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Abstract

All applications of ambient seismic noise, whether to study the source of the

noise or the medium of propagation (static or time variable), are based fun-

damentally on a single observational challenge. This challenge is to process

raw seismograms in a way that promotes the emergence of the signals of in-

terest while suppressing the signals of disinterest. Here we summarize meth-

ods designed to achieve this delicate task in both continental and oceanic

settings and review evidence that the observational challenge is met success-

fully.

5.1 Introduction

The purpose of this chapter is to discuss the problem of how to prepare

seismic recordings for ambient noise data processing, and to assess how well

cross-correlations of such records summarize information about the Earth.

Our focus will be on broad-band seismic data at relatively long periods (5 -

100 s) observed over relatively long distances (a few 10s of km to a few 1000s

of km). Such data, recorded on recent-generation broad-band seismic arrays

such as USArray, provide information about the Earth with lateral resolu-

tions on a regional scale (i.e., from a few 10s to a few 100s of km). Signals of

this nature derived from ambient noise are enriched in fundamental modes,

so that most information derived about the Earth relates to the structure of

the crust and uppermost mantle. Although our focus is fairly tight, ignoring

as it does problems that may be encountered in exploration seismology and

the extraction of body waves, which is discussed in Chapter 8 (Nakata and

Nishida, 2018), the issues we consider are universal. The problem we address
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is how to construct reliable information about the Earth from observations

that most of us would think of as noise.

Our approach is practical, heuristic, and non-rigorous. It is not histori-

cal and we do not attempt to provide a comprehensive summary of ambient

noise pre-and post-processing procedures that have developed over the some-

what more than decade long history of ambient noise seismology. Rather, we

aim to provide a discussion that researchers who are interested in pursuing

the subject may find useful as a starting point or as a guide to pursue their

own creative work in ambient noise seismology.

It is remarkable that seismologists can derive deterministic structural in-

formation from recordings of seismic noise. Snieder (2004) provides a lucid

and rigorous proof that the cross-correlation of seismograms recorded at a

pair of stations will yield the Green’s function between the stations, at least

in the idealized setting underlying the proof. The Green’s function is the

impulse response of the medium, and provides structural information about

the medium of transport between the stations.

The reader is referred to Chapter 4 (Fichtner and Tsai, 2018) for a more

comprehensive discussion of the theory behind the emergence of signals from

ambient noise. However, a significant aspect of the idealized setting of the

proof referred to in the previous paragraph is that the sources of ambient

noise are non-correlated and randomly and homogeneously distributed in

space and time. Observing conditions in the earth do not meet these con-

ditions; thus the best that any data processing procedure can achieve is a

plausible approximation to the Green’s function.

Figure 5.1 motivates a heuristic explanation why Green’s functions might

emerge approximately in practice from cross-correlations of ambient noise.

A hyperbola is defined as the set of points in a plane in which the difference

between the distances to two fixed points is a constant k. Figure 5.1 shows a

set of hyperbolas where the fixed points are a pair of seismic stations (the two

triangles in the figure). Each hyperbola is characterized by a single constant

k which differs from its nearest neighbors by ±π. Thus, the hyperbolas in

Figure 5.1 are a set of level curves for the constants k. The figure illustrates

that the level curves become increasingly closely spaced as they diverge from

the horizontal; i.e., from the inter-station direction. As a consequence, over

most of the plane two closely spaced seismic events will produce waves that

arrive at the two stations at different times (or phase, which is time divided

by period) unless they lie nearly exactly along one of the hyperbolas, and the

phase difference will depend strongly on the relative locations of the events. If

such events have similar amplitudes they will have very different expressions

in the seismograms recorded at the two stations, and they will therefore
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Figure 5.1 Examples of iso-phase hyperbolas (grey lines) in the plane with
foci at two stations (triangles) separated from nearest neighbors by ±π. A
phase speed of 3 km/s at 50 s period is used to compute these hyperbolas.
Only sources found on the same hyperbola will constructively interfere on
cross-correlations of signals recorded at the two stations. Sources on differ-
ent hyperbolas will destructively interfere. Sources found near or along the
“end-fire” hyperbolas are least likely to be affected by destructively inter-
fering sources, and are therefore most likely to appear on cross-correlations
of long time sequences of ambient noise. This figure is adapted from Fig. 16
of Lin et al. (2008).

destructively interfere in the cross-correlation between these seismograms.

There are two exceptions to the destructive interference described in the

previous paragraph, the first good and the second bad for our purposes.

(1) In the first case, events that are nearly aligned with the two stations

(in the so called “end-fire” direction) are more likely to arrive with similar

phases on the two recordings because the level curves are more separated

from one another. Such events will tend to interfere constructively on cross-

correlations. It is this constructive interference between the effects of events

nearly aligned with the stations in concert with the destructive interference

for events in other directions that results in the recovery of waves propagat-

ing between the two stations in the cross-correlation, as long as sufficient

numbers of events have taken place. As discussed in section 2, in this case

the cross-correlation will be related to the Green’s function between the pair

of stations as long as there are events near the end-fire direction and if the

duration of observation is long enough.

(2) The second case is a pernicious one, however, in which either an enor-

mous event (with a much larger amplitude than other interfering sources) has
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occurred or a series of smaller events occur persistently at a single location.

In this case the arrivals will not destructively interfere upon cross-correlation

between recordings from the two stations and an interfering signal will re-

main that is not related to the Green’s function between the stations. Ex-

amples of such events are the Gulf of Guinea microseism (e.g., Shapiro et al.,

2006), also referred to as the 26 s microseism, and the Kyushu microseism

(Zeng and Ni, 2010) that results from Aso Volcano, the effects of which have

been observed clearly in ambient noise correlations for stations in East Asia

(Zheng et al., 2011).

This chapter discusses observational techniques that have emerged to help

extract clear estimated (or empirical) Green’s functions (EGFs), while dis-

criminating against sources of noise such as earthquakes or persistent local-

ized events. Applications of the estimated Green’s functions are discussed in

Chapter 7 (Shapiro, 2018). An example of one such estimated Green’s func-

tion produced from a year of continuous recordings observed at broadband

stations HRV and ANMO is shown in Figure 5.2 separated into different fre-

quency bands. Records such as this are sought to form the basis for ambient

noise tomography.

There are intermediate circumstances between those that deliver clear es-

timated Green’s functions and those that generate clear artificial arrivals.

These are characterized by an azimuthally inhomogeneous source distribu-

tion, which is stronger in some directions than others. Many studies have

considered whether such situations, which are common in nature, will de-

liver reliable estimated Green’s functions and find that as long as there are

events in the end-fire direction, then a reliable estimated Green’s functions

will emerge eventually (e.g., Lin et al., 2008; Yang and Ritzwoller, 2008); it

is just a matter of observing long enough. But, how does an observer know

if enough time has elapsed so that a meaningful estimate of the Green’s

function has emerged? This is one of the principal practical concerns in am-

bient noise seismology. Another way to ask the same question is: has enough

signal emerged from the noise to be useful?

There is no definitive answer to these questions, but there are many rel-

evant indicators as discussed later in section 6. We mention now one line

of evidence that is particularly important, related to so-called precursory

noise. The time of arrival of a signal on a cross-correlation will be the dif-

ference in arrival times from recorded at the two stations. Events on the

perpendicular bisector of the line linking the two stations will produce ar-

rivals at the same time on the two stations, and thus will arrive at zero lag

time on the cross-correlation. In contrast, events in the end-fire configuration

will generate arrivals that are separated by the phase propagation time be-
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Figure 5.2 Example of a broad-band symmetric-component cross-
correlation of 12 months of ambient noise from stations ANMO (Albu-
querque, NM, USA) and HRV (Harvard, MA, USA). The broad-band sig-
nal is at bottom and successively longer period passbands are presented
from top to bottom in the figure, centered on the period shown at left in
each panel. Vertical solid lines indicate the signal window and the vertical
dashed lines the noise windows. SNR is defined as the peak amplitude in
the signal window divided by the amplitude in the trailing noise window
(indicated with the horizontal dashed line on each panel). SNR is labeled on
the right hand side of each panel. The symmetric-component is the average
of the cross-correlations at positive and negative lags, given by equation
(5.8). (This figure is taken from Fig. 11 of Bensen et al. (2007)).

tween the two stations. Thus, end-fire events, which constructively interfere

to produce the estimated Green’s functions, produce the latest arrivals on

the cross-correlation. All other events will produce signals that arrive sooner
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and will superpose in the cross-correlation to produce precursory noise. The

level of this precursory noise compared to the amplitude of the signal of

interest is a good indicator of the convergence of the method toward a reli-

able estimated Green’s function. Some researchers have used the observation

of precursors to locate locally persistent sources (e.g., Tian and Ritzwoller,

2015). We take up the issued of precursory noise again in section 6.

This chapter is structured as follows. In section 2 we present the notation

and terminology used throughout the chapter and discuss ambient noise

data processing in a generalized form. In the end, we seek observational

methods to yield broadband, low variance, and unbiased information about

the Earth. In addition, we seek methods that will speed convergence and thus

reduce observation time. With these goals in mind, sections 3 and 4 discuss

the practical and specific application of ambient noise data processing in a

continental setting for Rayleigh and Loves waves and section 5 presents a

discussion of the data processing in ocean bottom environments. Section 6

discusses what might be referred to as post-processing assessment: how do

we select some recordings to accept and others to reject (because not all

will reflect Earth structure accurately), how do we quantify uncertainties in

surface wave dispersion measurements and dispersion maps, and how do we

know if our results, in the end, are right? The chapter closes with section 7

in which we present a few examples of new methods that show promise to

improve the output from ambient noise data processing.

