
  1

Crustal and uppermost mantle structure beneath the United States 1 

Weisen Shen and Michael H. Ritzwoller 2 

Department of Physics, University of Colorado at Boulder, Boulder, CO 80309 USA 3 

(weisen.shen@colorado.edu) 4 

Abstract  5 

This paper presents a new model of the shear velocity structure of the crust and uppermost 6 

mantle beneath the contiguous US. The model is based on more than a decade of USArray 7 

Transportable Array (TA) data across the US and derives from a joint Bayesian Monte Carlo 8 

inversion of Rayleigh wave group and phase speeds determined from ambient noise and 9 

earthquakes, receiver functions, and Rayleigh wave ellipticity (H/V) measurements. Within the 10 

Bayesian inverse theoretic framework, a prior distribution of models is posited and a posterior 11 

distribution is inferred beneath all of the more than 1800 TA stations across the US. The 12 

resulting mean and standard deviation of the mean of the posterior distribution at each station 13 

summarize the inversion results, which are then interpolated onto a regular 0.25°x0.25° grid 14 

across the US to define the final 3D model. We present arguments to show that the mean of the 15 

posterior distribution overestimates the effect of random error in the final model by a factor of 4-16 

5, and identify uncertainties in density and mantle Q as primary potential sources of remaining 17 

systematic error in the final model. The model presents a great many newly resolved structural 18 

features across the US that require further analysis and dedicated explication. We highlight here 19 

low velocity anomalies in the upper mantle that underlie the Appalachians with centers of 20 

anomalies in northern Georgia, western Virginia, and, most prominently, New England. 21 
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1. Introduction 22 

The USArray/Transportable Array (TA), one of the principal components of EarthScope, has 23 

been evolving for more than the past 10 years. Since 2004, the TA has repeatedly deployed 24 

approximately 400 three-component broadband seismometers at temporary sites with an inter-25 

station spacing of about 70 km. The array has crept continuously across the US to occupy sites 26 

that have eventually spanned the continent, completing its earthward migration in the fall of 27 

2013. Nearly 2000 independent locations were occupied during the migration of the array. This 28 

seismic observatory has stimulated many innovations in seismology designed to improve the 29 

understanding of earth structure and processes beneath the contiguous United States. In 30 

particular, crustal imaging at continental scales has been revolutionized in response to the 31 

existence of data from this array. 32 

The current paper is based on TA data. Methodologically, this paper is part of a series of 33 

research efforts that have attempted to model crustal and uppermost mantle structure beneath the 34 

contiguous US using newly developed methods of data analysis, inversion, and inference 35 

designed for application to current generation continental array data, of which the TA is a prime 36 

example. There have been two principal themes that have guided these efforts: (1) the tracking of 37 

uncertainty from measured quantities to resulting 3D models and (2) assimilating new data types 38 

and resources into the inversion as they become available. With the completion of the TA in 39 

2013, models of the crust and uppermost mantle can now be constructed across the entire US. 40 

These research efforts have been composed of five principal components on which the current 41 

paper builds and of which it is a natural continuation. First, in order to constrain crustal structure, 42 

ambient noise surface wave tomography was developed and has been applied to data beginning 43 

from the earliest days of operation of the TA (e.g., Sabra et al., 2005; Shapiro et al., 2005; 44 

Bensen et al., 2007; Lin et al., 2008). Ambient noise tomography has become a standard method 45 

in crustal imaging, and has provided unprecedented information about crustal structure across the 46 

US (e.g., Moschetti et al. 2007, 2010a,b; Yang et al., 2008, 2011; Bensen et al., 2009; Lin et al., 47 

2011; Tian et al., 2013; Xie et al., 2015). The eikonal tomography method was developed to 48 

optimize information derived from ambient noise tomography (Lin et al., 2009). Second, to 49 

generate higher resolution information from surface waves about upper mantle structure, the 50 

Helmholtz tomography method was developed for application to data from earthquakes (Lin and 51 
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Ritzwoller, 2011; Ritzwoller et al., 2011; Mordret et al, 2013; Jin and Gaherty, 2015) similar to 52 

the method of Pollitz and Snoke (2010). Eikonal tomography is a geometrical ray theoretic 53 

method and Helmholtz tomography is a finite frequency method; finite frequency corrections are 54 

needed at the longer periods at which earthquake generated surface waves are observed. Third, 55 

both eikonal and Helmholtz tomography provide information about azimuthal anisotropy and 56 

(importantly) local uncertainty estimates of the resulting tomographic maps. Fourth, surface 57 

wave data alone typically do not unambiguously constrain vertically discontinuous variations in 58 

model variables such as may occur at the base of sedimentary basins or at the Moho.  Lebedev et 59 

al. (2013) present a recent assessment of the problem. It has long been known that the 60 

assimilation of other types of data in addition to surface wave dispersion helps to resolve 61 

ambiguities that arise in the estimation of crustal and uppermost mantle structure, particularly 62 

related to crustal thickness, structure near to the Moho, and near-surface structure (e.g., Last et 63 

al., 1997; Ozalaybey et al., 1997; Julia et al., 2000). There are numerous examples of the joint 64 

inversion of surface wave data and receiver functions (e.g., Chang et al., 2004; Lawrence and 65 

Wiens, 2004; Liu et al., 2010; Tokam et al., 2010; Bodin et al., 2012). We (and others) have 66 

developed methods to assimilate other types of data and invert them systematically and jointly 67 

along with surface wave dispersion using uncertainty information, including receiver functions 68 

(Shen et al., 2013a,b,c), local amplification measurements (Taylor et al., 2009; Lin et al., 2012a; 69 

Eddy and Ekstrom, 2014), Rayleigh wave ellipticity (or H/V) measurements (Lin et al., 2012b; 70 

Lin and Schmandt, 2014; Lin et al., 2014), and body waves (Obrebski et al., 2011; Porritt et al., 71 

2014). Fifth, Bayesian Monte Carlo inversion methods have been developed (e.g., Shen et al., 72 

2013a,b,c) to invert jointly new high-resolution surface wave dispersion information together 73 

with other data types in order to produce distributions of models that fit all data acceptably. The 74 

resulting posterior distributions of models are then summarized to produce the 3D model 75 

together with uncertainties. 76 

The TA has stimulated a variety of approaches to inferring information about crustal and mantle 77 

structure beneath the US. For example, the current paper is one of many based at least in part on 78 

ambient noise observations across the US: e.g., Liang and Langston (2008, 2009), Prieto and 79 

Beroza (2008), Ma et al. (2008), Gao et al. (2011), Calkins et al., (2011) Porritt et al. (2011), 80 

Delorey et al. (2011), Gaite et al. (2012), Liu et al. (2012), Tibuleac et al. (2012), Gao and Shen 81 

(2012), Hansen et al. (2013), Allison et al., (2013), Kao et al. (2013), Boue et al. (2014), Li and 82 
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Lin (2014), Porter et al., (2014, 2015), Yang (2014), Ekstrom (2014), Schmandt and Lin (2014), 83 

Fu and Li (2015), Zigone et al. (2015), Agrawal et al. (2015), and others. The measurement of 84 

Rayleigh wave ellipticity (or H/V measurements) using earthquake data goes back to Boore and 85 

Toksoz (1969) and has been recently rejuvenated by Tanimoto and Rivera (2008) and Lin et al. 86 

(2012b). Lin et al. (2014) extended the H/V measurements to ambient noise and Lin and 87 

Schmant (2014) also extended them to azimuthal anisotropy. Lin et al. (2012b) performed a joint 88 

inversion of H/V measurements along with surface wave dispersion for crustal and uppermost 89 

mantle structure.  In addition, there have been many studies of both P-to-S and S-to-P receiver 90 

functions across the US based at least in part on USArray data: e.g., Agrawal et al., 2015; Benoit 91 

et al., 2014; Calkins et al., 2010; Eagar et al., 2011; Frassetto et al., 2011; Gao, 2015; 92 

Gashawbeza et al., 2008; Gilbert, 2012; Hansen and Deuker, 2009; Hansen et al., 2013; Hopper 93 

et al., 2014; Levander and Miller, 2012; Levander et al., 2011; Parker et al., 2013; Porter et al., 94 

2014; Stacknik et al., 2008; Thurner et al., 2015; Wagner et al., 2012; Wilson et al., 2010; Yeck 95 

et al., 2014.  96 

The joint inversion of surface wave dispersion, receiver functions, and Rayleigh wave H/V 97 

measurements remains rare. To the best of our knowledge using USArray data the joint inversion 98 

of surface wave dispersion together with receiver functions in the US has been carried out 99 

regionally only by Bailey et al. (2012) and Shen et al. (2013a,b,c) and the joint inversion of 100 

surface wave dispersion together with H/V measurements by Lin et  al. (2012b). The joint 101 

inversion of all three data sets has not been performed before in the US, but has been 102 

accomplished in a regional study in China (Kang et al., 2015). The current paper is a natural 103 

continuation of the studies of Shen et al. (2013a,b,c), which developed and applied Bayesian 104 

Monte Carlo inversion methods to the joint inversion of Rayleigh wave dispersion from ambient 105 

noise and earthquake data and receiver function data across the western half of the US. The 106 

current paper modifies and extends this earlier work by introducing a new data set of Rayleigh 107 

wave H/V measurements across the entire US and inverting all data simultaneously (Rayleigh 108 

wave dispersion form 8-90 sec period, receiver functions, Rayleigh wave H/V measurements 109 

from 18-80 sec period) to estimate a unified crustal and uppermost mantle model across the 110 

entire contiguous US with attendant uncertainties. More than five years of TA data are added and 111 

the region of study extends about 3,000 km farther east compared to the earlier studies of Shen et 112 

al. (2013b). In total we obtain observations using ~1,800 TA stations deployed before 2015 June 113 
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(Fig. 1) and invert all data within a Bayesian Monte Carlo framework. Significantly, consistent 114 

with the findings of Shen et al. (2013a,b) the introduction of receiver functions into the inversion 115 

significantly improves determination of Moho depth and structures near the crust-mantle 116 

transition, and consistent with the findings of Lin et al. (2012b) the introduction of the H/V 117 

measurements significantly improves estimates of structures in the top few km of the crust. 118 

Overall, combining all three data sets improves the vertical resolution of the crust and uppermost 119 

mantle, and the resulting 3-D Vs model reveals high fidelity features of the crust and uppermost 120 

mantle across the entire US. 121 

The discussion below begins with a description of the data set of Rayleigh wave dispersion 122 

measurements, receiver functions and Rayleigh wave H/V measurements in section 2. Although 123 

the full data set is new, the methods of measurement have been described elsewhere, and here we 124 

only summarize the methods used to estimate the principal quantities and errors in them. The 125 

joint Bayesian Monte Carlo inversion method also has been described elsewhere. Only salient 126 

aspects of the method are summarized in section 3 where we focus attention on the description of 127 

the assumptions and constraints that result in the prior distribution of models at each location. 128 

The Bayesian Monte Carlo method jointly inverts all data, producing a posterior distribution of 129 

models at each of more than 1750 stations across the US.  In section 4 we discuss how we 130 

summarize these distributions in terms of a mean and standard deviation at each depth in the 131 

crust and uppermost mantle and location across the US and how the mean varies regionally and 132 

within regions across the US. We discuss how the posterior distribution can be used to quantify 133 

the effects of random errors in the model. In section 5, we present vertical transects of the model 134 

and discuss systematic errors that may arise due to constraints and assumptions applied in the 135 

inversion.   136 

2. Data: Measurement, Processing, and Uncertainty 137 

This study is based on data from the 1,822 USArray Transportable Array seismic stations that are 138 

shown in Figure 1b. These stations are fairly homogeneously distributed across the US, being  139 

spaced on average about every 70 km. Based on data from these stations, we produce 1) 140 

Rayleigh wave dispersion maps and local dispersion curves from ambient noise and earthquake 141 

data, 2) azimuthally-independent receiver functions, and 3) Rayleigh wave ellipticity 142 

measurements, also referred to as H/V measurements (e.g., Lin et al., 2012b). We construct 143 



  6

Rayleigh wave phase speed curves from 8 to 90 sec period beneath each station from dispersion 144 

maps produced by eikonal tomography (Lin et. al., 2009) for ambient noise data and Helmholtz 145 

tomography (Lin and Ritzwoller et al., 2011) for teleseismic earthquake data. We generate 146 

Rayleigh wave group velocity curves by traditional ray theoretic tomography (Barmin et al., 147 

