stress varies
according to the particle viscosity, then this is analogous to assuming that the damage is dictated by the strongest part of the material. Thus, the
evolution of viscosity will depend on whether we use the grid values of stress or strain rate for computing the deformational work rate at the particle
scale.

We run some test cases to illustrate how the different assumptions about the bulk materials properties are manifested in the solution. When the
stress is interpolated from the grid, damage is more extensive and more rapid compared to the linear-projection approach. When the strain rate is
interpolated from the grid, damage occurs at a slower rate and overall to lesser extent compared to the linear-projection approach. Since sub-grid
scale variations in viscosity, strain rate, and stress fields are not resolved on the finite element grid, it is most consistent with the continuum
assumptions (i.e., a continuously smooth medium) to only use grid-scale variations in the work term. In the same regard, it is not consistent with the
continuum approximation to use the individual particles viscosity when evaluating deformational work.

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pepi.2018.09.001.
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