5.2 Idealized background

Let the vector u = (u, v, w) be ground motion recorded at an unspecified

location, such that u is the vertical component (Z) and v and w are the

two horizontal components (east, E, and north, N, respectively). Then let

ui(t) and uj(t) denote vertical component seismograms at stations i and

j separated by distance r, recorded on a finite time interval t ∈ [0, T ].

The cross-spectrum between these recordings (or the cross-correlation in

the frequency domain) is as follows:

γij(ω) ≡ ui(ω)u∗j (ω), (5.1)

where u(ω) is the Fourier Transform of u(t), ω is frequency, and ∗ denotes

the complex conjugate. The cross-correlation in the time domain is the in-

verse Fourier transform of γij(ω), denoted γij(τ), where τ here is the cross-

correlation lag-time.

It is often of practical interest (see section 3) to normalize the spectrum
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of ground motion in some way such that

ũ(ω) ≡ u(ω)

N(ω)
, (5.2)

where N(ω), usually a real-valued function, is the spectral normalization

function. We use ’∼’ to denote frequency normalization. In this case we end

up with the spectrally normalized cross-spectrum:

γ̃ij(ω) ≡ ũi(ω)ũ∗j (ω) =
ui(ω)u∗j (ω)

Ni(ω)Nj(ω)
. (5.3)

An example is N(ω) = |u(ω)|, where | · | denotes the modulus. With this

normalization, γ̃ij(ω) would be the complex coherency and γ̃(τ) would be

coherency in the time domain, the inverse Fourier transform of γ̃(ω).

Snieder (2004) and others have argued that under idealized conditions the

time derivative of the cross-correlation will be proportional to the Green’s

function between the two stations where the frequency dependent propor-

tionality constant will depend on the source spectrum of the ground motion.

Aki (1957) and others have argued that these conditions may be satisfied

approximately if the ensemble average of the cross-spectrum is taken,

Γij(ω) ≡< γij(ω) >, (5.4)

where < · > denotes the ensemble average. We use the upper case to repre-

sent ensemble averaging. In this case,

dΓij(τ)

dτ
∝
{
−Gij(τ) τ ≥ 0

Gji(−τ) τ < 0,
(5.5)

where Gij is the Green’s function between stations i and j, Gji is the re-

ciprocal Green’s function between stations j and i, and ∝ denotes propor-

tionality. This proportionality also holds for the ensemble average of the

frequency normalized cross-correlation Γ̃ij(τ).

Equation (5.5) illustrates the basis of ambient noise tomography, which

is, at least in this idealized case, that the cross-correlation may be used to

estimate the Green’s function between a pair of stations.

We have not discussed yet the meaning of the ensemble average < · >.

It is convenient to follow Aki (1957) and define the ensemble average as

an average over time or time intervals. Let uki (t) and ukj (t) be the vertical

components of ground motion measured at a pair of stations i and j on

a finite sequence of time intervals denoted by index k = 1, . . . ,K. The

ensemble average of the cross-correlation in the time domain, therefore, is
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as follows:

Γij(τ) =< γij(τ) >≈
∑
k

Wk(τ)γkij(τ), (5.6)

where the functions Wk(τ) compose a set of (possibly time-dependent) time

domain weights. Thus, the ensemble average can be approximated as the

weighted average of the cross-correlations taken over a discrete set of time

intervals. The process of ensemble averaging described by equation (5.6) is

commonly referred to as “stacking”. Stacked signals are sometimes called

“estimated Green’s functions” or EGFs, which is somewhat confusing be-

cause it is their time derivative that is related to the Green’s functions. We

note that signals on a cross-correlation and the time derivative of the cross-

correlation will have the same group velocity, which is one of the reasons for

calling the cross-correlation the EGF. However, this terminology is sloppy

because the phase velocities will differ.

Time τ in equation (5.6) is the cross-correlation lag-time, which can be

positive or negative. It is often useful to separate the cross-correlation at

positive and negative lag times as follows:

Γ+
ij(τ) = Γij(τ) and Γ−ij(τ) = Γij(−τ), τ ≥ 0. (5.7)

A related concept is the so-called “symmetric component” of the cross-

correlation, which is defined as follows:

Γsymij (τ) =
1

2

(
Γ+
ij(τ) + Γ−ij(−τ)

)
, τ ≥ 0. (5.8)

This is simply the average of the cross-correlation reflected symmetrically

about lag-time τ = 0. With this definition, equation (5.5) can be rewritten

as follows:

dΓsymij (τ)

dτ
∝ −Gij(τ), τ ≥ 0. (5.9)

Equations similar to (5.4) - (5.9) also hold for the ensemble average of the

frequency normalized cross-correlation, Γ̃ij(τ), and its symmetric compo-

nent, Γ̃symij (τ).

5.3 Practical Implementation: Continental Rayleigh Waves

In section 2 we noted that if certain “idealized conditions” are manifest,

then the ensemble average of the cross-correlation of ambient ground mo-

tion recorded at two observing stations may be proportional to the Green’s
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function between these stations. Such a function is sometimes referred to as

an “estimated Green’s function”. Such idealized conditions include the az-

imuthal homogeneity of the ambient seismic wave field and the equipartition

of energy amongst the normal modes of the medium. These conditions do not

hold in the real Earth in essentially all applications. At the length scales and

frequency bands of consideration in this chapter, surface waves dominate the

cross-correlations; thus modal equipartition is unsatisfied. In addition, the

ambient noise that propagates over long distances typically originates in the

oceans and is excited at certain azimuths more strongly than others. Other

strong isolated noise sources (e.g., earthquakes and certain other persistent

sources) further deviate reality from ideality.

The practical challenge that faces the observational seismologist is to at-

tempt to extract meaningful approximate or estimated Green’s functions

from cross-correlations of ambient noise without the theoretical guarantee

that such attempts will be successful. As mentioned in the Introduction, the

aim is to minimize bias, to estimate uncertainty, and to maximize the band-

width of observation. To do this, there are several variables referred to in

section 2 that can be tuned and much of the practical work in ambient noise

methodology has been dedicated to the systematic exploration of this pa-

rameter space. These variables include the tempo or the cadence rate of the

cross-correlations in the time domain (T ), the time domain weights (W (t)),

and the frequency domain normalization (N(ω)). A great many papers have

been written by researchers who have varied these (and other) quantities

in the attempt to extract reliable Green’s functions for the medium of their

study. We will make no attempt to summarize these studies, but will present

a general discussion of the issues involved in the choice of these variables.

Practically speaking again, the key issues that interest most researchers,

especially for crustal imaging, are to expand the frequency band of observa-

tion outside the microseism band (8-20 sec), to attempt to homogenize the

azimuthal content of ambient noise as much as possible, and to identify and

eliminate any instrumental irregularities. In terms of optimizing azimuthal

homogeneity, a major focus is the attempt to minimize the effect of earth-

quakes as well as persistent localized sources of noise, both of which may be

azimuthally limited.

One of the key indicators of success is that precursory signals, signals

that arrive prior to the signal of interest, which is typically the fundamental

mode surface wave, are small in comparison to the signal of interest.
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5.3.1 The Cadence Rate of Cross-Correlation

In most of the examples presented here, the length of the time series for

cross-correlation, T , is one-day. After selecting one day of data, we typically

first remove the instrument response, remove the mean and trend, and band-

pass filter.

The choice of a one-day data length is ad-hoc and a shorter time series

length is advocated by some researchers (e.g., Prieto et al., 2011). One ad-

vantage of a faster cadence rate for cross-correlation relates to the treatment

of earthquake sources. With a time series length of 1-hour, for example, if

an earthquake or short term instrumental irregularity is identified, the 1-

hour time period can simply be discarded. One is less likely to be willing

to sacrifice a whole day to eliminate such effects, so with a slower rate to

cross-correlation the tendency is to introduce some sort of time-dependent

weights to continuously down weight the time periods where such effects

are identified, as described in the following paragraph. The downside to

introducing such weights, however, is the loss of meaningful amplitude in-

formation. Thus, researchers who desire reliable amplitude information may

be interested in increasing the rate of cross-correlation and applying a bi-

nary time domain weighting scheme: 0 for time periods where earthquakes

or instrumental irregularities are identified and 1 for other time periods.

5.3.2 Time Domain Weighting

Most practitioners of ambient noise seismology employ a more detailed time

domain weighting scheme than the binary choice mentioned in section 3.1.

Some of these alternatives are designed to homogenize the ambient noise

signals in azimuth by down-weighting azimuthally limited signals that are

either exceptionally strong (e.g., earthquakes) or are persistent over time

(e.g., 26 sec microseism, Kyushu microseism). Figure 5.3 presents three ex-

ample alternatives for the time domain weights, W (t): no weights, one-bit

normalization, and running absolute mean weights.

The running absolute mean time-domain weighting scheme is defined as

follows:

W (tn) =
1

N + 1

n+N/2∑
j=n−N/2

|u(tj)|, (5.10)

where time is presented on a discrete grid. Thus, at time grid point tj , the

weight is the absolute mean of the seismogram in a time window of length

N spanning the time point. Typically, N is chosen to be some multiple of
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2005-10-08, Pakistan, Mw=7.6
Raw data

One-bit

Running Avg

(a)

(b)

(c)

Figure 5.3 Waveforms displaying three different examples of time-domain
normalization, W (t), band-passed between 20 and 100 s period to clarify
the contamination by the earthquake signal. Data are from station ANMO.
(a) Raw seismogram showing about 6200 seconds of data around the earth-
quake (Mw = 7.6, Pakistan region). (b) One-bit normalized waveform in
which the signal is set to ±1 depending on the sign of the original wave-
form. (c) Running absolute mean normalization in which the waveform is
normalized by a running average of its absolute value.

the maximum period in the band-pass filter applied to the data. To ensure

that the longer periods are not filtered out, N should be chosen to be at

least the length of the maximum period. Note that if N = 0, the approach

is equivalent to one-bit normalization, in which signal amplitudes become

±. One down-side of the method is that it does not surgically remove data

spikes, unlike one-bit normalization, but spreads them out in time. This

weighting scheme is applied before cross-correlation.