2001; Moschetti et al., 2010a) between periods of 8 sec and 40 sec. In addition, we construct a 148 

back-azimuth independent receiver function using the harmonic stripping technique (Shen et al., 149 

2013a) at each station. The details of the data processing and subsequent data quality control and 150 

refinement have been documented in a number of previous papers, and we only briefly 151 

summarize the data processing here.  152 

2.1. Rayleigh wave phase velocities 153 

We obtained Rayleigh wave phase speed measurements between periods of 8 and 40 sec on 154 

ambient noise cross-correlations between data from USArray TA stations available from Jan 155 

2005 until the end of June 2015 using automated frequency-time analysis (AFTAN) (e.g., 156 

Levshin and Ritzwoller, 2001; Bensen et al., 2007). The ambient noise data processing follows 157 

the procedure described by Bensen et al. (2007) and Lin et al. (2008). More than 650,000 cross-158 

correlations across the study region are produced. At short periods (8 to 40 sec), we apply 159 

eikonal tomography (Lin et al., 2009) to ambient noise data to generate Rayleigh wave phase 160 

velocity maps with uncertainty estimates (e.g., Fig. 2c-d). At longer periods (28 to 80 sec) using 161 

earthquake data, we apply the Helmholtz tomography method (Lin and Ritzwoller, 2011) to 162 

obtain Rayleigh wave phase velocity measurements with uncertainties . Both eikonal and 163 

Helmholtz tomography estimate local uncertainties in phase speed from the scatter in the local 164 

azimuthally dependent phase times (and thus speeds) after smooth variations with azimuth are 165 

removed. The standard deviation of the mean of the observed scatter is then identified with the 166 

error in the local period dependent phase speed. Rayleigh wave phase travel times are measured 167 

using waveform data following 5,898 earthquakes recorded between 2005 and 2015 with Ms > 168 

5.5 and Helmholtz tomography is applied to produce the phase velocity maps. The Helmholtz 169 

tomography method provides a finite frequency correction, which is needed at long periods, but 170 

the eikonal tomography method (applied at shorter periods) does not. Sample maps are presented 171 

in Figure 2e,f. In the period band in which ambient noise and earthquake measurements overlap 172 

(28 to 40 sec), there is significant agreement between the maps.  Several earlier studies found 173 
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that phase speed measurements inferred from earthquakes were somewhat faster than those from 174 

ambient noise measurements (Yao et al., 2006, Yang et al., 2008). As we have added increasing 175 

numbers of earthquake measurements, however, measurements from earthquakes have 176 

converged to those from ambient noise (Lin and Ritzwoller, 2011; Ritzwoller et al, 2011) such 177 

that now at 28 sec period, for example, the average difference across the US is about 1 m/s. The 178 

standard deviation of the difference is about 12 m/s, which is within the estimated average 179 

uncertainty (~15 m/sec). In both eikonal tomography applied to ambient noise data and 180 

Helmholtz tomography applied to earthquake data, azimuthal anisotropy with 180° symmetry is 181 

estimated simultaneously with azimuthally independent phase speeds. Thus, the effect of 182 

azimuthal anisotropy has been removed from the isotropic phase speed measurements presented 183 

here.  184 

2.2 Rayleigh wave group velocities 185 

Both phase and group velocity dispersion curves are measured when automated frequency-time 186 

analysis (AFTAN) is applied to ambient noise cross-correlations. Although eikonal tomography 187 

is performed on the phase time measurements from ambient noise, the eikonal equation governs 188 

the propagation of phase but not group times. Thus, we use the traditional damped least-squares 189 

tomographic method of Barmin et al. (2001) for group velocities.The traditional tomographic 190 

method and eikonal tomography provide similar results, as shown by Lin et al. (2009) and Zhou 191 

et al. (2012). We ignore finite frequency effects on group speeds here, because they are weak in 192 

the period band in which ambient noise is considered (8-40 sec; e.g. Lin & Ritzwoller 2011; 193 

Ritzwoller et al. 2011). Azimuthal anisotropy with 180° symmetry is estimated simultaneously 194 

with azimuthally independent group speeds. Thus, as with phase speeds, the effect of azimuthal 195 

anisotropy has been removed from the isotropic group speeds presented here.  196 

The 8 and 28 sec period group velocity maps are presented in Figure 2a and 2b. At 8 sec period, 197 

group velocity is most sensitive to shear wave speed in the top 10 km of the crust. Similar to the 198 

8 sec phase velocity map, major basins exhibit slow group velocities (< 2.4 km/sec). At 28 sec 199 

period, the group velocity map presents a slightly different pattern than the phase velocity map 200 

because of the relatively shallower sensitivity of group velocities. Because a damped least-201 

squares inversion is used to generate the group velocity maps, meaningful uncertainties are not 202 
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obtained in the inversion although resolution is estimated. The uncertainty of group velocity is 203 

scaled from the uncertainty of phase velocity using the relationship described by Moschetti et al. 204 

(2012b). On average, group velocity uncertainty is magnified by a factor of about three 205 

compared with phase velocity uncertainty. In this study, we use group velocity measurements 206 

only when the horizontal resolution is better than 100 km; thus, group velocity measurements at 207 

some periods are discarded near the edges of the study region. Finally, we obtain local dispersion 208 

curves for 1,816 out of 1,822 USArray/TA stations and examples of local Rayleigh wave group 209 

and phase velocity curves are presented in Figure 6. 210 

2.3 Receiver functions 211 

Shen et al. (2013b) describe the method that we apply to process receiver functions for each 212 

station.  For each station, we selexct earthquakes from Jan 2005 to June 2015 with epicentral 213 

distances ranging between 30° and 90° and with magnitudes mb > 5.5. We apply a time domain 214 

deconvolution method (Ligorria and Ammon, 1999) to each seismogram windowed between 20 215 

sec before and 30 sec after the direct P-wave arrival to compute the radial component receiver 216 

function using a low-pass Gaussian filter with a width of 2.5 s (pulse width ~ 1 sec). High-217 

quality receiver functions are selected with an automated procedure. Corrections are made both 218 

to the time and amplitude of each receiver function, normalizing to a reference slowness of 0.06 219 

sec/km (Jones and Phinney, 1998). Finally, we retain only the first 10 sec after the direct P 220 

arrival. We compute the azimuthally independent receiver function, R0(t), at each station by 221 

fitting a truncated Fourier Series at each time over azimuth and then stripping the azimuthally 222 

variable terms using a method referred to as “harmonic stripping” by Shen et al. (2013b). After 223 

removing the azimuthally variable terms at each time, the RMS residual over azimuth is 224 

interpreted as the 1σ uncertainty in R0(t) at that time. On average, 84 individual receiver 225 

functions from different earthquakes are accumulated for each station. If fewer than 10 receiver 226 

functions pass quality control at a particular station, we do not use the receiver function in the 227 

joint inversion. In total, we obtain azimuthally independent receiver functions for 1822 228 

USArray/TA stations. Example receiver functions are presented in Figure 6. 229 

 230 

 231 
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2.4 Rayleigh wave ellipticity (H/V)  232 

As discussed in section 2.1, the data following more than 5,800 teleseismic earthquakes are 233 

collected to perform teleseismic Helmholtz tomography across the contiguous US. This data set 234 

is also used to measure the Rayleigh wave H/V ratio following the processing procedure 235 

presented by Lin et al. (2012a), which we summarize briefly here.  236 

For each earthquake recorded at each available station, 3-component seismograms are cut 237 

according to the Rayleigh wave group travel time predicted by a global model (Shapiro and 238 

Ritzwoller, 2002), and the mean, linear trend and the station response are removed. The 239 

horizontal components (E and N) are then rotated into the radial (R) and transverse (T) directions 240 

defined by the great-circle path between the earthquake and the station. AFTAN (Bensen et al., 241 

2007) is applied to determine the Rayleigh wave phase and group travel times, and the 242 

amplitudes of both the vertical (V) and radial components are measured between 18 and 80 sec 243 

period. The amplitude ratio between the two components (R/V) is used to evaluate the H/V ratio 244 

as a function of period at the station location.  245 

To insure the quality of the H/V measurements, we impose the following four control criteria. 246 

First, the signal-to-noise ratio must be greater than 15 for Rayleigh waves on both the radial and 247 

vertical components. Second, Rayleigh waves on the radial and vertical components are expected 248 

to be phase shifted by 90°. Thus, we apply a phase difference criterion: measurements with 249 

|φR(T)-φV(T)-π/2|(T/2π) > 2 sec are removed, where φR and φV are the observed phase of the 250 

radial (R) and vertical (V) components, respectively, and T is the period of the measurement. 251 

Third, large H/V measurements (>10) are removed. These criteria are applied independently to 252 

each station at each period. A final, fourth criterion is invoked in which we estimate the standard 253 

deviation, σ, of the measurements at each station and at each period that satisfy the first three 254 

selection criteria. To stabilize the measurements, we discard measurements outside the 2σ 255 

corridor of measurements. 256 

After these quality control steps, a set of H/V ratio measurements is obtained for each period at 257 

each station. For sets with ≥ 20 measurements, the mean and standard deviation of the mean are 258 

computed to represent the H/V ratio measurement and its uncertainty at this period and station. 259 

We discard measurements at a station if the number of measurements is less than 20 in order to 260 
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enhance the reliability of the data set. At each station, the H/V measurements estimated from 261 

different events are similar, although small variations (<2%) dependent on back-azimuth are 262 

observed. However, for about 15 stations the H/V ratio measurements possess large variations 263 

(>20%) over time. Conversations with IRIS/DMC staff members (personal communication with 264 

Robert Busby, IRIS) suggest that these variations are probably due to a differential signal output 265 

error of the seismometer sensors. Table 2 lists these 11 stations with the time periods of 266 

malfunction. Some of the H/V ratio measurements obtained during the malfunction periods can 267 

be corrected whereas others must be discarded.  268 

Example H/V maps at periods of 30 and 60 sec are presented in Figure 3. They are similar to the 269 

maps shown by Lin et al. (2012a), but the H/V ratios presented here are smaller on average and 270 

extend over a larger area. At 30 sec period, high H/V ratio is correlated with the sedimentary 271 

basin distribution across the continental US (e.g., the Central Valley in California; the Williston 272 

Basin near eastern Montana and western North Dakota; the coastal basins near the Mississippi 273 

embayment). Low H/V ratio is observed in major mountain ranges (e.g., the Sierra Nevada, 274 

Rocky Mountains) in the western US, in the Superior upland province and the Appalachian 275 

highlands in the eastern US, all regions devoid of thick unconsolidated sediments.  Beneath the 276 

Yellowstone hotspot and southern Sierra Nevada, the lowest H/V measurements across the 277 

continent (<0.65) are observed. At longer periods, the H/V ratio is still largely sensitive to 278 

shallow Vs structure. Figure 24 later in the paper presents sensitivity kernels that demonstrate 279 

this.  Thus, the effect from major basins is still observed at long periods: the Green River Basin 280 

in southwestern Wyoming and the Mississippi embayment areas possess the highest H/V 281 

measurements at this period. The sensitivity kernel of the H/V measurement penetrates into the 282 

mantle at long periods and is positively correlated with Vsv, so low H/V ratio is also observed 283 

beneath the Rocky Mountains and the Snake River Plain where the mantle Vsv is low (Fig. 2f). 284 

We construct H/V ratio curves for 1,779 stations between periods of 20 and 90 sec. Several 285 

typical H/V ratio curves with uncertainties are presented in Figure 6. 286 

2.5 Measurement uncertainties 287 

We obtain estimates of uncertainties (or errors) for all types of measurements employed here: 288 

Rayleigh wave group and phase velocity maps, receiver functions, and local Rayleigh wave H/V 289 
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ratios. Measurement errors averaged spatially across the US are shown in Figure 4 for Rayleigh 290 

wave dispersion and H/V measurements. Rayleigh wave phase speed measurement errors for 291 

both ambient noise and earthquake data are typically less than about 10 m/s (Fig. 4a), which is 292 

about 0.25% of the phase speed. For an inter-station path of 1000 km and a travel time of about 293 

250 sec, this is about a half-second measurement error, which is largely independent of period. 294 

Further improvements in surface wave tomography designed to beat down this error are needed, 295 

and would be particularly useful to improve estimates of azimuthal anisotropy.  For ambient 296 

noise, errors in group velocity maps are scaled from phase velocity errors as discussed in section 297 