Figures 5.4a-c show the effect of applying these three weighting schemes

on cross-correlations stacked over a year of ambient noise data acquired at

stations ANMO and HRV. The added effect of frequency domain weighting,

which is discussed in section 3.3, is shown in Figures 5.4d-f.

Figure 5.4a illustrates the motivation for applying time-domain weights.

The near zero lag-time response illustrates that the recovered signals are not

homogeneously distributed in azimuth, but are precursory noise, presumably

from earthquakes in this case. The relative arrival time between the artifact

and the real signal provides information about the azimuth of the interfering
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(a)

(b)

(c)

(d)

(e)

(f)

Frequency weighting Time weighting Precursory Noise Signal Trailing Noise
No 

Yes

Yes

Yes No 

No 

No 

No 

One-bit

One-bit

Running Avg

Running Avg

Figure 5.4 Twelve-month cross-correlation between data from the station
pair ANMO-HRV (as in Fig. 5.2) for various frequency and time-domain
normalizations, band-passed between 20 and 100 s period. Panels in (a)-(f)
are labeled with the types of normalization applied: (a) no time or frequency
domain normalization, (b) one-bit time domain normalization but no fre-
quency domain normalization, (c) running absolute average time domain
normalization but no frequency domain normalization, (d) no time domain
normalization but frequency domain normalization is applied, (e) one-bit
time domain normalization with frequency normalization, and (f) running
absolute average time domain normalization with frequency normalization.
Signal and precursory and trailing noise windows are indicated with shad-
ing. Precursory and trailing SNR for each of these cases is presented in
Table 1, whose rows are ordered corresponding to (a)-(f).

source relative to the inter-station path. The near zero lag-time for the

cross-correlation in Figure 5.4a reveals that the source of that signal lies

predominantly in an azimuthal band nearly perpendicular to the line linking

these stations.

Weighting schemes (b) one-bit normalization, and (c) running absolute

average normalization, from Figure 5.3 produce correlations that reveal more

realistic Rayleigh wave signals at both positive and negative correlation lags.

The one-bit normalization scheme is not only simple (Fig. 5.3b, but as shown

in Fig. 5.4b) it is remarkably effective. Table 1 presents signal-to-noise ratios

(SNR) computed in two period pands for the recordings in Figure 5.4a-c.

Signal is the maximum amplitude in the time domain in the signal window

(identified in Fig. 5.4b on the positive lag in this case), which is filtered into

the bands between 10-20 s and 20-100 s period in the table. Noise is the root
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mean square (RMS) in the time domain measured either in the precursory

or trailing window. In the absence of frequency weights, the signal to noise

ratio is largest for the running absolute mean normalization, but the one-bit

normalization method also preforms well.

As discussed in section 4, in extracting Love waves we seek to apply the

same time domain normalization to both horizontal components. The one-bit

filter is so intimately related to each component that defining a single filter

to apply to both components is impractical. In addition, as we discuss below

the one-bit normalization methods tends not to perform well with spectral

weighting designed to increase the band-width of the cross-correlations. For

these reasons we tend to prefer the running absolute mean weighting scheme

(c) of Figure 5.3, irrespective of the simplicity of one-bit normalization.

Results shown in the remainder of this chapter are based on running absolute

mean time-domain weighting scheme unless explicitly noted otherwise.

5.3.3 Frequency Domain Weighting

Frequency domain weighting is applied for two main reasons: to broaden the

bandwidth of the estimated Green’s functions and to diminish the effect of

band-limited spatially localized sources such at the 26 s microseism (e.g.,

Shapiro et al., 2006) or the Kyushu microseism (e.g., Zeng and Ni, 2010).

Like time domain normalization, it is applied to seismic records prior to

the cross-correlation. The effect on cross-correlations of applying frequency

domain normalization is exemplified in Figures 5.4d-f.

Ambient noise is not spectrally white; that is, its spectrum is not flat.

Rather, in the frequency band of regional to global scale tomography (e.g.,

Table 5.1 SNR using precursory (pre) and trailing (trail) noise for Figure

5.4 for different time and frequency domain weighting schemes in two

period bands. RA stands for the running average.

Normalization 10–20 sec 20–100 sec

Freq Time Amax/RMSpre Amax/RMStrail Amax/RMSpre Amax/RMStrail

No No 1.478 6.291 0.650 8.074
No one-bit 12.273 14.928 8.189 10.586
No RA 14.104 17.993 9.481 12.169
Yes No 13.446 18.916 8.588 22.982
Yes one-bit 10.555 10.854 6.323 7.319
Yes RA 16.626 20.217 9.274 14.032
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Figure 5.5 (a) Raw and (b) spectrally normalized amplitude spectra for
station HRV from July 5, 2004. The shaded box in (a) shows the 26 s Gulf
of Guinea microseism. The tapering at the ends reflects the 7-150 s period
bandpass filter. This figure is taken from Fig. 7 of Bensen et al. (2007).

5 - 200 s period), it is peaked near the primary (∼15 s period) and secondary

(∼7.5 s period) microseisms and then rises again at periods above 50 s to

form Earth “hum” (see Chapter 1 (McNamara and Boaz, 2018)). Figure

5.5a shows an example spectrum for one summer day of vertical component

data from station HRV, which illustrates the two microseismic humps and

the rise of the noise level at low frequencies. In addition, isolated peaks are

also sometimes apparent in ambient noise, as the grey shaded box in Figure

5.5a illustrates around the 26 s microseism. Because the 26 s microseism

propagates coherently over long distances, it appears even more strongly on

cross-correlations between distant stations, as illustrated by Figures 5.6ab.

Similarly, the dual-band nature of the microseismic component of ambient

noise is also accentuated by cross-correlation as Figures 5.7ac illustrates.

One means of frequency domain weighting is spectral whitening, which

flattens the observed spectrum in some way. Whitening acts to broaden

the band width of ambient noise and also reduces the impact of spatially

isolated persistent noise sources. Whitening can take several forms. Some
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Figure 5.6 Illustration of the effect of the 26 s microseism on cross-
correlations of ambient noise and its removal by spectral whitening. (a)
Cross-correlation between 12 months of data from stations ANMO and
CCM (Cathedral Cave, MO, USA). The broad monochromatic cigar-
shaped arrival is the effect of the 26 s microseism. (b) Amplitude spectrum
of the cross-correlation in (a) showing the peak near 26 s period. (c-d)
Similar to (a) and (b), but for data that were spatially whitened prior to
cross-correlation, such that the effect of the 26 s microseism has been largely
eliminated. (e-f) Similar to (c) and (d), but the data were notch-filtered
around 26 s period prior to cross-correlation. The notch filter delivers little
improvement in eliminating the 26 s microseism signal at the expense of
losing dispersion information in the period band of the notch filter. This
figure is taken from Fig. 8 of Bensen et al. (2007).

researchers advocate for dividing the observed spectrum by its modulus in

some finite band, so that N(ω) = |u(ω)| in that band. This results in an

absolutely flat spectrum and the construction of the coherence after cross-

correlation, as discussed in section 2. One of several other alternatives is to

normalize by a smoothed version of the amplitude spectrum. In this case,

N(ω) = S(ω) ? |u(ω)|, where S(ω) is the smoothing filter and ? represents

convolution. An example showing the effect of this operation is presented in

Figure 5.5b. Example results of such spectral smoothing on cross-correlations

are presented in Figures 5.4, 5.5, and 5.7. A whitened spectrum typically

does not remain white after cross-correlation, presumably because the geo-

graphical distribution of microseismic sources is more favorable to recovering

some signals than others. However, as illustrated in Figures 5.7bd the re-

sult is broader band and more continuous than without spectral whitening

(Fig. 5.7ac), and is particularly effective at improving the quality of signals

at frequencies lower than the microseismic band. Whitening is particularly

successful at eliminating the effect of the 26 sec microseism as Figures 5.6c-f
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Figure 5.7 Comparison of cross-correlations and their amplitude spectra
without (a, c) and with (b,d) spectral whitening, computed for one month
of data (April, 2004) using stations CCM and SSPA (Standing Stone, PA,
USA). Primary and secondary microseisms are more dominant without
spectral whitening (c) and low frequencies are accentuated with spectral
whitening (d). This figure is taken from Fig. 9 of Bensen et al. (2007).

shows. The application of a notch filter around the 26 s microseism provides

little improvement over spectral whitening without the notch.

Spectral whitening appears to be less successful at removing some local

persistent noise sources, such as the Kyushu signal generated from Aso vol-

cano, from cross-correlations between stations in China or locally isolated

wave-wave interactions. Zheng et al. (2011) found that they needed to use

the opposite correlation time lag from the direction to Aso volcano. Tian

and Ritzwoller (2017) identified persistent signals in their cross-correlations

between OBS stations that they argued were related to local persistent mi-

croseismic sources in shallow waters of the Juan de Fuca plate.

Figures 5.4d-f illustrate how the application of frequency weights brings

out the longer periods, which arrive earlier than the shorter periods in the

Rayleigh wave train. Table 1 quantifies this effect. Two things are note-

worthy. First, one-bit normalization does not work well in conjunction with

frequency domain weights, and cross-correlations tend to be more band lim-

ited than when running absolute mean normalization is applied. Second, the

highest SNR at long periods actually results without time domain weighting,

which is an indication that the length of the time window we used to mea-

sure the absolute mean (N in eqn. 5.10) was probably too short to optimize

results at the longer periods.
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Figure 5.8 Example cross-correlation results with different total time series
lengths (labeled on each panel) and in different pass bands: (a) 5 - 40 s
period and (b) 40 - 100 s period. Both positive and negative correlation
lags are shown. Data are from the station pair ANMO and DWPF (Disney
Wilderness Preserve, FL, USA). This figure is adapted from Fig. 10 of
Bensen et al. (2007).

Results shown here use smoothed spectral whitening unless explicitly in-

dicated otherwise. Shen et al. (2012) present a revised method of spectral

normalization in which spectral whitening is performed on shorter time win-

dows along with time-domain normalization that they argue further extends

the spectral band of observation to longer periods.

5.3.4 Cross-Correlation and Stacking

After the data have been prepared for each day (or for a shorter or longer

duration T ), including spectral and temporal normalization if desired, we

cross-correlate and stack over time as shown in equation (5.6). Example

results for different total time series lengths are shown in Figure 5.8. The

SNR typically grows with stacking length. We define the SNR as the peak

amplitude in the signal window divided by the RMS amplitude in the noise

window, as illustrated in Figure 5.4. Typically, signal to trailing noise grows

approximately as the square root of the time series length. This is because

signal amplitude tends to grow approximately linearly with time and trail-

ing noise grows approximately as the square root of time as shown by Lin

et al. (2011). There can be deviations from the square root of time rule that

depend on time variations in the strength of ambient noise, but it is a useful

rule-of-thumb. Bensen et al. (2007) reported a deviation from the square
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root of time rule, but much of this was related to how they measured time

series length.

The SNR as we define it in the previous paragraph is a useful indicator

of data quality and is used regularly as an automated data selection metric,

as discussed in section 6. However, because precursory noise is indicative of

incomplete destructive inference for off-inter-station axis events, the ratio of

peak signal to the RMS of precursory noise level may be a better metric to

indicate the extent of convergence of the algorithm.

5.3.5 Measurement of Surface Wave Dispersion

After the daily cross-correlations have been computed and stacked, group

and phase speeds can be measured as functions of the period on the result-

ing waveform, s(t), using a variety of different time domain and frequency

domain methods. Here we describe a time domain method, which is tradi-

tional frequency-time analysis (e.g., Levshin and Ritzwoller, 2001). Other

researchers prefer frequency domain methods (e.g., Ekström et al., 2009).

Roughly following the terminology and notation of Bracewell (1978), the

Fourier transform of s(t) is defined with a positive exponent as:

S(ω) =

∫ ∞
−∞

s(t) exp(iωt)dt. (5.11)

We obtain group and phase time measurements by considering the “analytic

signal”, which is defined in the frequency domain as

Sa(ω) = S(ω) (1 + sgn(ω)) , (5.12)

where “sgn” is the sign function The inverse Fourier transform of equation

(5.12) in the time domain is the analytic time series

sa(t) = s(t) + ih(t) = A(t) exp(iφ(t)), (5.13)

where h(t) is the Hilbert transform of s(t) and the positive sign in front of

the h(t) is chosen to be consistent with the positive exponent in the Fourier

transform, equation (5.11). The frequency-time function is constructed by

applying to the analytic time series a set of narrow bandpass Gaussian filters

with center frequencies ω0:

Sa(ω, ω0) = S(ω) (1 + sgn(ω))G(ω − ω0), (5.14)

where

G(ω − ω0) = exp

(
−α

(
ω − ω0

ω0

)2
)
, (5.15)
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where α is a tunable parameter that defines the complementary resolutions

in the time and frequency domains and is commonly made range dependent

(e.g., Levshin et al., 1989).

Inverse Fourier Transforming each band-passed function Sa(ω, ω0) back

to the time domain yields the 2D envelope function, A(t, ω0), and phase

function, φ(t, ω0). Group speed is measured from A(t, ω0) and phase speed

from φ(t, ω0). A(t, ω0) is sometimes called the “frequency-time analysis” or

“FTAN” diagram, an example of which is shown later in the chapter. The

group travel time, tg, is measured using the peak of the envelope function

at each center frequency such that group velocity U(ω) = r/tg, where r is

the inter-station distance. If the group speed changes rapidly with center

frequency, Bracewell suggests that the center frequency be replaced by the

so-called “instantaneous frequency”, ω, at tg: ω = [∂φ(t, ω0)/∂t]t=tg .

For instantaneous frequency ω, the phase of the cross-correlation function

observed at time t can be expressed as follows:

φ(t, ω) = kr − ωt+
π

2
− π

4
+ n · 2π, (5.16)

where n is an integer. The negative sign in front of the ωt is chosen to be

consistent with choice of the positive exponent in the Fourier transform,

equation (5.11). With this definition, phase decreases with an increase in

time. In equation (5.16), k is the wavenumber, π/2 is the phase shift from

the negative time derivative relating the stacked cross-correlation with the

Green’s function (eqn. (5.5)), −π/4 is the asymptotic remnant of the Bessel

function under the far-field approximation (Snieder, 2004), and n · 2π is the

intrinsic phase ambiguity of phase measurements. The π/2 phase shift can

equivalently be thought of as accounting for the phase shift between the

applied force and the displacement response of the system.

From equation (5.16), the phase velocity c at instantaneous frequency ω

when measured on the cross-correlation function is given by

c =
ω

k
=

rω

φ(ω, tg) + ωtg − π/4− n · 2π
(5.17)

and the phase time is r/c and n is an unknown. n is determined, essentially,

by using reference dispersion curves and iterating. Its determination is dis-

cussed at length by Lin et al. (2008). We only note that n is more easily

resolved at longer periods and once it is known for a station-pair at any

frequency it is known for all frequencies.

Figure 5.9 presents a few examples of Rayleigh wave phase and group

speed dispersion curves measured between a station in New Mexico and a set
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Figure 5.9 Group and phase speed measurements obtained from year-long
correlations between station ANMO and 10 stations in southern California.
(a) The cluster of 10 paths. (b) Measurements are shown with solid lines
and the prediction from the global 3D model of Shapiro and Ritzwoller
(2002) is shown with the dashed lines. This figure is modified from Fig. 16
of Bensen et al. (2007).

of closely located stations in Southern California. It illustrates an important

point. Phase speed is typically determined more reliably than group speed.

Researchers often apply an inter-station distance criterion such that dis-

persion measurements are discarded unless the inter-station spacing is greater
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than two or perhaps more wavelengths. One reason for this is that time do-

main dispersion measurements reflected in equations (5.16) and (5.17) are

based on a far-field approximation, and the far-field is typically defined as

setting on after two or more wavelengths. For this reason, frequency domain

dispersion measurements may be preferable (e.g., Ekström et al., 2009) for

short inter-station distances. Luo et al. (2015) present evidence, however,

that time domain methods are reliable at least down to an inter-station

spacing of one wavelength. A more compelling reason to apply a multiple

wavelength selection criterion is that at longer inter-station distances, signals

of interest become more separated from precursory noise and the interfer-

ence from precursory noise lessens appreciably. This is true for both the time

or frequency domain measurements of phase speed.

5.3.6 Closing Remarks

The methods presented here are devised to recover meaningful and reliable

surface wave dispersion information. Optimal methods probably depend on

the nature, time period, and location of the experiment, and the reader is

encouraged to be creative and try their own ideas. It should be remembered,

however, that both the time-domain normalization and frequency whiten-

ing methods presented here, and presumably most others, are non-linear.

This means that the order of application of the time-domain and frequency

domain filters matters.

5.4 Practical Implementation: Continental Love Waves

In early research, ambient noise tomography was applied predominantly to

vertical component seismic records to recover fundamental mode Rayleigh

waves. This was partially because the generation of Love waves in ambient

noise was (and remains) more poorly understood than the generation of

Rayleigh waves (see Chapter 3 (Ardhuin et al., 2018)). Thus, it was not

clear initially if ambient noise cross-correlations would recover Love waves,

and less attention was paid to horizontal components. Nevertheless, it is now

understood that Love waves are well represented in ambient noise and they

provide important information about both crustal and uppermost mantle

anisotropy through a growing number of studies (e.g., Moschetti et al., 2010;

Lin et al., 2011; Xie et al., 2013, 2017).

There are three principal differences in processing ambient noise data for

Love waves compared to Rayleigh waves. (1) First, to retain meaningful geo-
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Figure 5.10 Normalized cross-correlations observed between two USArray
stations, 116A (Elroy, Arizona) and R06C (Coleville, CA). The grey boxes
indicate a group speed window between 2 km/s and 5 km/s. Vertical, radial,
and transverse are indicated with Z, R, and T, respectively. Results are
band-pass filtered between 10 and 25 s period. This figure is taken from
Fig. 3 of Lin et al. (2008).

metrical information upon rotation transverse to the inter-station direction,

the East and North component records for each station must be normal-

ized identically (in both time and frequency) prior to cross-correlation. This

can be done in a variety of ways, but Lin et al. (2008) suggest normal-

izing by the maximum of the values from the two components (time do-

main weight, frequency domain amplitude at each frequency). (2) Second,

cross-correlations are computed between all components. Given the three-

components of the seismograms at two stations (Z - vertical, E - East, N -

North), nine cross-correlations can be performed: ZZ, EE, NN, EN, NE, ZN,

NZ, ZE, EZ, where the first letter represents the component of the first sta-

tion and the second letter the component of the second station. (3) Finally,

the cross-correlations are rotated into the Radial (R) and Transverse (T)

components, each of which point in the same direction at both stations. Ro-

tating after cross-correlation is computationally more efficient that rotating
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before cross-correlation. The resulting four horizontal cross-correlations are

TT, RR, TR, and RT, which are computed by rotating the four components

EE, EN, NN, and NE.