2.2. They average about three times phase speed errors (Moschetti et al, 2010), but, as Figure 4a 298 

shows, above 25 sec period phase speed errors remain low even as group speed errors grow 299 

rapidly. This is because we introduced earthquake-derived measurements of phase speed at 300 

longer periods. Spatially averaged estimates of Rayleigh wave H/V errors are presented in Figure 301 

4b. Because H/V measurements typically lie between 0.6-1.2 (Fig. 3), uncertainties in H/V 302 

measurements typically range from about 1%-3% of the H/V value. We do not present a plot of 303 

the average error in receiver functions, but several typical receiver functions with uncertainties 304 

are shown in Figure 6. Our receiver function error estimates are conservative and, therefore, we 305 

do not attempt to fit small errors in the receiver functions. 306 

The spatial variability of period-averaged measurement uncertainties is presented in Figure 5 for 307 

Rayleigh phase speed, group speed, and H/V ratio. Phase and group speed uncertainties are fairly 308 

homogeneous spatially, but degrade near the periphery of the study region where azimuthal 309 

coverage is sub-optimal. For H/V measurements, uncertainties are also spatially quite 310 

homogeneous but are slightly higher in the central US than in the western or eastern US because 311 

fewer earthquakes are observed there.  312 

2.6 Example data 313 

As discussed in section 3, we invert data at each station individually. Receiver functions and 314 

Rayleigh wave H/V measurements are obtained independently at each station. However, 315 

dispersion maps are produce on a spatial grid that extends between stations, but we interpolate 316 

them to station locations so as to produce station-specific dispersion curves. Thus, at the vast 317 

majority of stations across the US, we have Rayleigh wave group and phase speed curves as well 318 
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as a Rayleigh wave H/V curve and a receiver function, together with uncertainty estimates of all 319 

quantities. Examples of such station-specific data are presented in Figure 6 for the six stations 320 

identified in Figure 1b with red stars. Rayleigh wave data are presented on a discrete grid of 321 

periods with 1σ error bars. Receiver functions are presented in terms of a grey corridor, which 322 

also represents the 1σ uncertainty at each time.  323 

Much information about local structure can be seen directly in the data in Figure 6. For example, 324 

the reverberations in the receiver function, high H/V values at short periods, and slow short 325 

period group velocities reveal that the stations at Lambert, MT and Gary, TX lie in sedimentary 326 

basins. The strong Moho P-to-S phase conversion near 4.5 sec on the receiver function at 327 

Winston, NM indicates that there is a sharp Moho there. A later P-to-S conversion at Crested 328 

Butte, CO indicates a deeper Moho than at Winston, NM. The location of the airy phase on the 329 

group velocity curve at longer periods than at Winston, NM similarly is consistent with a deeper 330 

crust. The relatively flat receiver function at Red Bud, IL indicates a gradient or perhaps 331 

complicated Moho structure, which is consistent with a relatively shallow (nearly horizontal) 332 

airy phase on the group velocity curve.  333 

3. Joint Bayesian Monte Carlo Inversion 334 

We describe here the joint Bayesian Monte Carlo inversion. The inversion procedure is very 335 

similar to that applied by Shen et al. (2013a,b,c) to Rayleigh wave dispersion and receiver 336 

functions, except here the joint inversion is extended to incorporate measurements of Rayleigh 337 

wave H/V ratios in three steps. In the first step, we perform an initial Monte Carlo inversion 338 

without the involvement of receiver functions and the H/V ratio measurements. Such a inversion 339 

produces a model of the crust and uppermost mantle Vsv for the contiguous US based on surface 340 

wave dispersion alone. We refer to this as the surface wave or SW inversion. In the second step, 341 

we introduce receiver function data and H/V measurements. Figure 6 presents example fits to the 342 

data for six stations and demonstrates the compatibility of the three data sets that are inverted 343 

under the Bayesian Monte Carlo framework. The solid lines in each panel of Figure 6 show 344 

predicted data from the best-fitting model of the posterior distribution of models that results from 345 

the joint inversion. In the third and final step, a new 3-D model constrained by all three types of 346 

data (“All Data”) is generated. The model is determined from the posterior distribution of 347 
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accepted models beneath each station and model uncertainties are related to the spread of the 348 

posterior distribution.  349 

3.1 Model specification 350 

At present, the only surface wave data we use are Rayleigh waves (and not Love waves), which 351 

are primarily sensitive to Vsv. Thus, although we assume the model to be isotropic, 352 

Vsv=Vsh=Vs, and we refer to the model as a Vs model, it is actually a Vsv model. The Vs model 353 

beneath each station is stratified into three principal layers in which Vs changes smoothly 354 

vertically. The top layer is the sedimentary layer defined by three unknowns: layer thickness and 355 

Vs at the top and bottom of the layer with Vs increasing linearly with depth. The second layer is 356 

the crystalline crust, parameterized with five unknowns: four cubic B-splines and crustal 357 

thickness. Finally, there is the uppermost mantle layer with five cubic B-splines, yielding a total 358 

of 13 free parameters at each location. Thus, Vs changes smoothly with depth in the crust and 359 

mantle and, as discussed in the next paragraph, increases monotonically with depth in the crust. 360 

We set the thickness of the uppermost mantle layer so that the total thickness of all three layers is 361 

200 km. For the initial surface wave (SW) inversion, the model space is based on perturbations 362 

to a reference model consisting of the 3D model of Shapiro and Ritzwoller (2002) for crustal Vs, 363 

crustal thickness, and mantle Vs. The initial sedimentary model is from Mooney and Kaban 364 

(2010). Table 3 presents a summary of the range of perturbations to model variables allowed in 365 

the inversion. 366 

In addition, the following three prior constraints are imposed during the Monte Carlo sampling 367 

of model space. (1) Vs increases with depth across the two model discontinuities at the base of 368 

the sediments and Moho. (2) Vs increases monotonically with depth in the crystalline crust. (3) 369 

At all depths, Vs < 4.9 km/sec. These constraints are viewed as hypotheses to be tested. In the 370 

sedimentary layer, we scale Vp and density from Vs according to Brocher (2005): 371 

  Vp = 0.941 + 2.095Vs - 0.821Vs2 + 0.268Vs3 - 0.0251Vs4,   (1) 372 

  ρ = 1.227 + 1.53Vs - 0.837 Vs2 + 0.207Vs3 - 0.0166Vs4,   (2) 373 

where we have rounded here to three significant figures. This scaling relationship makes the 374 

Vp/Vs ratio greater than 2 in the sedimentary layer where Vs < 3 km/sec. In the crystalline crust 375 

and uppermost mantle, the Vp/Vs ratio is fixed to be 1.75. Equation (2) is also used for density in 376 
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the crystalline crust. In the mantle, density is scaled from Vs perturbations relative to 4.5 km/s 377 

with 10 kg/m3 per 1% velocity change (Hacker and Abers, 2003). The Q model from PREM 378 

(Dziewonski and Anderson, 1981) is used in the sedimentary layer and crystalline crust to apply 379 

the physical dispersion correction (Kanamori and Anderson, 1977) and each resulting model is 380 

reduced to 1 sec period. Shear Q in the mantle is set to be 150 across the entire study region and 381 

with depth. 382 

These choices reduce the volume of model space searched, but if they are inaccurate (as they will 383 

be at some locations), they will impose a systematic error on the resulting models. Systematic 384 

errors are discussed in section 5.3 and compared with random error, which we discuss in section 385 

4.2. 386 

3.2 Prior and posterior distributions 387 

Shen et al. (2013b) desribe Bayesian Monte Carlo joint inversion method in detail. The method 388 

is influenced strongly by Mosegaard and Tarantola (1995). We only provide a cursory summary 389 

here and concentrate on the presentation of the results. The joint inversion method constructs a 390 

prior distribution of models at each location defined by allowed perturbations relative to the 391 

reference model as well as model constraints. The principal output is the posterior distribution of 392 

models that satisfy the receiver function and surface wave data (Rayleigh phase and group 393 

speeds and H/V) within tolerances that depend on data uncertainties. The statistical properties of 394 

the posterior distribution quantify aspects of model error as discussed later in the paper. 395 

The Bayesian nature of the inversion refers to the fact that we sample model space to construct 396 

explicitly both the prior and posterior model distributions and that the relationship between these 397 

distributions is mediated by the Likelihood function and governed by Bayes Theorem. Let π(m) 398 

be the prior distribution of models and P(m) be the posterior distribution. Bayes Theorem tells us 399 

that  400 

     P(m) = k L(m) π(m)     (3) 401 

where k is a normalization constant (which does not affect the shape of the posterior distribution) 402 

and L(m) is the likelihood function, which is a measure of the degree of fit to the data by the 403 

model m as follows: 404 

     L(m) = exp(-S(m))     (4) 405 
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            S(m) = 
(di  di

pred )2

2 i
2

i1

N

      (5) 406 

Here di is an observation with uncertainty σi, di
pred is the predicted datum from model m, and N is 407 

the number of obervations. Shen et al. (2013b) modified the likelihood function by introducing 408 

an additional weight to discriminate between the dispersion measurements and receiver functions 409 

in the likelihood function (further downweighting the receiver functions) but that is not done 410 

here. The only data weights are the estimated measurement errors.  411 

The posterior distribution reflects both the prior constraints and the data used in the inversion. 412 

The Monte Carlo nature of the inversion refers to the fact that the search of model space is a 413 

stochastic process in which Markov chains of models are governed by a transition probability 414 

that depends on the fit to the data. The transition probability we use is the Metropolis Law, as 415 

described by Shen et al. (2013b). For each station we retain on average about 8500 models in the 416 

posterior distribution. Most of these models are not statistically independent of one another and 417 

we discuss the impact of this fact on our interpretation of the posterior distribution in section 4.1.  418 

Examples of marginal prior and posterior distributions for particular model characteristics are 419 

shown for two stations in Figure 7, in which there is an explicit comparision between results 420 

using surface wave dispersion alone (SW) and using all three data sets (All Data: surface wave 421 

disperion, receiver functions, H/V measurement). The prior distribution is represented with the 422 

grey histograms, the posterior distribution based on Rayleigh wave dispersion alone is presented 423 

as the black-outlined white histograms, and the posterior distribution based on all three data sets 424 

is shown with the red histogram. As seen in Figure 6a, because of a clear Moho P-to-S 425 

conversion in the receiver function at station Z21A (Winston, NM), the joint inversion better 426 

constrains lower crustal Vs and crustal structure (Fig. 7b,c). Surface wave data alone do not 427 

constrain either crustal thickness or the jump in Vs across Moho at this station well. As seen in 428 

Figure 6c (Lambert, MT), the receiver function and H/V ratio are characteristic of thick 429 

sediments, and the joint inversion better constrains shallow crustal structure than the inversion 430 

with surface wave dispersion alone (Fig. 7d). Because reverberations in the receiver function 431 

obscure a possible Moho P-to-S conversion in the receiver function, the joint inversion does not, 432 

however, constrain lower crustal structure or crustal thickness appreciably better than the surface 433 

wave dispersion data alone (Fig. 7e,f). The details of the inversion at each station depend on the 434 
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nature of the receiver function and H/V measurements, but on average the vertical discontinuity 435 

structure of the crust is clarified, and the vertical resolution of the model is improved by 436 

introducing these data into the inversion with surface wave dispersion data. This is discused 437 

futher in section 4.3 below. 438 

We present examples of resulting models at a variety of locations in Figure 8. Each model is 439 

presented beneath a single station and corresponds to the data presented in Figure 6. At each 440 

depth the width of the full posterior distribution is shown, as are the mean and standard deviation 441 

of the posterior distribution which we use to summarize the 3D model. 442 

3.3 Fit to the data 443 

There are fairly strong constraints imposed in the inversion, including the smoothness of the 444 

model between discontinuities, the monotonic increase of shear wave speeds with depth in the 445 

crust, particular relationships between Vs, Vp, and ρ as a function of depth, and a specified range 446 

of values considered for each model variable (Table 3). These constraints are imposed to reduce 447 

the model space searched and make the Monte Carlo search more efficient, but we view them as 448 

hypotheses which are tested in the inversion. The first question we have is whether the model is 449 

sufficiently flexible to allow the data to be fit across the entire region of study. If the data can be 450 

fit subject to the constraints, then extending the model beyond the constraints is not substantiated 451 

by the data alone. There may be good reasons to believe that the earth does not satisfy the 452 

particular constraints imposed here, but if the data are fit subject to the constraints this issue 453 

needs to be taken up in the construction of the prior distribution.  454 

Figure 9 presents a summary of data fit in the joint inversion of all three data types, in which the 455 

square root of reduced chi-squared is shown for Rayleigh wave phase speed, Rayleigh wave 456 

group speed, Rayleigh wave H/V measurements, and receiver functions. We refer to the square 457 

root of reduced chi-squared misfit as “reduced χ misfit”, which is defined as follows: 458 

 red  red
2 

2

N
S(m)





1/2

  (6) 459 

where S(m) is the misfit function defined for model m by equation (5) and N is the number of 460 

obervations. Misfit to the Rayleigh wave data (Fig. 9a-c) is averaged over period and misfit to 461 

the azimuthally independent receiver functions is averaged over time (from 0 to 10 sec). A χred of 462 
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unity means that the data are fit on average at the level of 1σ, where σ represents data error, a 463 

value of 2 implies that the data are fit on average at the level of 2σ, and so forth. 464 

On average, Rayleigh wave phase and group speeds are fit to better than 2σ (Fig. 9a,b). 465 

Exceptions occur in regions of thick sediments where short period group speeds are particularly 466 

sensitive; e.g., the Mississippi Embayment and Gulf Coast, the Green River basin of 467 

southwestern Wyoming, the Central Valley of California. In these regions, greater flexibility in 468 

the construction of the sedimentary model is probably required, perhaps to include a larger range 469 

and perhaps different depth variation of the Vp/Vs ratio and relaxation of the constraint on the 470 

monotonic increase of Vs with depth in the basin. H/V is also fit on average to better than 2σ 471 

(Fig. 9c) but there are more regions where the data are fit poorly. Again, most of these are in 472 

sedimentary basins and H/V is strongly sensitive to sedimentary structure. The overall higher 473 

level of misfit for H/V illustrates that this datum tends to compete with short period group speeds 474 

in the inversion. These two data types can be reconciled on average,  but greater model flexibility 475 

is probably needed in several locations across the US. We have chosen not to allow this greater 476 

flexibility here, choosing instead a single parameterization across the US for simplicity. The  477 

model presented in this paper is not intended to be the last word on structure across the US. As 478 

Figure 9d shows, receiver functions are typically fit to better than 1σ across the US. There are 479 

exceptional stations where azimuthally-independent receiver functions cannot be well fit jointly 480 

with the other data in the inversion, but they are rare. The exceptional fit to the receiver functions 481 

may mean that we have somewhat overestimated the uncertainties in the receiver functions. The 482 

effect is that we do not attempt to fit small wiggles in the azimuthally-independent receiver 483 

functions. 484 

4. Results 485 

At each location and for each depth, we summarize the posterior distribution of models with its 486 

mean ( ) and standard deviation ( ). Examples of the mean and standard deviation of the 487 

posterior distribution can be read off the vertical profiles shown in Figure 8. The addition of 488 

different data into the inversion makes the posterior distributions increasing Gaussian in 489 

character. This effect can be seen clearly in the marginal distributions presented in Figure 7. For 490 

example, at station Z21A (Fig. 6a-c), the prior distributions are approximately uniform for all 491 

three model variables. For the inversion using surface wave data alone, the posterior distribution 492 

m  m
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is strongly bi-modal in the lower crust and fairly uniform for crustal thickness. However, when 493 

receiver functions and H/V measurements are added to the inversion, the posterior distributions 494 

are much more Gaussian in shape and not multi-modal. This is also true for stations C23A in the 495 

shallow crust (Fig. 6d) where the introduction of H/V measurements strongly has affected the 496 

posterior distribution. However, the posterior distribution in the lower crust and for crustal 497 

thickness is bi- or multi-modal (Fig. 6e-f) because sedimentary reverberations in the receiver 498 

function at this location obscure constraints on crustal thickness. At most locations and for most 499 

model characteristics across the US, the mean and standard deviation provide reliable summaries 500 

of the posterior distribution except in a small minority of cases when lower crustal and Moho 501 

distributions may bifurcate. Thus, in the following we summarize the model in terms of these 502 

statistics, ( , ), but retain the caveat that in some locations (particularly in sedimentary 503 

basins) the posterior distribution may possess complications not captured by the mean and 504 

standard deviation. To define the final 3D model, we follow Shen et al. (2013a,b) and apply 505 

simple kriging to interpolate the depth dependent quantities ( , ) onto a 0.25°x0.25° grid, 506 

and construct a uniform model of the crust and uppermost mantle to a depth of 150 km across the 507 

US. 508 

4.1 Regionally averaged models and variations within each region 509 

Before turning to discuss the sub-regional scale variations in the 3D model, we first seek to 510 

assess large-scale averages and variations in the model. To do this we divide the contiguous US 511 

into three regions, identified in Figure 10a as the western region, the continental core region, and 512 

the eastern region. The eastern region also encompasses much of the South, and is perhaps best 513 

viewed as the margin of the continent that has been tectonically modified with influence from the 514 

South and East. Figure 10b presents the three regional averages computed from the mean of the 515 

posterior distribution at each station across each region. At each location we stretch or compress 516 

the crustal model vertically to match the average crustal thickness in the region before computing 517 

the regional average. Similarly, depth in the mantle is taken relative to Moho depth which we 518 

then normalize to the average Moho depth. Not surprisingly, the recently tectonically deformed 519 

western region is distinct, with considerably slower crust and mantle and thinner crust than the 520 

other regions. The eastern region is also somewhat slower than the core region with a thinner 521 

crust.  522 

m  m

m  m
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Spatial variations across each of the three regions are shown in Figure 10c, in which the standard 523 

deviation relative to the regional mean is presented at each depth. Spatial variability is greatest 524 

near the surface, which is caused predominantly by variations between locations with and 525 

without sediments. Due to the exceptionally thick sediments in the Mississippi Embayment, the 526 

greatest shallow variability lies in the eastern region. In the middle crust, the western region is 527 

considerably more variable (~3%) than the other regions, being approximately twice as variable 528 

as in the core region (~1.5%). Variability peaks up near the Moho due to lateral variations in 529 

Moho structure; some locations have a gradient Moho others have a sharp Moho. These 530 

variations have a greater imprint on uppermost mantle structure than on lower crustal structure 531 

and decay quickly with depth in the mantle. In the mantle, regional variations lie between 1.5% 532 

(eastern region) and 3% (western region). The core region has larger geographical variations in 533 

the mantle than the eastern region due to heterogeneity beneath the western Great Plains, which 534 

appears to be affected by orogens that lie largely in the western region and affect crustal structure 535 

only in the western region. Mantle heterogeneity in the core region, which is about 2%, is 536 

actually larger than mid-crustal heterogeneity in that region (~1.5%). 537 

4.2 Assessing model uncertainty: Fluctuations, random errors, and systematic errors 538 

In order to interpret the spatial variations observed in the means of the posterior distributions, it 539 

is necessary to compare them with estimates of model uncertainties. One candidate for model 540 

uncertainty is the standard deviation of the posterior distribution, , whose average across the 541 

contiguous US as a function of depth is shown with the solid black line in Figure 11a. Average 542 

values for  are about 1.5% in the crust, although they dip appreciably in the middle crust, and 543 

are somewhat larger in the mantle (~1.8% on average). These values peak near the free surface 544 

and Moho due to trade-offs between internal structures and boundary topography.  545 

A great many factors affect the standard deviation of the posterior distribution, . Posterior 546 

distributions are affected by uncertainties in the data, which control which models are accepted 547 

to form the distributions, but they are also affected strongly by trade-offs between model 548 

variables at different depths. Vertical model oscillations are particularly troublesome and 549 

important, and are often non-physical. In defining the prior distribution, we have attempted to 550 

limit such oscillations and trade-offs by introducing vertically smooth basis functions as well as 551 

model constraints (positive jump across discontinuities, maximum velocity in each layer, 552 

 m
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monotonic increase of shear wave speed in the crust). Nevertheless, the spread of the posterior 553 

distribution still reflects such effects and, as a consequence, strongly reflects the model prior. 554 

Indeed, relaxing the prior constraints produces more vertically oscillatory models which 555 

produces a larger standard deviation in the posterior distribution, but with a much smaller impact 556 

on the mean of the distribution. For this reason, the standard deviation of the posterior 557 

distribution does not provide an ideal estimate of the stability or reliability of the mean of the 558 

posterior distribution, which we take as the value of the model at each location and depth.  559 

The inadequancy of to measure model uncertainty can be seen further by comparing the 560 

spatially averaged , shown with a solid black line in Figure 11a, with the spatial variations 561 

within each of the three regions, shown in Figure 10c. The spatially averaged  is about the 562 

same size as the variations within each region. If  were used as the estimate of model 563 

uncertainty, then the interpretation of structural variations within regions may be questionable. 564 

The geological coherence of the model and the stability of the posterior distributions, however, 565 

imply that  is an overly conservative estimate of model uncertainty, albeit one that captures 566 

an estimate of the relative reliability of the resulting model. An example of this is shown in 567 

Figure 11b, which illustrates that the mean of the posterior distribution at 70 km depth in the 568 

mantle changes smoothly along the Snake River Plain, and fluctuates at a level much smaller 569 

than . 570 

We seek a more useful estimate of model uncertainty than . In doing so we would like to 571 

discriminate between model fluctuations, which we interpret as random errors caused 572 

predominantly by observational errors, from systematic errors caused by choices made in the 573 

construction of the prior distribution, including such things as model parameterization, the extent 574 

of the model space searched, and constraints imposed in the inversion. Let us define the notation 575 

< . > to mean the expected value of an estimated quantity, and “e” to represent model error. 576 

Thus, the expected value of the estimated model, < m >, will be a combination of the real model, 577 

m, and the estimated error, < e >, as follows: 578 

  < m > = m + < e > = m + < esys + eran > = m + < esys > + < eran >  (7) 579 

We consider the model error to arise from two components, a systematic (esys ) and a random 580 

(eran) contribution. The last equality in equation (7) follows from the assumed independence 581 
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between the systematic errors, which are caused locally by the deviation of the earth from our 582 

assumptions and constraints, and the random errors, which are caused by other non-systematic 583 

factors such as measurement errors. 584 

Our approach is to equate random error with model fluctuations, which are inversely related to 585 

the stability of the mean of the posterior distribution. The aim is for our assessment of random 586 

error to reflect the fluctuations observed in the model, such as those seen in Figure 11b along the 587 

Snake River Plain. We posit that the standard deviation of the mean of the posterior distribution, 588 

, provides a reasonable estimate of the stability of the mean of the model or the random error 589 

in the model, < eran >, and that this error is controlled largely (but not exclusively) by 590 

measurement error. One method to estimate  is to scale the standard deviation of the posterior 591 

distribution ( ) by the inverse square root of the number of independent models in the 592 

distribution. We describe how we estimate the number of independent models in the next 593 

paragraph, but when we apply the scaling we obtain an average  across the US shown with a 594 

dashed line in Figure 10c and a red line in Figure 11a. We estimate that on average in the central 595 

crust is about 0.2% and in the mantle to about 100 km depth it is about 0.4% except directly 596 

beneath Moho. These values are considerably smaller than the variations we observe within the 597 

three regions of Figure 10 and fairly represent our degree of belief in the model characteristics. 598 

The variations in structure within the regions are the subject of sections 4.3, 4.4, 5.1, and 5.2. 599 

The standard deviation of the mean of the posterior distribution, , which we identify with the 600 

random model error, is determined from the mean of the posterior distribution here by dividing 601 

by a number between 4 and 5. We arrive at this range by determining that the number of 602 

independent models in the posterior distribution is 0.2% - 0.3% of the models in the distribution. 603 