An example of cross-correlations for several rotated components is pre-

sented in Figure 5.10. Rayleigh waves are observed at both positive and neg-

ative lags on the ZZ and RR components. Love waves, which are faster than

Rayleigh waves in this period band, appear on the TT component. If Love

and Rayleigh waves are confined predominantly to the T and R components,

respectively, the RT and TR components will not show coherent arrivals, as

exemplified here. The relative amplitudes for Rayleigh and Love waves on

the two correlation lags differ, such that Rayleigh waves are stronger on

the positive lag and Love waves on the negative lag, which means that the

azimuthal content of Rayleigh and Love waves differ. Contrary to initial ex-

pectations, Love wave amplitudes on the TT components are often higher

than Rayleigh wave amplitudes on either the ZZ or RR components. Love

waves tend to be narrower band than Rayleigh waves, however, and Love

wave dispersion measurements commonly do not extend to as long of periods

as Rayleigh waves. This may reflect a narrower bandwidth of excitation for

Love waves, but the bandwidth of Love wave dispersion measurements on

TT components is similar to Rayleigh waves on RR components; thus the

relative lack of longer period Love wave dispersion measurements probably

results mostly from the higher noise levels on horizontal components.

5.5 Practical Implementation: Ocean Bottom Rayleigh
Waves

The primary assumption that underlies ambient noise tomography is that

seismic waves generated by noise sources propagate coherently between the

pairs of stations from which recordings are cross-correlated. Highly localized

seismic waves that are generated near one station but do not propagate to the

second station will corrupt ambient noise cross-correlations and compromise

the effectiveness of ambient noise tomography. Such local noise sources are

particularly strong in ocean bottom environments and are reflected in higher

ambient noise levels, particularly on horizontal components of ocean bottom

seismometers (OBS). The data processing procedures discussed in sections 3

and 4 have been developed for application to land-based stations and are not

calibrated for ocean-bottom environments. Nevertheless, several researchers

have used data processing schemes similar to these to produce the first

studies of ambient noise tomography using OBSs to image crustal and mantle
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Figure 5.11 (a) Example 6-month vertical component cross-correlation for
deep-water stations J29A and J47A near the Juan de Fuca Ridge recorded
as part of the Cascadia Initiative. (b) Frequency-time analysis (FTAN)
diagram showing Rayleigh wave dispersion from the symmetric component
in (a): red dots are group speed and white dots are phase speed. The
background color is the envelope amplitude, A(t, ω), discussed in section
3.5. This figure is adapted from Fig. 1 of Tian et al. (2013).

structures (e.g., Harmon et al., 2007; Gao and Shen, 2015; Tian et al., 2013;

Yao et al., 2011) and to determine the directional dependence of ambient

noise (e.g., Tian and Ritzwoller, 2015).

An example cross-correlation and associated FTAN diagram are presented

in Figure 5.11 for two deep water stations near the Juan de Fuca Ridge.

Useful cross-correlations based on OBS data using the land-based data pro-

cessing procedures described above result only between the relatively quiet

deep water stations or between deep water and land stations. Such record-

ings are typically narrow band, extending from less than about 5 s period

up to about 20 s, although longer periods can be recovered if one of the sta-

tions is on land. Love waves are much more difficult to recover. Local noise

levels are high at stations in all but the deepest water, for example near the

Juan de Fuca Ridge in the Cascadia Initiative experiment, and make even

the vertical components of these stations difficult to use in ambient noise

tomography.

As seen in Figure 5.11, Rayleigh waves observed on OBSs recovered from

ambient noise bifurcate into slow ocean propagating waves (< 8 s period) and

fast solid earth propagating waves (>10 s period). It is the latter that provide

information about the solid earth. We would like data processing methods

targeting ocean bottom environments to help extend the observations to

longer periods in order to improve constraints on mantle structures. We
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would also like to make observations in shallower water more useful for

ambient noise tomography.

The nature of local noise on ocean bottom seismic recordings has been well

studied (e.g., Webb, 1988; Duennebier and Sutton, 1995), and two types of

noise are considered most important in degrading local conditions: tilt noise

and compliance noise. Tilt noise is produced by seafloor currents rocking un-

stably situated seismometers, and is most significant where bottom currents

are strongest. Compliance noise is produced by pressure variations induced

by ocean gravity waves that deform the solid earth below the seismometer,

and is most significant where the ocean is shallow enough for waves on the

ocean’s surface to couple to the solid earth. Tilt and compliance noise are

local sources of noise, which are distinct from the coherently propagating

long range noise that is the basis for ambient noise tomography. Both types

of local noise are strongest in shallow water, although the depth extent of

compliance noise is frequency dependent. Pressure variations induced by

surface gravity waves decay with depth faster at higher frequencies, thus

for a given water depth there is a cut-off frequency above which compliance

noise is less important. Compliance noise can extend to quite deep waters,

but only at very long periods.

Crawford and Webb (2000) and Webb and Crawford (1999) showed that

both types of local noise are greatly reduced by predicting the effect of

tilt and compliance on vertical components based on the horizontal com-

ponents and a local pressure gauge, respectively. In their methods, time

dependent transfer functions are found that covert horizontal noise and lo-

cal pressure to the vertical component record, and then these predictions are

subtracted from the vertical component. These so called “denoising” tech-

niques have been shown to improve the SNR of earthquake data recorded

on the seafloor and to reduce distortions (e.g., Ball et al., 2014; Bell et al.,

2015; Dolenc et al., 2007). Additionally, Bowden et al. (2016) and Tian and

Ritzwoller (2017) have shown that these methods also improve vertical (ZZ)

component cross-correlations of ambient noise by improving the SNR of the

first-overtone and the fundamental mode Rayleigh waves, particularly for

shallower water stations, and, importantly, by extending the measurements

to longer periods. Tian and Ritzwoller (2017) also showed that the meth-

ods produce records that provide more information about the origin of the

coherently propagating ambient noise that is the basis for ambient noise

tomography.

Figure 5.12 presents example record sections of vertical component am-

bient noise cross-correlations in two pass-bands observed using Cascadia

Initiative data from the Juan de Fuca Plate. The common station in the
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Figure 5.12 Record section of vertical component ambient noise cross-
correlations for shallow water station J49A (123 m water depth) from the
Cascadia Initiative on the Juan de Fuca plate, in which between 160 and 270
daily cross-correlations are stacked. (a,c) So-called “Raw” cross-correlations
are shown in which only land-based data processing has been applied, in-
cluding temporal normalization and spectral whitening. (b,d) “De-Noised”
cross-correlations in which each record has had tilt and compliance noise
removed prior to application of the same temporal normalization and spec-
tral whitening procedures applied in the raw cross-correlations. Two period
bands are shown: (top row) 12-20 s period, (bottom row) 20-30 s period.
In both bands Rayleigh waves emerge more clearly with the local noise
sources, tilt and compliance, removed. This figure is adapted from Fig. 8
of Tian and Ritzwoller (2017).

record section is in shallow water, station J49A at a depth of 123 m. The

reduction of tilt and compliance noise greatly improves the SNR of the re-
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covered Rayleigh waves, particularly at periods above 20 s that are difficult

to observe without de-noising. Improvements extend up to about 40 s period.

These de-noising steps do not reduce the effect of local noise on the hori-

zontal components, and therefore do not improve the ability to observe Love

waves in ocean bottom settings. This remains a technical challenge for the

future.

5.6 Reliability

As discussed earlier, there is no theoretical guarantee that the computed

cross-correlations obtained using the data processing methods we describe

here or others will reliably reproduce Green’s functions (see also Chapter

4 (Fichtner and Tsai, 2018)). The inhomogeneous distribution of ambient

noise caused by temporally persistent and spatially localized sources (e.g.,

26 s Gulf of Guinea microseism, Kyushu microseism), by strong temporally

and spatially localized sources (e.g., earthquakes), by highly localized in-

coherently propagating noise sources near one station, by a short duration

of observation, and so forth, can vitiate the cross-correlation and limit its

utility. Given the fact that such circumstances do arise in practice, we now

consider three questions, the first two of which are:

Question 1. What tools can the observer bring to bear to determine

whether a given cross-correlation is meaningfully related to the Green’s func-

tion between the pair of stations from which it is computed?

Question 2. How can the observer quantify the extent of this fidelity, if

it is deduced that the cross-correlation does provide a reasonable approxi-

mation to the Green’s function?

To address these questions, we find it useful to think about the conditions

that necessarily relate observed cross-correlations with Green’s functions.

The first of these questions is discussed in section 6.1. The second, which is

related to the estimation of uncertainties, is discussed in section 6.2.

There is a third and final question:

Question 3. How do we know if the results are right?

This is different than asking if a measurement is acceptable. As we will

see, acceptability depends to a substantial degree on quantifying the vari-

ability of the observations such that acceptable measurements exhibit low

variability. There are, however, systematic errors that can bias results with-

out introducing variability. Question 3, therefore, relates to an assessment of

the nature and extent of systematic errors, which is discussed in section 6.3.
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We base this analysis in terms of conditions that are sufficient to establish

the correspondence of a cross-correlation with the Green’s function.

5.6.1 Acceptance or Rejection of a Cross-Correlation

We define a necessary condition X as follows.