The average number of models in the posterior distribution is about 8500; thus only between 604 

about 16 and 25 models are independent, on average, and applying the square root we get a 605 

scaling factor of 4 or 5. The procedure we use to determine the number of independent models is 606 

based on the discussion of Mosegaard and Tarantola (1995), who present a method based on 607 

analyzing the likelihood function within the equilibrium part of each Markov chain. Let mi be 608 

an ordered set of models that compose the equilibrium part of a Markov chain sampling of model 609 

space. Typically, the Likelihood function increases in magnitude as the Markov chain progresses 610 

from the initial or seed model and then plateaus (e.g., Shen et al., 2013b, Fig. 8) where it 611 
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oscillates. The equilibrium part of the Markov chain is the plateau region. Now consider the 612 

discrete function L(mi), which is the likelihood as a function of model number within the 613 

equilibrium region of the Markov chain. Mosegaard and Taratola suggest computing the 614 

autocorrelation of L(mi) such that the number of models that are required for the autocorrelation 615 

to return to 0 is the number of models needed to re-establish statistical independence. Given our 616 

sampling algorithm, we find that the Markov chain has to march through between 300 and 500 617 

accepted models before it achieves independence relative to its starting state. Thus, only 618 

approximately 1 in 300 to 500 models in the posterior distribution are independent. This means 619 

that, on average, the local standard deviation of the distribution should be divided by between 4 620 

and 5 to estimate the standard deviation in the mean of the distribution, , which we equate 621 

with < eran >. 622 

As a consistency test of this estimate of the standard deviation of the mean of the posterior 623 

distribution, , we have performed several brute force calculations of the standard deviation of 624 

the mean for a number of stations by re-running the Bayesian Monte Carlo inversions many 625 

times. This allows us to construct a set of different posterior distributions from which we can 626 

compute the standard deviation of the mean across these distributions. The results for station 627 

X57A (Hartsville, SC) are shown in Figure 11c, which compares the standard deviation of the 628 

mean with the original standard deviation of the posterior distribution at this point. On average, 629 

from 5 to 150 km depth, the standard deviation of the mean, , is about 25% of the standard 630 

deviation of the posterior distribution,  . This result is consistent with the scaling analysis 631 

based on the Likelihood function, but is numerically much more expensive to compute. We 632 

obtain similar be not identical results at other stations.   633 

In the rest of the paper and in all figures, when summarizing the posterior distribution we will 634 

present the standard deviation of the posterior distribution, , which provides a reasonable 635 

relative error estimate. To estimate the random error in order to quantify the stability of the 636 

model, however, one should divide these values by 4 - 5 to get a better estimate of the standard 637 

deviation of the mean, . The standard deviation of the mean not only includes the effect of 638 

measurement errors but also the effects of covariances between model variables and, therefore, 639 

remains a fairly conservative estimate of model uncertainty caused by random errors. However, 640 

the standard deviation of the mean does not include the effect of systematic errors caused by 641 
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erroneous assumptions and constraints imposed in the inversion. An assessment of the nature and 642 

potential magnitude of systematic error is presented in section 5.3. 643 

4.3 Crustal model 644 

Horizontal slices of the mean of the posterior distribution for several depths in the crust are 645 

presented in Figure 12. Figure 12a,b illustrates the effect on estimated shallow structures of the 646 

inclusion of receiver functions and Rayleigh wave ellipticity measurements. Sedimentary basins 647 

dominate the structural variations in the top 5 km of the crust. The introduction of receiver 648 

functions and Rayleigh wave ellipticity measurements brings shallow structures, notably 649 

sedimentary basins, into sharper focus both laterally and vertically. This improves the crustal 650 

model, at least in the upper half of the crust.  651 

There are a great many crustal features worthy of note and serious discussion, but this is beyond 652 

the scope of this paper. However, we note that there is stronger variation across the mid-653 

continent in the middle crust than in the lower crust. We believe that the relatively low wave 654 

speeds (green anomalies) in the middle crust in Figure 12c across Nebraska, Kansas, Missouri, 655 

and Iowa are what Chu and Helmberger (2014) refer to as the “massive low velocity zone in the 656 

lower crust”. If so, it is in fact a mid-crustal feature and although large in areal extent is only 657 

slow in a relative sense. 658 

We note that the discussion in section 4.1 based on the regionalization of the US into three 659 

regions was motivated by lower crustal structure, which is quite homogeneous across the core of 660 

the continent between the Rocky Mountain Front and the Greenville Front, which cuts across the 661 

South and eastern Midwest of the US.  662 

The mean of the posterior distribution for crustal thickness is presented in Figure 13. The 663 

thickest crust lies under the Rocky Mountains in Colorado, and the thickest crust in the East is 664 

beneath the Appalachian Mountains. These results are not surprising, but there are many local 665 

variations in crustal thickness that deserve greater attention than we can pay them here; e.g., the 666 

very thin crust of eastern North Dakota, the thick crust extending from western New York 667 

through Kentucky in the region between the Greenville Front and the Appalachian Mountains, 668 

and the large region of relatively thick crust spanning the Mid-Continent Rift.  669 
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The mean of the posterior distribution of the vertical jump in Vs from the crust to the mantle is 670 

presented in Figure 14.  On average Vs increases across the Moho from the crust to the mantle 671 

by about 300 m/s. However, there is substantial variation. For example, there are much larger 672 

jumps across the Moho in much of the Basin and Range province and in southern Ontario 673 

between Lake Huron and Lakes Erie and Ontario. However, much smaller jumps produce a near 674 

gradient Moho, which is observed beneath the Colorado Plateau, in the Pacific Northwest 675 

overlying the subducting slab, beneath Illinois and in other places distributed across the US. 676 

The standard deviation of the posterior distribution of crustal velocities, crustal thicknesses, and 677 

the jumps in Vs across Moho, are presented in Figures 15, 13b, and 14b, respectively. As 678 

discussed in section 4.2, to obtain an estimate of the standard deviation of the mean of the 679 

posterior distribution, which is a better representation of the random error in the model, one 680 

should divide the uncertainties shown in Figures 15, 13b, and 14b by approximately 4-5. 681 

Uncertainties in the Vs jump across Moho are presented in Figure 14b. Generally, uncertainties 682 

are largest where the jumps in Vs are largest; for example, the Basin and Range and the Colorado 683 

Rocky Mountains. Large jumps are usually imposed by the receiver functions, which do not 684 

provide precise constraints on the magnitude of the jump in Vs. 685 

Uncertainties in crustal velocities grow toward the top and bottom of the crust, as shown in 686 

Figure 11a and discussed already, and are quite laterally homogeneous across the US (Fig. 15). 687 

They are largest in the Mississippi Embayment due to the extremely thick sediments found there. 688 

The geographical pattern of uncertainties in crustal thickness correlates with crustal thickness 689 

such that the larger uncertainties tend to be near the core of the continent. The depth of Moho for 690 

thicker crust is simply harder to determine than for thinner crust because the airy phase in the 691 

group velocity curve, which reflects crustal thickness, migrates to longer periods and is more 692 

difficult to resolve clearly. The introduction of receiver functions in the inversion reduces the 693 

uncertainty in crustal thickness, on average. This is shown in Figure16a. The inversion of surface 694 

wave dispersion together with receiver functions and Rayleigh wave ellipticity reduces 695 

uncertainty in Moho depth at about 2/3 of the stations. At the other stations, however, the 696 

introduction of receiver functions in the inversion actually increases the uncertainty. In many 697 

cases this is because the receiver function reveals that the station is underlain by a gradient Moho 698 

or a complicated Moho structure such that crustal thickness is difficult to resolve. Indeed, the 699 
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uncertainty in crustal thickness is strongly correlated with the jump in Vs across Moho as Figure 700 

16b shows. A gradient Moho, characterized by a small jump at Moho, tends to produce large 701 

uncertainties in crustal thickness. 702 

4.4 Mantle model 703 

Uppermost mantle structure directly beneath the Moho varies strongly across the US as shown in 704 

Figure 17. Across most of the US, the vertical slope of uppermost mantle Vs right beneath the 705 

Moho is essentially neutral such that Vs changes only minimally with depth. A vertical profile 706 

that provides an example of this is at Hartsville, SC, and is seen in Figure 8f. Such locations are 707 

colored white in Figure 17. At some locations, however, there is a strong negative slope with 708 

depth in the uppermost mantle, which typically indicates the existence of a low velocity zone 709 

(LVZ) in the shallow mantle. Such locations are identified with warm colors in Figure 17 and are 710 

mainly confined to the western US. An example vertical profile is at Crested Butte, CO as can be 711 

seen in Figure 8b. In contrast, some locations have a positive slope with depth, meaning that 712 

there is no LVZ in the shallow mantle. Such locations are identified with cool colors in Figure 17 713 

and are mainly found in the eastern US. An example vertical profile is at Red Bud, IL as can be 714 

seen in Figure 8e. Typically, shallow mantle LVZs are found across much of the western US 715 

outside the Wyoming craton, the Colorado Plateau, and the Cascadia subduction zone. The 716 

strongest positive slopes in the uppermost mantle occur between the Greenville Front and the 717 

Appalachian Mountains, although weaker positive slopes also extend across large parts of the 718 

Midwest. 719 

Several horizontal slices of Vs at depths of 70, 90, and 120 km in the upper mantle are presented 720 

in Figure 18. The most prominent contrast is the East-West dichotomy. Many of the structural 721 

features within the West (e.g., Snake River Plain and High Lava Plains low velocity anomaly, 722 

rimming low velocity anomalies around the Colorado Plateau, Wyoming craton) are well known 723 

now, as they appeared in earlier studies that were prefaces to the current paper (e.g., Moschetti et 724 

al., 2007, 2010a,b; Yang et al., 2008, 2011; Bensen et al., 2009; Lin et al., 2011; Shen et al., 725 

2013a,b,c). Unlike low velocity anomalies that typically attenuate with depth, the Wyoming 726 

craton high velocity anomaly increases with prominence with depth. The Cascadia slab is 727 

apparent at 120 km depth. The most prominent upper mantle anomaly in the East is the Reelfoot 728 

Rift (Pollitz and Mooney, 2014), which is predominantly a shallow low velocity mantle anomaly. 729 
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Relative low velocities in the uppermost mantle also underlie the Appalachian Mountains, the 730 

most prominent of which are found beneath New England and western Virginia.  731 

The standard deviation of the posterior distribution in upper mantle shear wave speeds is 732 

presented in Figure 19. Again, as discussed earlier, to obtain a better estimate of the random 733 

error in the model, one should divide the uncertainties shown in Figures 19 by approximately 4-734 

5. Uncertainties are fairly homogeneous with location across the US but grow below 100 km 735 

depth as Figure 11a indicates. 736 

5. Discussion 737 

The features of the model are often most clearly discerned in vertical transects. Here we expand 738 

the discussion of model features by discussing four long East-West transects across the entire US 739 

as well as three pairs of shorter vertical profiles situated in crossing patterns through notable 740 

features: the Snake River Plain, the Reelfoot Rift, and the Appalachian Mountains with the bulls-741 

eye of the last pair of profiles in western Virginia. The locations of these profiles are identified in 742 

Figure 20. In addition, we discuss the potential for systematic bias of the resulting 3D model.  In 743 

particular, we consider the effect of the assumed relation between Vs and density as well as our 744 

assumption of a constant intermediate Q value of 150 in the mantle.  745 

5.1 Long East-West transects through the model 746 

Figure 21 presents vertical transects through the 3D model across the entire US along four lines 747 

of latitude: A-A’ 46.5°N, B-B’ 42°N, C-C’ 38°N, D-D’ 34°N. As with the horizontal views of 748 

the model shown in Figures 12 and 18, the vertical transects present the mean of the posterior 749 

distribution at each depth derived from the model based on all data: surface wave dispersion, 750 

receiver functions, and Rayleigh wave H/V measurements. Each vertical transect is divided into 751 

a “crustal panel”, which presents the top 60 km, and a “mantle panel”, which presents depths 752 

from 30 to 150 km. The vertical exaggeration of the crustal panel is greater so that crustal 753 

features can be seen.  Crustal velocities are presented as absolute quantities, but mantle velocities 754 

are presented as perturbations relative to 4.4 km/s. 755 

Transect A-A’ goes through the northern Cascades and northern Rocky Mountain Cordillera, the 756 

Great Plains of Montana, North Dakota, and Minnesota, through the Upper Peninsula of 757 

Michigan and parts of Lake Superior, through southern Ontario and Quebec, and then terminates 758 
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near the northern tip of Maine. Six model features are particularly noteworthy, which we discuss 759 

from west to east, most of which are near the western end of the profile. (1) The supraslab mantle 760 

wedge is imaged as a slow feature in the uppermost mantle beneath the Cascades. The 761 

subducting slab lies to the west of the wedge and appears as relatively fast locally. (2) Shallow 762 

low velocities underlie the Pasco basin of south-central Washington. (3) Relatively low crustal 763 

velocities lie beneath the Cordillera, although the thickest crust along the transect lies east of the 764 

Cordillera beneath the Great Plains of Montana and western North Dakota. (4) The fast mantle 765 

wave speeds of the Great Plains set on slowly east of the Cordillera through eastern Montana so 766 

that there is no abrupt onset of high mantle wave speeds in the West at this latitude. (5) In eastern 767 

North Dakota, crustal thickness reduces abruptly and enigmatically. (6) The model is relatively 768 

homogeneous from Minnesota eastward both in the crust and mantle, with the highest wave 769 

speeds in the mantle occurring from Minnesota to Michigan. 770 

Transect B-B’ extends along 42°N from the southern Cascades, through the northern Basin and 771 

Range province and high lava plains, through the Wyoming Craton and central Great Plains, and 772 

terminates in eastern Massachusetts. We highlight four features from west to east. (1) The 773 

relatively high-velocity subducting slab contrasts with the exceptionally low velocity supraslab 774 

mantle wedge, which merges with the slow upper mantle beneath the Basin and Range province 775 

and high lava plains to the east. (2) The very slow Green River sediments overlie the Wyoming 776 

craton that has velocity anomalies that amplify with depth in the mantle. (3) Relatively slow 777 

mantle velocities lie between the Wyoming craton and the Great Plains, following the “Cheyenne 778 

Belt” (e.g., Houston et al., 1989) from northeastern Colorado to the Black Hills (Fig. 18b,c) of 779 

southwestern South Dakota. (4) Fast mantle velocities found across the eastern US terminate 780 

abruptly near the edge of the northern Appalachians in eastern New York.  781 

Transect C-C’ extends along 38°N from the Great Valley of California, through the Sierras, the 782 

Basin and Range province, the Colorado Plateau and Rockies, the Rio Grande Rift and then 783 

across the central Great Plains and Appalachians to terminate near the coast of central Virginia. 784 

This transect has a large number of noteworthy features, which we again discuss them from west 785 

to east. (1) The sediments of the Great Valley appear clearly. (2) Low upper mantle velocities 786 

underlie the central Basin and Range province beneath a clearly defined mantle lid. As seen in 787 

Figure 14, some of the strongest uppermost mantle negative vertical velocity gradients exist in 788 

the central Basin and Range province. This is not because uppermost mantle velocities beneath 789 
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the central Basin and Range province are the lowest across the continent, but because of the 790 

existence of a high velocity lid right below Moho. (3) The crust and mantle of the Colorado 791 

Plateau are distinct from surrounding areas, being much faster than the Basin and Range or the 792 

Colorado Rockies. (4) In contrast, the crust and mantle of the Colorado Rockies are quite slow 793 

and the thickest crust along this transect occurs beneath the Rockies. (5) High velocities in the 794 

crust and mantle beneath the Great Plains set on rapidly east of the Rocky Mountain front, 795 

although the transition occurs near to the front in the crust and farther to the east in the mantle. 796 

(6) Low velocities occur in the mantle beneath the eastern Appalachians in western Virginia near 797 

the eastern edge of thick crust. Thinner crust is observed in eastern Virginia but it is underlain by 798 

faster mantle.  799 

Finally, transect D-D’ extends along 34°N from the southern California coast near Los Angeles, 800 

through the Coastal Range and Mojave Desert, through the southern Basin and Range Province, 801 

across the Rio Grande Rift, through the southern Great Plains, the Mississippi Embayment and 802 

the Reelfoot Rift, and the southern Appalachians, to terminate near the coast of southern North 803 

Carolina. (1) Low velocity mantle underlies the Mohave Desert and southern Basin and Range 804 

province, but as with the Basin and Range farther north there is a significant relative high 805 

velocity lid in the uppermost mantle. (2) The lowest mantle wave speeds lie beneath the Rio 806 

Grande Rift, and they are shallower than the lowest velocities beneath the Basin and Range 807 

province. (3) The Great Plains high velocities in the mantle set on abruptly near the eastern 808 

terminus of the Rio Grande Rift. (4) At this latitude, the thickest Mississippi Embayment 809 

sediments lie just to the west of the Reelfoot Rift, which appears as a shallow mantle relative low 810 

velocity feature. (5) Relatively low wave speeds in the uppermost mantle extend from the 811 

Reelfoot Rift in southern Arkansas across the southern US to eastern South Carolina and then are 812 

replaced by faster mantle shear wave speeds nearer to the Atlantic coast. 813 

5.2 Shorter crossing transects through the model 814 

The transects X1 and X2 in Figure 22a run along and across the Snake-River Plain (SNP). 815 

Profile X2 runs along the SNP. The slow mantle velocities predominantly lie between depths of 816 

50 and 100 km, deepen slightly to the southwest along the SNP, and are slowest where the SNP 817 

crosses 42.7°N latitude, which is considerably west of Yellowstone. The crossing profile, X1, 818 

illustrates the cross-sectional width of the low velocity anomaly in the mantle beneath the SNP. 819 
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This profile also contrasts the SNP low velocity anomaly with the high velocities beneath the 820 

Wyoming craton southeast of the SNP. The velocity anomaly beneath the Wyoming craton 821 

intensifies with depth in contrast to the shallower focus of the low velocity anomaly beneath the 822 

SNP.  823 

Transects Y1 and Y2 in Figure 22b run through a geologically much older feature, the Reelfoot 824 

Rift. The amplitude of the velocity anomaly is, therefore, smaller. The profile along the rift, Y2, 825 

shows that the lowest mantle shear wave speeds lie between depths of about 50 and 90 km. The 826 

lowest velocities lie in a nearly horizontal band, but relatively low velocity anomalies extend 827 

deeper into the mantle in the southwestern part of the profile. The crust thickens along the rift to 828 

the northeast and becomes faster in the northern part of the rift compared to the southern rift, as 829 

evidenced by upward curved crustal isolines. The crossing profile, Y1, reveals the width of the 830 

mantle low velocity anomaly. The low velocity anomaly beneath the far southern extent of the 831 

Appalachians in the shallow mantle also can be seen in profile Y1.  832 

Transects Z1 and Z2 in Figure 22c lie along and transverse to the Appalachian Mountains, 833 

crossing in western Virginia. Transect Z2 highlights that along the Appalachians there are three 834 

centers with mantle low velocity anomalies: beneath northern Georgia, beneath the Blue Ridge 835 

Mountains of western Virginia, and below the Green Mountains and White Mountains of New 836 

England. The transverse profile in Z1 goes through western Virginia and shows that the anomaly 837 

is concentrated in the shallow mantle, but extends through the model to at least 150 km. This is 838 

in contrast the northern Georgia anomaly, which is confined to the shallow mantle above 80 km 839 

depth, but is similar to the anomaly beneath New England. The New England velocity anomaly 840 

is considerably stronger than the other two along the Appalachians and is arguably stronger than 841 

the anomaly that underlies the Reelfoot Rift. We note that Chu et al. (2013) discuss a potential 842 

Cretaceous hot spot track that would lie along the central and northern Appalachians, from 843 

western Virginia into New England where mantle low velocities are seen in Figure 22c. 844 

Due to different average velocities in the mantle and different color scales it may not be 845 

immediately obvious that the velocity anomalies in Figure 22 beneath the Snake River Plain are 846 

much slower than beneath the Reelfoot Rift and the Appalachians. The lowest velocities beneath 847 

the SNP are about 8% below 4.3 km/s (~3.96 km/s) but the lowest velocities beneath New 848 

England are only about 4% below 4.55 km/s (~4.36 km/s). Nevertheless, mantle structure 849 
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beneath the Reelfoot Rift and the Appalachians illustrates that significant mantle heterogeneity 850 

occurs across the central and eastern US. 851 

5.3 Potential for systematic error 852 

In section 4.2, we considered of estimate of model error, < e >, to be composed of systematic and 853 

random components: 854 

      < e > = < esys > + < eran >    (8) 855 

We argued that < eran > should encompass model fluctuations and will be controlled 856 

predominantly by errors in the data, although trade-offs between model variables at different 857 

depths are also important. We came to identify it with the standard deviation of the mean of the 858 

posterior distribution at each location and depth: 859 

            < eran > =      (9) 860 

We computed  by scaling the standard deviation of the posterior distribution, , inversely 861 

by the square root of the number of independent models in the posterior distribution, and 862 

estimated this number by considering the characteristics of the Likelihood function as suggested 863 

by Mosegaard and Tarantola (1995). We found on average that to compute  we needed to 864 

scale  by 1/4 – 1/5. On average, this result captures our degree of belief in the models 865 

concerning the effect of non-systematic errors in the mean of the posterior. Estimates of random 866 

error are designed to capture model stability and quantify the degree of fluctuation in the model 867 

that results from measurement error. However, as we discuss here, systematic errors may be 868 

considerably larger than random errors and random error estimates should be seen as providing a 869 

lower bound on the likely errors in the resulting model.  870 

The evaluation of systematic errors in the resulting model is a thornier subject than random 871 

errors because it involves an assessment of the effect of assumptions and constraints imposed in 872 

the inversion in the final models, and we do not know how the earth deviates from our 873 

assumptions. Three of the most important effects to consider are: (1) the scaling of Vp with Vs, 874 

(2) the scaling of density (ρ) with Vs, and (3) the choice of Q in the mantle. The effect of the 875 

choice of Q on the estimated model arises through the correction for physical dispersion 876 

(Kanamori and Anderson, 1977), which is strongest when Q is low. The large Q of the crust 877 

mitigates the effect on our model of ignorance of its exact value, but Q in the mantle is typically 878 

 m

 m  m

 m

 m
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much smaller which means that ignorance of mantle Q may have a more significant impact on 879 

the estimated model. The assumptions we made about Vp, ρ, and Q are discussed in section 3.1, 880 

in equations (1) and (2) and the paragraph that follows them.  881 

Shen et al. (2013b) discussed at some length the effect of varying the Vp:Vs ratio in the 882 

inversion. They introduced the crustal Vp:Vs ratio as a variable in their inversion and found two 883 

important effects. First, they found that using surface wave dispersion data and receiver 884 

functions truncated 10 sec after the P-phase arrival, the posterior distribution of Vp:Vs was 885 

approximately uniform. This means that Vp:Vs could not be estimated with the data they used. 886 

We introduce Rayleigh wave H/V measurements relative to their data set but do not believe that 887 

this will influence the posterior distribution of Vp:Vs appreciably. Second, they found that the 888 

choice of the Vp:Vs ratio dominantly affected their estimate of crustal thickness. Varying Vp:Vs 889 

from 1.70 to 1.80, for example, changes the mean of the posterior distribution for crustal 890 

thickness by about 3 km, on average. Thus, a reasonable estimate of the effect on crustal 891 

thickness of variations in Vp:Vs around the value of 1.75 that we impose in the crust is about 892 

±1.5 km.  This will impact regions where receiver functions constrain crustal thickness in our 893 

model and, therefore, will exclude sedimentary basins where reverberations in the receiver 894 

functions typically obscure the observation of the time of the Moho phase conversion. The 895 

standard deviation of the mean of crustal thickness in the posterior distribution (Fig 13b, divided 896 

by 4-5) is on average about 1 km across the US. Thus, the systematic error caused by Vp:Vs 897 

deviating from our assumed value of 1.75 in the crust may very well be larger than random error 898 

in some locations. 899 

We now discuss systematic effects on the estimated models due to Q in the mantle differing from 900 

our assumption of 150 and ρ in the crust differing from the relation with Vs given by equation 901 

(2). The results we present here are shown for the inversion at station X57A in Hartsville, SC. 902 

Results at other stations are similar but not identical.  903 

Rayleigh wave phase speeds are sensitive to Q because Vs presented in the model depends on the 904 

physical dispersion correction (Kanamori and Anderson, 1977). Figure 23a illustrates the effects 905 

of changing Q in the mantle from 150 to both 75 and 300 using blue and green lines, 906 

respectively. The effect on H/V measurements is shown in Figure 23b. Halving Q from 150 to 75 907 

has a larger effect than doubling Q from 150 to 300 on Rayleigh wave phase speeds and H/V 908 
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measurements. The affect on estimates of the mean of the posterior distribution of changing 909 

mantle Q from 150 to 75 and 300 is shown in Figure 23c. The effect is largely confined to the 910 

mantle with much smaller effects in the crust. If mantle Q were in fact 75 rather than the 150 we 911 

assumed, then the estimated Vs in the mantle would be increased by about 0.7% on average from 912 