Necessary Condition: If an ensemble-averaged (temporally-stacked) cross-

correlation Γij(t) computed from recordings observed at stations i

and j is a good approximation to the Green’s function Gij(t) be-

tween the stations, consistent with equation (5.5), then criterion X

will be satisfied.

Necessary conditions are desired characteristics that would be satisfied if a

cross-correlation in fact is a reasonable approximation to the Green’s func-

tion. Together they define a set of criteria to test the hypothesis that a given

cross-correlation acceptably approximates a Green’s function and therefore

is worthy of acceptance in an experiment. If a necessary condition X is not

satisfied for a given cross-correlation, then there is reason to consider reject-

ing the cross-correlation from further consideration. This data acceptance

and rejection stage is a critical part of the data processing at the heart of

ambient noise tomography.

It is up to the observer to define the necessary conditions that form the

basis for the acceptance or rejection of cross-correlations in a given exper-

iment. We list several criteria that have played useful roles as necessary

conditions in a number of studies. These criteria, a subset of them, or in

conjunction with others can be thought of as a set of filters applied to cross-

correlations of ambient noise before they are welcome as a final component

of an experiment.

(1) Geological coherence. Surface waves are sensitive to relatively shal-

low earth structures about which other information often exists. We, there-

fore, expect qualitative similarity of dispersion measurements obtained from

ambient noise cross-correlations with geological structures. If measurements

disagree with considered judgments about the structure of the Earth, it is

either a very interesting observation or a cause for concern about the mea-

surement. For example, at periods below about 15 s group and phase speeds

tend to be depressed in well understood ways by sedimentary basins. An

observation of high group or phase speeds at short periods in sedimentary

basins is either an error or high speed material (perhaps of volcanic origin)

must reside near the surface of the basin, as it does in the Pasco Basin in

southern Washington.
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(2) High SNR. As discussed above, the ratio of peak signal amplitude to

the RMS of trailing noise tends to increase as the square root of observing

time, as illustrated in Figure 5.8. If this proves not to be the case, then

the reason should be resolved by the observer. SNR affects the variance in

group and phase speed measurements. SNR values of 10-20 are commonly

used acceptance criteria, but in data starved circumstances, a SNR as low

as 5-8 has been used in some circumstances.

(3) Stability. This condition relates to how cross-correlations or mea-

surements made on them are modified when subjected to small changes in

observing conditions, such as station location or time period of observation

(seasonal variability, for example). Figure 5.9 presents an example of how

group and phase speed vary as a function of observing station. Observations

of the variability of surface wave dispersion measurements are often used as

conservative estimates of the uncertainty of the measurement.

(4) Reduction in precursory noise. As the total time series length

of the stacked cross-correlations increases, it is expected that the relative

amplitude of the arrivals precursory to the signal of interest will decrease.

In this case, longer observing times will yield better surface wave dispersion

measurements. The rate of increase of the signal to precursory noise will

depend on local observing conditions, but if signal level does not increase

with increasing time series length relative to precursory noise, the observer

should be concerned. It may be the case that the precursory noise appears

only on a particular lag related to the azimuth of a spatially localized noise

source, as with the Kyushu microseism in the study by Zheng et al. (2011).

In this case, a cross-correlation may be salvaged by using only the correlation

lag opposite from where the noise source arrives. This illustrates that it is

a good idea for the observer to subject both lags of the cross-correlation

independently to the selection criteria listed here, and decide which inter-

station cross-correlations and lags to accept or reject based on this full set

of information.

(5) Self-consistency. We refer here to two characteristics of cross-correlations

as “self-consistent”. First, group and phase speed measurements form period-

dependent dispersion curves, which for realistic earth structures typically

vary smoothly with period. Dispersion measurements that perturb the smooth-

ness of the dispersion curve are suspect. Second, if both the positive and

negative lags of a cross-correlation pass other selection criteria and are be-

lieved to be of high quality, then they should provide similar group and phase

speed measurements. There are limitations to this criterion, as one lag may

be enriched at different frequencies than the other. However, this criterion

has been used by Stehly et al. (2007) and Lin et al. (2007) to discover station
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Figure 5.13 The 24 s Rayleigh wave phase travel time surface computed
from cross-correlations of ambient noise observed across the western US
based on central station (USArray, Transportable Array) Q16A in Utah.
Travel time lines are presented in increments of wave period. The map
is truncated within two wavelengths of the central station and where the
travel times are not well determined. Station Q16A operated simultane-
ously with the 843 stations shown (triangles), but only for a short time
near the western and eastern boundaries of the map. This figure is taken
from Fig. 2 of Ritzwoller et al. (2011).

timing errors and differences between dispersion measurements at positive

and negative lags may also provide useful information about measurement

uncertainties.

(6) Cross-consistency and simplicity. The determination of cross-

consistency, the agreement of a cross-correlation between one pair of stations

with those between other pairs, is less straightforward to test than self-

consistency. We usually do this with the group and phase speeds (or times)

measured from the cross-correlations rather than the cross-correlations them-

selves. One method is to determine if the travel time field computed for a

single central station varies smoothly spatially (e.g., Fig. 5.13). Another is

to determine if the measurements at a given period can be fit well with

a smooth dispersion map. Figure 5.14 presents example histograms of the

misfit of Rayleigh wave phase speed measurements across China at differ-

ent periods to a set of smooth dispersion maps that form the basis for a 3D

model (Shen et al., 2016). The standard deviations of such phase travel time
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Figure 5.14 Examples of misfit histograms defined as observed Rayleigh
wave phase times minus predicted phase times (in sec) computed from an
estimated phase speed map at different periods across China. The standard
deviation of each misfit distribution is presented in each panel. This figure
is adapted from Fig. 2 of Shen et al. (2016).

misfits are typically about 1 sec (but are higher for group times). Measure-

ments that are fit much worse than this (for example, worse than about 3

standard deviations) are typically rejected. Such misfit histograms plotted

for measurements in which a particular station participates, are also useful

to identify problems with stations such as timing errors, location errors, and

instrument response errors (e.g., Zhou et al., 2012), which are either cor-

rected or the station is removed from the experiment. We sometimes refer

to the ability of a smooth dispersion maps to fit the dispersion measurements

as a “simplicity” criterion.

Information about measurement errors and in inferred quantities such

as dispersion maps and earth models, is contained in the tests represented

by the above criteria, particularly tests of stability, self-consistency, and

cross-consistency. As discussed in section 6.2, ideally we prefer to use cross-

consistency to constrain errors in dispersion maps rather than other crite-

ria that provide information about errors in the dispersion measurements

themselves. But all are relevant both to the selection of data retained in the

experiment and to the assessment of uncertainties in the inferred quantities.

5.6.2 Quantifying Uncertainty

The necessary conditions discussed in section 6.1 provide circumstantial ev-

idence about the reliability of a given cross-correlation and measurements

obtained from it (e.g., surface wave dispersion). This evidence is useful for

the acceptance or rejection of data in the experiment. Once accepted in an
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experiment, however, one wishes to assess the data’s reliability and quantify

that assessment as data uncertainties. Thus, we take up Question 2 here.

There are four levels of uncertainty worth mentioning: (1) errors in the

cross-correlations themselves, (2) errors in measurements obtained on the

cross-correlations (e.g, group and phase speed measurements), (3) errors in

surface wave dispersion maps, and (4) errors in structural models of the

Earth. We will not consider here the first and last of these, but will fo-

cus on the assessment of uncertainties in dispersion measurements and dis-

persion maps, which are commonly produced intermediate products in the

construction of structural models of the Earth. As discussed in section 6.1,

the stability, repeatability, and self-consistency of measurements are useful

tools to quantify the uncertainty of dispersion measurements. In particu-

lar, the spatial (e.g., Fig. 5.9) and temporal (notably seasonal) variability

of dispersion measurements, the variation between measurements obtained

on positive and negative lags, and the misfit produced by dispersions maps

(e.g., Fig. 5.14) have all proven useful to quantify dispersion measurement

uncertainty. SNR has also been shown to be a useful proxy so that measure-

ment uncertainty can be inferred from it.

Dispersion maps, however, are what are most commonly used in inver-

sions for 3D structural models rather than raw dispersion measurements.

Uncertainty estimates in tomographic maps can be produced either in the

context of a linearized tomographic inversion in which estimates of data un-

certainties are propagated to model uncertainties (i.e., dispersion maps) in

standard ways (e.g., Barmin et al., 2001) or via non-tomographic, spatially

localized methods such as eikonal (Lin et al., 2009) and Helmholtz tomogra-

phy (Lin and Ritzwoller, 2011) in which no forward matrix is constructed,

decomposed, or inverted. As instrumental seismology has advanced, the in-

stallation of arrays at which the localized non-tomographic methods can be

applied is an increasingly common practice. For this reason, we discuss here

uncertainties in the context of such array-based methods, acknowledging

that the methods are not friendly to spatial gaps in station coverage.

Eikonal tomography is based exclusively on observed travel time surfaces

like that shown for the 24 s Rayleigh wave in Figure 5.13, although sepa-

rate maps are constructed for each period and for each central station. In

Helmholtz tomography, similar observed amplitude maps are used to ap-

ply a finite frequency correction. Because absolute amplitude information is

commonly lost in ambient noise data processing, such amplitude based cor-

rections are typically not applied in ambient noise studies. As described by

Lin et al. (2009), based on the eikonal equation, the local phase speed and

direction of wave propagation can be inferred from the gradient of the local
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Figure 5.15 Phase speed as a function of inter-station azimuth averaged
in each 20◦ bin for the 24 s Rayleigh wave are plotted as error bars that
represent the RMS variation in each bin. The example points are in (a)
Nevada (242◦E, 42◦N) and (b) Arizona (250◦E, 36◦N). The best-fitting 2ψ
curve (eqn. (5.18)) is presented as the solid line in each panel. Estimated
values with 1 standard deviation errors for c0, A and φ are listed at upper
left in each panel. The 2ψ component of anisotropy is clear in both panels.
This figure is adapted from Fig. 4 of Ritzwoller et al. (2011).

travel time. Using maps from many central stations allows the observation of

the mean and azimuthal variation of local phase speed, as illustrated Figure

5.15. Following Smith and Dahlen (1973), these quantities can be modeled

as a function of azimuthal angle, ψ, as follows:

c(ψ) ≈ c0 +A cos[2(ψ − φ)], (5.18)

in which the c0 represents the local average of the isotropic component of

phase speed and A and φ are mean estimates of the amplitude and fast-axis

direction of azimuthal anisotropy. An example of such mean estimates is

presented in Figure 5.16 for the 24 s Rayleigh wave.

The error bars in Figure 5.15 represent the variation of the measurements

in each azimuthal bin. They are, therefore, related to stability, repeatability,

and self-consistency as discussed in section 6.1. If they are interpreted as one

standard deviation Gaussian errors, they can be transformed to uncertainties

in the quantities c0, A, and φ in a standard way. Figure 5.17 illustrates such

error estimates on isotropic and anisotropic dispersion curves below 25 s

period for Rayleigh waves. Such estimates may not capture the potential

effects of systematic errors, however.
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Figure 5.16 (a) The 24 s Rayleigh wave isotropic phase speed map taken
from ambient noise by averaging all local phase speed measurements at
each point on the map (b) The amplitudes and fast directions of the 2ψ
component of the 24 s Rayleigh wave phase velocities. The amplitude of
anisotropy is identified with the length of the bars, which point in the
fast-axis direction, and is color-coded in the background. At 24 s period,
Rayleigh wave anisotropy reflects a combination of crust and uppermost
mantle. This figure is adapted from Fig. 5 of Ritzwoller et al. (2011).

5.6.3 Assessing Systematic Error

The necessary conditions discussed in sections 6.1 and 6.2 provide indicators

that measure the variance in the cross-correlations, measurements made

from them, and inferences drawn from those measurements. Such indicators

do not guarantee against systematic error. To assess the extent of systematic

error, or bias, it is useful to consider sufficient conditions that may link cross-

correlations and Green’s functions.

We define a sufficient condition X as follows.

Sufficient Condition: If criterion X is satisfied, then an ensemble-averaged

(temporally-stacked) cross-correlation Γij(t) computed from record-

ings observed at stations i and j will be a good approximation to

the Green’s function Gij(t) between the stations, consistent with

equation (5.5).

Well formulated sufficient conditions, as distinct from necessary conditions,

are powerful as they guarantee that a cross-correlation reliably approximates
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Figure 5.17 Isotropic and azimuthally anisotropic dispersion curves got a
point in northern Nevada. Only ambient noise measurements are used at pe-
riods below 25 s, ambient noise and earthquake measurements are averaged
between 25 s and 45 s period, and only earthquake measurements are used
above 45 s period. Phase velocity is presented in km/s, anisotropy ampli-
tude in percent, and the fast direction of anisotropy in degrees east of north.
Measurement uncertainties are presented with one standard deviation er-
ror bars. The best-fitting curves based on the isotropic and anisotropic
inversions are presented as the continuous line in each panel. This figure is
adapted from Fig. 8 of Ritzwoller et al. (2011).

a Green’s function. But such conditions are hard to come by. We consider

only one here – the comparison of dispersion measurements and maps ob-

tained from ambient noise to those obtained from earthquakes. Such com-

parisons cannot be performed at every period because earthquake results do

not extend to as short of periods as ambient noise results. This is one of the

ways ambient noise tomography has provided new information about the

Earth (Chapters 7 and 8 (Shapiro, 2018; Nakata and Nishida, 2018)). Con-

versely, earthquake results often extend to longer periods than ambient noise

results. Consequently, these two sources of information are complementary

and better used together than independently (e.g., Yang et al., 2008, and

many others).

Both Figures 5.17 and 5.18 present comparisons between phase speeds de-

rived from ambient noise and earthquakes. First, Figure 5.18 shows Rayleigh

wave dispersion maps at 30 s period, which is in the band of overlap between

the methods. There are differences in detail between these maps, but a quan-

titative comparison does not indicate systematic differences. The result of

the similarity of these different measurements is that they can be used simul-

taneously, as in the isotropic and anisotropic dispersion curves presented in

Figure 5.17 in which in the period band between 25 and 45 s ambient noise

and earthquake dispersion measurements are averaged.

Sufficient condition comparisons such as those we present here provide

great confidence in ambient noise cross-correlations to deliver unbiased infor-

mation about the crust and uppermost mantle. However, such comparisons
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Figure 5.18 (a) Isotropic maps for the 30 s period Rayleigh wave phase
speed observed via eikonal tomography applied to ambient noise data. (b)
A similar map for comparison constructed by eikonal tomography applied
to earthquake data. This figure is adapted from Fig. 7 of Ritzwoller et al.
(2011).

involve a highly processed product of ambient noise data processing and

tomography. Consequently, unlike the necessary conditions discussed earlier

in this section, sufficient conditions tend to cause the cross-correlations to

stand or fall together and do not test a single or small subset of the cross-

correlations or measurements.

5.7 Recent Developments in Ambient Noise Data Processing

In this section, we briefly review some recently developed methods designed

to amplify or extend the methods described in previous sections. It is impos-

sible to cover all the studies related to this topic and we, therefore, only list

a few in several different categories that we consider to be representative.

We divide these methods into four categories:

(1) Preprocessing procedures applied before cross-correlation,
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(2) De-noising techniques applied to cross-correlation waveforms and ad-

vanced stacking schemes,

(3) Post-processing methods applied to the stacked cross-correlation data,

and

(4) Advanced seismic interferometry methods.

Categories (1)-(3) are the techniques that are designed to be applied in the

context of conventional seismic interferometry for seismic tomography, in

which surface wave arrivals emitted from one virtual source are recorded

at one station. Category (4), however, includes sophisticated interferometric

methods that go beyond conventional approaches.

5.7.1 Preprocessing Techniques Applied Before

Cross-Correlation

Although the time and frequency domain weighting or normalization tech-

niques described above have proven to be quite useful, they have some draw-

backs and researchers have proposed new methods to enhance their perfor-

mance. We present two examples here.

Prieto et al. (2009) used complex coherency (see section 2 above for a

definition), which preserves the amplitude information in ambient noise.

They applied this technique to data from 154 broadband seismic stations

in southern California and received a similar Q model as earlier work based

on earthquakes (Yang and Forsyth, 2008). Following this work, Seats et al.

(2012) demonstrated that a faster convergence to empirical Green’s functions

can be achieved by using short duration overlapped time windows rather

than longer, non-overlapped time windows for cross-correlation, the so-called

Welch’s method (Welch, 1967).

Inspired by Gallot et al. (2012) and Carriére et al. (2014), Seydoux et al.

(2017) developed an array-based technique to equalize noise energy com-

ing from different azimuths. The cross-spectrum matrix defined by equation

(5.1) earlier in the chapter, defines a positive semi-definite Hermitian ma-

trix, G, termed the array covariance matrix by Seydoux et al. (2017). It

can be diagonalized as G = Ψ∆Ψ†, where ∆ = diag(λ1, λ2, ...) is the diag-

onal matrix formed by the non-negative eigenvalues λi and where Ψ is the

matrix of the eigenvectors. The authors construct an equalized covariance

(cross-spectrum) matrix, Ĝ, such that Ĝ = Ψ∆̂Ψ†. ∆̂ contains the equal-

ized eigenvalues, obtained by setting all the eigenvalues λi = 1 when i ≤ L

and λi = 0 otherwise. The index L is the cut-off for eigenvectors that are

considered as noise-related and should be discarded. By applying this tech-
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nique to both synthetic and real datasets, the authors demonstrated that

the symmetry of cross-correlation waveforms can be enhanced and precur-

sory noise suppressed. The beam energy of the processed array data also

indicates a more isotropic distribution of sources.

5.7.2 De-Noising Techniques Applied to Cross-Correlation

Waveforms and Advanced Stacking Schemes

Another branch of data processing techniques for ambient noise is designed

to be applied after the cross-correlation computation. Typically, finalized

cross-correlation waveforms for seismic tomography are obtained by stacking

all the daily (or hourly depending on the length of the windows chosen for

cross-correlation) correlation data. The stacking scheme can be improved

by selecting signals wisely and we summarize several ideas here to improve

this selection. All the methods mentioned in this section have one thing in

common: they all assume that coherent signals are contained in each daily

cross-correlation and attempt to extract that signal while discarding the

incoherent noise using an intelligent selection criterion.

By transforming the daily records into the frequency-time domain based

on the S-transform (Stockwell et al., 1996), Baig et al. (2009) proposed to

construct a weight function for each octave and time range. This weight

function can be designed to optimize the coherence in phase/amplitude for

daily cross-correlation data, and thus could serve as a filter to de-noise the

stacked cross-correlation waveform. The authors applied the technique to

real data recorded in California and observed that more meaningful Rayleigh

and Love wave travel time measurements were obtained. The method of

Baig et al. (2009) was later called time-frequency phase-weighted stack-

ing (tf-PWS) by Schimmel et al. (2011), who proposed to use a different

version of S-transform to perform the weighted stacking scheme. Schim-

mel et al. (2011) also defined a new type of cross-correlation, the phase

cross-correlation (PCC). Different from the conventional cross-correlation,

the PCC is more sensitive to small amplitude signals. Schimmel et al. (2011)

applied both the tf-PWS and PCC methods to synthetic and real data and

observed enhanced SNR in the cross-correlation waveforms.