60 to 150 km depth. In contrast, if Q were actually 300 then the estimated Vs in the mantle 913 

would be decreased on average by about 0.4% in the same depth range. Because much of the 914 

western US probably may have a lower mantle Q than 150 and the eastern US probably has a 915 

larger Q than this value (Dalton et al., 2008), model bias due to the assumed Q model is probably 916 

larger in the West than in the East. The net impact is that our estimate of mantle Vs in the West 917 

may be biased low by in excess of 0.5%. The Vs values we estimated in the East may be biased 918 

high by this effect by a smaller value, perhaps in excess of 0.25%. The bias in the East due to 919 

uncertainty in Q probably lies within the standard deviation of the mean, which we equate with 920 

random error, but the bias in the West may be larger than our estimate of random error. 921 

However, both in the West and in the East the bias may be spatially coherent over large areas. 922 

Rayleigh wave phase speeds and H/V measurements also possess sensitivity to crustal density. 923 

Figure 24 presents sensitivity kernels showing the sensitivity of Rayleigh wave phase speeds and 924 

H/V measurements to density and Vs perturbations. An important difference is that for phase 925 

speeds the density kernel changes sign. A positive Vs perturbation in the crust will produce a 926 

positive perturbation in Rayleigh wave phase speed, but a positive crustal density perturbation 927 

will produce an effect on phase speed that could be positive, negative, or zero depending on 928 

period and how the perturbation is distributed vertically in the crust. However, for density 929 

perturbations that are focused on the top half of the crust, a positive crustal density perturbation 930 

will produce a negative effect on phase speed. For H/V, the shapes of the Vs and density kernels 931 

are similar and both change sign with depth. However, the largest kernel amplitudes are negative 932 

and near the surface. Again, if perturbations are focused in the upper half of the crust then 933 

positive perturbations in density or Vs will produce negative perturbation on H/V. Finally, it is 934 

worth noting that for kernels that change sign in the crust, the effect of perturbations applied 935 

across the whole crust will tend to cancel. As described in the next paragraph, we apply a 936 

constant crustal density perturbation across the entire crust. Thus, the effect both on phase speeds 937 

and H/V is mostly at long periods where the sign change of the kernel occurs in the mantle.  938 
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Figure 23a,b show the impact on phase speed and H/V measurements of changing crustal density 939 

by 0.1 g/cm3 across the entire crust relative to the value given by equation (2). This perturbation 940 

ranges from 3% to 4% depending on depth in the crust. A positive crustal density perturbation 941 

will decrease phase speed at all periods, but due to the oscillation of the sensitivity kernel in the 942 

crust at short periods the impact will be experienced dominantly at intermediate periods (Fig. 943 

23a). Similarly, the impact on H/V will predominantly be at longer periods (Fig. 23b). Bias of 944 

the model, therefore, will mostly be confined to the uppermost mantle as Figure 23c illustrates. A 945 

systematic error of density of 3%-4% across the entire crust would produce a bias in Vs of 0.6%-946 

0.8% from the Moho to about 100 km depth in the mantle, with a smaller effect in the lowermost 947 

crust. The details of the bias will depend on the vertical distribution of the density error, but we 948 

believe that systematic errors in the mantle of 0.5% may be common. If density errors are not 949 

distributed as evenly in the crust, then a bias of crustal Vs could occur.  950 

In summary, we have discussed three potential sources of systematic error here: the scaling 951 

relation between Vp and Vs, the scaling relation between density and Vs, and the assumed value 952 

of Q in the mantle. We believe that errors in the assumed crustal Vp:Vs ratio mostly likely will 953 

bias estimates of crustal thickness. Errors of up to 1.5 km are to be expected in some places, 954 

which is larger than average random error across the US (~1 km). The impact of error in the 955 

assumed crustal density on estimated model Vs will depend in detail on the vertical distribution 956 

of the error in density, but we show that (perhaps contrary to expectation) model bias in the 957 

mantle can be appreciable. We show that a systematic error in crustal density across the entire 958 

crust of 3%-4% can bias Vs in the uppermost mantle by more than 0.5%, which is larger than 959 

average random error. Finally, errors in Q assumed in the mantle will also bias estimated Vs in 960 

the mantle. We discuss ways in which systematic errors may be reduced in the future in section 961 

6.  962 

6. Conclusions 963 

We present a 3D model of crustal and uppermost mantle Vs to a depth of about 150 km across 964 

the contiguous US. The model is composed on a set of vertical 1D profiles beneath each of the 965 

1816 USArray Transportable Array (TA) stations by jointly inverting Rayleigh wave dispersion, 966 

receiver functions, and Rayleigh wave ellipticity (H/V) measurements. Rayleigh wave dispersion 967 

curves are derived from ambient noise and earthquakes, which agree in the period band of 968 
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overlap. Estimates of measurement error for all data allow us to invert the different data sets 969 

together. A Bayesian Monte Carlo inversion procedure provides the basis for the inversion and a 970 

posterior distribution of models is constructed beneath each TA station. We summarize these 971 

distributions at each location and depth with the mean, m , and standard deviation, m , and we 972 

then interpolate these depth dependent statistics onto a 0.25°x0.25° across the US by simple 973 

kriging. The resulting depth dependent interpolated pair ( m , m) as a function of depth across 974 

the US forms the 3D model.  975 

We argue here that the standard deviation of the posterior distribution,  m, is not an ideal 976 

estimate of absolute model uncertainty, but it provides useful information about relative 977 

uncertainty. It is too large to represent random error and does not include an estimate of 978 

systematic error. A better estimate of random error of the model is the standard deviation of the 979 

mean of the posterior distribution,  m. This statistic provides a better estimate of the fluctuations 980 

observed in the 3D model and more accurately reflects the impact on model variables of data 981 

uncertainties. Using two different methods, we demonstrate that on average  m can be estimated 982 

by scaling  mby about 0.2 – 0.25.  Doing so, we find that random model error in Vs averages 983 

about 0.2% in the mid-crust and 0.4% in the mantle, but these error grow near Moho and the free 984 

surface. 985 

A great many structural features are determined reliably in the 3D model. We do not focus here 986 

on interpreting these features or even pointing them out systematically, but provide views of the 987 

model across the continent. We do highlight three prominent features of the model beneath and 988 

across the Snake River Plain, the Reelfoot Rift, and the Appalachian Mountains. The observation 989 

of three low velocity features beneath the Appalachians in western Virginia, northern Georgia, 990 

and New England are new to the best of our knowledge. We believe that the explication of the 991 

model will require a number of papers dedicated to individual structural features, such as the 992 

paper on the Mid-Continent Rift by Shen et al. (2013c). 993 

Although we discuss random error at some length, systematic error is probably larger and of 994 

greater concern because it is more difficult to estimate reliably. Systematic error results from the 995 

deviation of the constraints and assumptions that we impose in the inversion from the real earth. 996 

Our discussion of systematic error aims to quantity the probable magnitude and nature of several 997 
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important types of error. In so doing, it provides the basis to identify fruitful directions to 998 

advance the model as part of future research.  999 

We discuss three potential sources of systematic error here: deviation of crustal Vp:Vs from 1000 

1.75, the introduction of a crustal density perturbation relative to the assumed ρ:Vs scaling 1001 

relation given by equation (2), and deviation of mantle Q from the value of 150 assumed in our 1002 

inversion. We find that systematic errors are most likely to accrue to estimates of crustal 1003 

thickness and Vs in the mantle. Even crustal density errors, if they persevere throughout the 1004 

crust, will manifest dominantly as bias of Vs in the mantle rather than in the crust, although bias 1005 

of crustal Vs is also possible if density error is confined to shallow depths. Such systematic 1006 

errors arising from several separate sources may constructively or destructively interfere with 1007 

one another, but errors of 0.5%-1% in Vs at upper mantle depths are probably not unlikely, 1008 

which is larger than average random error. Such errors may be coherent over large regions (e.g., 1009 

mantle Q in the West may be consistently lower than 150 and in the East consistently higher) or 1010 

may vary rapidly laterally (e.g., geological variations affecting crustal density).  1011 

Future research is called for that will beat down systematic error by introducing better 1012 

information in the inversion to improve constraints on Vp, density, and mantle Q. For example, 1013 

Vp/Vs can be better constrained by introducing longer P-to-S receiver functions into the analysis 1014 

(e.g., Zhu and Kanamori, 2000; Chen and Niu, 2013). S-to-P receiver functions would also 1015 

provide new and valuable constraints (e.g., Hansen and Dueker, 2009; Lekic et al., 2014; 1016 

Fischer, 2015). In addition, a more accurate density-to-Vs scaling relationship may arise by 1017 

applying gravity (e.g., Maceira and Ammon, 2009) and surface wave local amplification data in 1018 

the inversion simultaneously (e.g., Eddy and Ekstrom, 2014; Lin et al., 2012a). Moreover, there 1019 

are many other fruitful directions to improve and extend the model presented here in future work. 1020 

We mention only three. First, it will be important to include the introduction of Love waves, 1021 

which will provide information about radial anisotropy (e.g., Moschetti et al., 2010a,b; Xie et al., 1022 

2013). Second, it is also important to perform the simultaneous interpretation of Rayleigh wave 1023 

azimuthal anisotropy (e.g., Lin et al., 2011) with other data in order to constrain the full elasticity 1024 

tensor (e.g., Xie et al., 2015). Third, the increasing availability of dense (large N) arrays 1025 

improves the ability to constrain discontinuities in the interior of the crust, which are not 1026 