Liu et al. (2016) proposed another advanced stacking scheme based on

a bootstrap resampling approach. They performed a statistical analysis of

the daily (or hourly/monthly depending on the time window length) cross-

spectra to identify outliers to discard during stacking. The analysis also

yields the variance of the cross-spectra and provides a probabilistic deter-

mination of the reliability of the stacked cross-spectrum. Figure 10 in Liu
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et al. (2016) compares a quality-controlled stacked cross-spectrum with raw

stacked cross-spectra, along with estimates of uncertainties for each data

point. The noise in the finalized cross-spectrum can be significantly reduced

via this method to discard outliers.

Another way of “selecting” data is to de-noise the cross-correlation wave-

form before stacking. Stehly et al. (2011) proposed the use of a curvelet de-

noising filter to be applied to the daily cross-correlation before stacking. The

method is based on the idea that the wavefront can be sparsely represented

with curvelet coefficients. Given the 2D image of the daily cross-correlation,

the sum of all the daily records yields an empirical Green’s function with

a low SNR. To perform the de-noising, the 2D image is transformed into

the 2D curvelet domain. Because the signals in the original 2D image con-

struct a 2D planar wavefront, which can be sparsely represented by a subset

of the curvelet coefficients with relatively large values, the large number

of small curvelet coefficients can be discarded. Then by performing an in-

verse curvelet transform, the authors received de-noised cross-correlation

data shown in Figure 4c in their paper. The stacked cross-correlation data

from the de-noised 2D image has an improved SNR. The authors also pro-

posed a more sophisticated filtering scheme by using the original stacked

cross-correlation waveform as a reference for the selection of the curvelet co-

efficients. They applied this technique to get more reliable empirical Green’s

functions whose coda waves were used to monitor seismic wave velocity

changes associated with the Mw 7.9 Wenchuan earthquake (Stehly et al.,

2015).

5.7.3 Post-processing methods applied to the stacked

cross-correlation data

After the stacked cross-correlation waveforms are generated, researchers typ-

ically perform seismic tomography using the travel time measurements ob-

tained on the correlation waveforms. However, some additional information

can also be retrieved from the cross-correlation data using various post-

processing approaches, of which we mention a couple here.

van Wijk et al. (2011) and Takagi et al. (2014) proposed to use cross terms

of the ambient noise Green’s tensor to separate body waves from Rayleigh

waves. Their idea is based on the fact that, theoretically, the RZ and ZR

components of the cross-correlation tensors are time symmetric for Rayleigh

waves while time anti-symmetric for P-waves for isotropic media. The use

of (ZR-RZ)/2 may suppress the P-wave and reduce noise precursory to the
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Rayleigh wave. Similarly, (ZR+RZ)/2 will accentuate the P-waves at the

expense of the Rayleigh waves.

Another interesting post-processing procedure is to compute the correla-

tion of the coda of the cross-correlation, which is referred to as C3 (Stehly

et al., 2008), in contrast with traditional cross-correlations of ambient noise

(C1). Ideally, the empirical Green’s function between a station-pair should

include all the propagation effects between the two stations. Thus, not only

the ballistic waves but also the coda should be included in the original cross-

correlation. Because the coda wavefield is typically diffuse, empirical Green’s

functions can be extracted by correlating the coda window of the noise cor-

relation. In fact, before the era of ambient noise tomography, Campillo and

Paul (2003) discovered that the cross-correlation of earthquake coda can

yield empirical Green’s functions. Compared with the ambient noise cross-

correlation function, the C3 function may be more symmetric if the sta-

tions used for the computation are more evenly distributed geographically.

Moreover, Zhang and Yang (2013) proved that C3 is more suitable for the

extraction of attenuation information compared with the traditional noise

cross-correlation.

A potentially much more significant advantage of C3 over traditional am-

bient noise correlation is that it can be used to extract empirical Green’s

functions between station-pairs even when the two stations are not operating

simultaneously. This requires that there are some other stations that have

operation times that overlap those two asynchronous ones. Ma and Beroza

(2012) demonstrated the feasibility of this using data from southern Califor-

nia. A potential downside of the use of C3 is that the coda tends to be more

band-limited than the Rayleigh wave observed with C1 and the recovery of

meaningful empirical Green’s functions is more difficult than with the use

of C1.

5.7.4 Advanced seismic interferometric theories and methods

Several researchers have proposed more advanced seismic interferometry

theories that go beyond approaches that have been applied previously. We

briefly introduce two of them.

As mentioned previously in this chapter, precursory noise can emerge

in ambient noise cross-correlation waveforms when the distribution of noise

sources differs significantly from azimuthal homogeneity. Conventionally, ob-

servers attempt to eliminate or suppress these spurious arrivals. In fact,

traditional ambient noise tomographic inversions have been performed by

assuming the only meaningful arrival is the ballistic wave emitted from one
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station (or virtual source) and recorded by another station. Recently, Ficht-

ner et al. (2017) developed a more general seismic interferometry theory for

cross-correlations that can use the precursory noise to constrain Earth struc-

ture (see also Section 5 of Fichtner and Tsai, 2018). Figure 13 of Fichtner

et al. (2017) illustrates that the sensitivity kernels for different waveform

windows, including precursory arrivals, can be used to constrain the Earth.

Fichtner’s theory is sophisticated and it is not trivial to apply the method

to real data. However, at the very least, it demonstrates the feasibility of

using precursory arrivals from cross-correlation data for seismic imaging.

Another advanced seismic interferometry theory that goes beyond conven-

tional cross-correlation approaches has been developed by Kees Wapenaar

and his collaborators. These methods are designed to improve the perfor-

mance of ambient noise cross-correlation in the presence of highly inhomo-

geneously distributed noise sources. Wapenaar and his co-workers developed

a new type of computation called multidimensional deconvolution (MDD)

and proved theoretically that this procedure can guarantee the retrieval of

accurate empirical Green’s functions even when the source distribution is

one-sided (Wapenaar and van der Neut, 2010; Wapenaar et al., 2011)). Fig-

ures 2 and 3 in Wapenaar et al. (2011) demonstrate the improvement that

MDD can achieve compared with cross-correlation. An application of this

technique to real data for surface waveform retrieval was presented by van

Dalen et al. (2015). Although the method appears to be promising, MDD

also has some limitations. To retrieve an empirical Green’s function for a

station pair, a regular array of receivers is required to construct the so-call

point spread function (PSF) for the deconvolution computation (see Wape-

naar and van der Neut (2010) for more detail). The MDD is computationally

more expensive than cross-correlation and the matrix inversion in the decon-

volution may be unstable. Despite these caveats, the MDD theory provides

a possible new path to retrieve more reliable Green’s functions from ambient

noise.

5.8 Conclusions

This chapter presents a discussion of some of the practical issues involved

with processing ambient noise recorded at two stations and cross-correlating

such recordings to recover reliable estimated Green’s functions between the

stations, at least for the surface wave parts of the Green’s function. Our

focus is on regional scale broadband ambient noise seismology, which delivers



196 M.H. Ritzwoller and L. Feng

information at lateral resolutions from 10s to 100s of km about the crust

and uppermost mantle.

A number of data processing variables affect the resulting cross-correlations,

including the length of the records in the time domain that are cross-

correlated, and the nature of the normalization of records in the time and

frequency domains. We discuss how to obtain surface wave dispersion (group

and phase speed) measurements in the time domain. We also discuss the re-

duction of tilt and compliance noise, which is required in an ocean bottom

setting.

A significant part of ambient noise data processing is the selection and re-

jection of particular cross-correlations. We list a number of useful criteria on

which to base such decisions, which we present as necessary conditions to be

satisfied for cross-correlations to provide reliable approximations to Green’s

functions. These conditions include the SNR of the cross-correlations, their

temporal stability (particularly over seasons), the level of precursory noise,

the self-similarity of measurements obtained on the cross-correlations over

time and frequency, and their correspondence to other cross-correlations.

The stability, repeatability, and self-consistency of dispersion measurements

are useful tools to quantify the uncertainty of dispersion measurements.

Array-based methods are particularly useful to estimate uncertainties in

dispersion maps (e.g., eikonal tomography).

The ultimate question is: Why should we believe that ambient noise pro-

vides reliable information about the Earth? Part of this question is answered

with the uncertainty estimates discussed in the previous paragraph, but

only part. Such uncertainty estimates primarily quantify the variability of

the measurements, which does not include an assessment of systematic er-

rors. The principal reason we believe that ambient noise does not provide a

biased estimator, at least in many circumstances, is that ambient noise re-

sults can be compared with earthquake results. For example, phase velocity

maps from ambient noise and earthquake tomography can be compared in

detail. When this has been done carefully, bias has been seen to be small

and reduces with the length of ambient noise observation and the number

of earthquakes.

Further improvements in ambient noise data processing are needed and

we summarize a few recent amplifications and extensions of the methods

presented in this chapter. Particular needs include the fact that Love waves

are narrower band than Rayleigh waves on continents and are very hard

to observe in ocean bottom settings using OBS data. The reader is encour-

aged to remember that what we seek are observational methods to yield

broadband, low variance, and unbiased information about the Earth and,
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preferably, methods that will speed convergence and thus reduce observa-

tion time. Ambient noise seismology remains a young discipline, and readers

are encouraged to view the current state-of-the-art as merely the starting

point to supersede with own creative work in ambient noise seismology.
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