included in the present study (e.g., Deng et al., 2015). 1027 
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Figure 1. Area of study, geographic and tectonic features, and station coverage. (a) Map of the 1051 
contiguous US with major physiographic boundaries (Fenneman and Johnson, 1946) shown with 1052 
red lines. Black abbreviations note the names of tectonic regions, blue abbreviations identify two 1053 
rifts, red symbols denote sedimentary basins, and the black dashed line, divided by the 1054 
Mississippi Embayment, marks the location of the Grenville Front (GF). Location names are 1055 
identified in Table 1. (b) Stations used in this study are shown as gray circles. Red stars mark the 1056 
locations of the six example stations whose data and inversion results are shown later in the 1057 
paper: Z21A near Winston, NM; Q22A near Crested Butte, CO; C23A near Lambert, MT; 239A 1058 
near Gary, TX; R43A near Red Bud, IL; and X57A near Hartsville, SC.  1059 
 1060 
Figure 2. Rayleigh wave group and phase speed maps. (a-b) Group velocity maps at 8 and 28 sec 1061 
produced from ambient noise straight-ray tomography, respectively. (c-d) Phase velocity maps at 1062 
8 and 28 sec produced from ambient noise eikonal tomography, respectively. (e-f) Phase velocity 1063 
maps at 40 and 60 sec produced from earthquake Helmholtz tomography, respectively. 1064 
 1065 
Figure 3. Rayleigh wave H/V ratio measurements at 28 and 60 sec, respectively, presented at the 1066 
stations where they are observed.  1067 
 1068 
Figure 4. Estimated measurement uncertainties as a function of period averaged across the US. 1069 
(a) Raleigh wave group and phase speed uncertainties are presented as a function of period. 1070 
Group speed uncertainties are derived from ambient noise tomography between 8 and 40 sec 1071 
period, and phase speed uncertainties are from ambient noise at periods from 8 and 26 sec, a 1072 
combination of ambient noise and earthquake tomography from 28 to 36 sec period, and 1073 
earthquake tomography from 40 to 90 sec period. (b) Uncertainty in Rayleigh wave H/V 1074 
measurements presented as a function of period from 20 to 90 sec. Dispersion uncertainties 1075 
minimize around 20 sec period and grow toward shorter and longer periods. Uncertainties in H/V 1076 
measurements grow approximately linearly with period. 1077 
 1078 
Figure 5. Period averaged measurement uncertainty as a function of spatial location. (a) Phase 1079 
speed uncertainties averaged from 8 to 90 sec period. (b) Group speed uncertainty averaged from 1080 
8 to 40 sec period. (c) Raleigh wave H/V measurement uncertainty averaged from 20 to 90 sec 1081 
period. Uncertainties in all observables are fairly homogeneous spatially, but grow near the 1082 
periphery of the array. 1083 
 1084 
Figure 6. Example data from the six locations (a-f) identified with red stars in Fig. 1. For each 1085 
location three vertically-arrayed panels show the three data types: (Top Panel) the receiver 1086 
function is shown with a grey corridor (1 standard deviation error around the mean at each time), 1087 
(Middle Panel) Rayleigh wave H/V measurements are shown with 1 standard deviation error 1088 
bars, and (Bottom Panel) Rayleigh wave phase and group velocities (phase speeds are faster than 1089 
group speeds at each period here) are presented with 1 standard deviation error bars. Solid lines 1090 
in each panel are local predictions from the best-fitting model in the posterior distribution 1091 
derived from the joint inversion of all three data sets. 1092 
 1093 
Figure 7. Example comparison of prior and posterior distributions in the Bayesian Monte Carlo 1094 
inversion for three model characteristics at two stations: (a-c) Z21A (Winston NM) and (d-f) 1095 
C23A (Lambert MT). Grey histograms are the prior distribution, white histograms are the 1096 
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posterior distribution using surface wave dispersion data alone (Rayleigh wave group and phase 1097 
speed measurements), and red histograms are the posterior distributions for the joint inversion of 1098 
surface wave dispersion data, receiver functions, and Rayleigh wave H/V measurements at each 1099 
station. Top Row: shear wave speed averaged between 0 and 5 km depth, Middle Row: shear 1100 
wave speed directly above the Moho, Bottom Row: crustal thickness (local elevation + depth of 1101 
Moho below the geoid). If the red distribution is narrower and more peaked than the white 1102 
distribution, then data other than surface wave dispersion constrain that model variable. For 1103 
example, the receiver function at station Z21A (Fig. 6a) improves the crustal thickness estimate 1104 
but not at station C23A where surface sediments obscure the Moho phase conversion in the 1105 
receiver function (Fig. 6c). 1106 
 1107 
Figure 8. Examples of the depth-dependence of the width of the posterior distribution from the 1108 
joint inversion of all data at the six locations identified with red stars in Fig. 1. The full width of 1109 
the posterior distribution for shear wave speed is shown with the grey shaded corridor. The mean 1110 
of the distribution is identified with a solid black line and the one standard deviation contours are 1111 
shown with red lines. For each location, the model is presented in two panels: an upper panel 1112 
shows the model to 8 km depth in order to highlight sedimentary structure (shear velocity, 1113 
thickness) and a lower panel shows the model to 150 km depth. The standard deviation of the 1114 
posterior distribution is largest near the Moho and below 120 km depth. 1115 
 1116 
Figure 9. Geographic variation in the fit to the data by the best-fitting model that results from the 1117 
joint inversion of all data, presented at each station. Fit to (a) Rayleigh wave phase speed data 1118 
averaged from 8 to 90 sec period, (b) Rayleigh wave group speed data averaged from 8 to 40 sec 1119 
period, (c) Rayleigh wave H/V measurements averaged from 20 to 90 sec period, and (d) 1120 
receiver function data averaged from 0 to 10 sec after the arrival of the P-wave. Fits are defined 1121 
as the square root of the reduced χ2 misfit (eqn. (6)). 1122 
 1123 
Figure 10. (a) The definition of the three regions in which regional averages and variability are 1124 
computed: (red circles) “Western Region” west of the Rocky Mountain front, (blue circles) 1125 
“Continental Core Region” between the Rocky Mountain front and the Greenville front (dashed 1126 
line), and (green circles) the “Eastern Region” east and south of the Greenville front. (b) Shear 1127 
wave speed as a function of depth averaged within each of the regions, color-coded in 1128 
accordance with the regional colors in (a). (c) Spatial variations in shear wave speeds across each 1129 
region presented with colors as in (b), defined as the standard deviation around the mean at each 1130 
depth. The dashed black line is the estimate of the standard deviation in the mean of the posterior 1131 
distribution averaged across the US, which we interpret as the average model error due to 1132 
random processes. 1133 
 1134 
Figure 11. (a) Black line: standard deviation of the posterior distribution ( m) averaged across 1135 

the entire US. Red line: estimate of the standard deviation of the mean ( m) of the posterior 1136 

distribution averaged across the US (computed by scaling  mby 0.2), which we interpret as the 1137 

average model error due to random processes (same as dashed line in Fig. 10c). (b) Variation in 1138 
Vs (solid black line: the mean of the posterior distribution) along the Snake River Plain (profile 1139 
X2, Fig. 22). Dashed lines mark ±1 m and the grey corridor marks ±1 m. (c) Comparison of 1140 

(black line)  m and (red line)  mfor the inversion at station X57A (Hartsville, SC).  mis 1141 
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computed by brute force in which numerous posterior distributions are computed at this station 1142 
and the mean of the posterior distribution are computed from them. 1143 

 1144 
Figure 12. Various crustal features. (a) Mean of the posterior distribution of the average shear 1145 
wave speed averaged in the top 5 km below the free surface using surface wave dispersion 1146 
measurements alone. (b) Same as (a), but the inversion uses all data (including receiver functions 1147 
and Rayleigh wave H/V measurements). Shallow structure is modified predominantly by the 1148 
introduction of the H/V data. (c) Mean of the posterior distribution of the shear wave speed in the 1149 
middle crust averaged within 4 km of the mid-point between the free surface and Moho, taken 1150 
from the inversion using all data. (c) Mean of the posterior distribution of the shear wave speed 1151 
in the lower crust averaged within 3 km of Moho in the crust, taken from the inversion using all 1152 
data. 1153 
 1154 
Figure 13. Crustal thickness. (a) Mean of the posterior distribution of crustal thickness (distance 1155 
from the free surface to Moho) taken from the inversion using all data. (b) Standard deviation of 1156 
the posterior distribution ( m) of crustal thickness from the inversion using all data. 1157 

 1158 
Figure 14. (a) The jump in Vs across Moho presented as the difference in Vs directly below and 1159 
above Moho, taken from the mean of the posterior distribution at each depth and location. (b) 1160 
The standard deviation of the difference between the shear wave speed below and above Moho 1161 
computed using all models in the posterior distribution at each point.  1162 
 1163 
Figure 15. The standard deviation of the posterior distribution,  m, for Vs at different depths in 1164 

the crust: (a) averaged over the top 5 km, (b) averaged in the middle crust within 4 km of the 1165 
mid-point between the free surface and Moho, and (c) averaged in the lower crust within 3 km of 1166 
Moho. In the crust,  mis largest near the free surface and Moho. 1167 

 1168 
Figure 16. (a) Histogram of the difference between the local standard deviation of the posterior 1169 
distribution ( m) of crustal thickness determined in the inversion using all data (Fig. 13b), std 1170 

dev (All), and the standard deviation based on surface wave data alone, std dev (SW), at the 1171 
same location. (b) Plot of std dev (All) versus the jump across Moho (Fig. 14a) at the same 1172 
location.  1173 
 1174 
Figure 17. A Low Velocity Zone (LVZ) in the shallow mantle? Plot of the difference between Vs 1175 
at the top of the mantle directly below Moho and Vs 20 km below Moho, using the mean of the 1176 
posterior distribution at each location. Warm colors indicate a negative vertical gradient 1177 
indicative of a shallow LVZ and cool colors indicate a positive vertical gradient in the uppermost 1178 
mantle indicative of no LVZ. 1179 
 1180 
Figure 18. Mantle shear wave speeds at three depths, presented as the mean of the posterior 1181 
distribution at each location: (a) 70 km depth, (b) 90 km depth, and (c) 120 km depth. Vs values 1182 
are averaged vertically within 5 km of each stated depth. 1183 
 1184 
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Figure 19. The standard deviation of the posterior distribution,  m, for Vs at different depths in 1185 

the mantle within ±5 km of (d) 70 km, (e) 90 km, and (f) 120 km, respectively.  This quantity is 1186 
generally larger in the mantle than in the crust and grows particularly below 100 km depth.  1187 
 1188 
Figure 20. The location of the vertical transects through the 3D model. Long east-west transects 1189 
A-A’, B-B’, C-C’, and D-D’ are presented in Fig. 21. The shorter pairs of crossing transects, X1-1190 
X2, Y1-Y2, Z1-Z2, are shown in Fig. 22.  1191 
 1192 
Figure 21. Four east-west oriented vertical transects through the 3D model, with locations 1193 
identified in Fig. 20, defined as the mean of the posterior distribution of Vs at each location and 1194 
depth. Each transect is part of a pair of depth profiles with different vertical exaggerations: one 1195 
for the crust (top 60 km) and the other for the uppermost mantle (30 -150 km). Depth is defined 1196 
as the distance below the free surface, absolute crustal velocities are presented according to the 1197 
inset legend, crustal thickness is identified with a bold solid black line, isolines in the crust and 1198 
mantle are placed at intervals of 0.2 km/s and 3%, respectively, and mantle velocities are 1199 
presented as perturbations relative to 4.4 km/s in percent. Local surface topography is also 1200 
indicated, as are abbreviated names of selected structural and geographic features, most of which 1201 
are identified in Table 1 with the exception of NRM (northern Rocky Mountains), NBR, and 1202 
SBR (northern and southern Basin and Range, respectively). 1203 
 1204 
Figure 22. Three pairs of shorter crossing vertical transects with locations identified in Fig. 20. 1205 
Profiles X1 and X2 are oriented along and across the Snake River Plain, profiles Y1 and Y2 1206 
target the Reelfoot Rift, and profiles Z1 and Z2 target the Appalachians, crossing in western 1207 
Virginia. Definitions and formatting are similar to Fig. 21 but there are differences. Crustal 1208 
velocities are presented on the same absolute scale as in Fig. 21 and mantle velocities are 1209 
perturbations relative to a constant value, but the mantle reference for profiles X1 and X2 is 4.3 1210 
km/s and the reference for profiles Y1, Y2, Z1, and Z2 is 4.55 km/s. The color scale for profiles 1211 
X1 and X2 ranges between ±8%, as in Fig. 21, but the scale for the other profiles ranges only 1212 
between ±4%. Abbreviations are identified in Table 1 with the exception of SAM (southern 1213 
Appalachian Mountains). 1214 
 1215 
Figure 23. Simulated effects of systematic errors evaluated by: (blue lines) changing Q from 150 1216 
to 75 in the mantle, (green lines), changing Q from 150 to 300 in the mantle, and (red line)s 1217 
increasing density by 0.1 g/cm3 throughout the crystalline crust. (a) Effect on Rayleigh wave 1218 
phase velocity as a function of period. (b) Same as (a), but for the effect on Rayleigh wave 1219 
ellipticity, H/V. (c) The effect on the estimated mean of the posterior distribution of Vs. All 1220 
results are presented by perturbing around the mean of the posterior distribution for station X57A 1221 
(Hartsville, SC). 1222 
 1223 
Figure 24. Sensitivity of (a) Rayleigh wave phase speed and (b) ellipticity (H/V) to perturbations 1224 
in (red lines) Vs and (green lines) density at periods of 20 sec and 50 sec. 1225 
 1226 
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Table 1. Abbreviations of tectonic features and geographic names marked in Figs. 1, 21, and 22. 
 

Sedimentary Basins AB Anadarko Basin 

DB Denver Basin 

GRB Green River Basin 

GV Great Valley 

MB Michigan Basin 

MF Marcellus Formation 

PB Pasco Basin 

WB Williston Basin 

Tectonic Features AB Anadarko Basin 

AM Appalachian Mountains 

BR Basin and Range 

CoP Colorado Plateau 

CP Coastal Plains 

CR Cascade Range 

GPl Great Plains 

GPr Greenville Province 

MCR Mid-Continent Rift 

ME Mississippi Embayment 

NEA Northeastern Appalachians 

RGR Rio Grande Rift 

RM Rocky Mountains 

RR Reelfoot Rift 

SN Sierra Nevada 

SRP Snake River Plain 

WC Wyoming Craton 

YS Yellowstone 

Geographic Names GA Georgia 

IL Illinois 

NE New England 

OH Oklahoma 

PA Pennsylvania 

VA Virginia 
 

 
 
 
 



 
 
 
 
 

Table 2. Stations with amplitude errors. 
 

Type of Amplitude Errors Stations 

Half amplitude error 
(Differential Output) 

MSO, J17A, N02C, S43A, 
T41A, 634A, I50A 

Other amplitude errors VES, VMZ, SCZ2 
 
 

Table 3. Range of perturbations to model variables. 
 
 

Model Variable Range of perturbation 
Thickness, sedimentary layer ±100% 
Thickness, crystalline crust ±20% 

Vsv, top of sedimentary layer ±1 km/sec 
Vsv, bottom of sedimentary layer ±1 km/sec 

B-spline coefficients, crust ±20% 
B-spline coefficients, mantle ±20% 
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