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Abstract This paper presents a new model of the shear velocity structure of the crust and uppermost
mantle beneath the contiguous U.S. The model is based on more than a decade of USArray Transportable
Array (TA) data across the U.S. and derives from a joint Bayesian Monte Carlo inversion of Rayleigh wave
group and phase speeds determined from ambient noise and earthquakes, receiver functions, and Rayleigh
wave ellipticity (H/V) measurements. Within the Bayesian inverse theoretic framework, a prior distribution of
models is posited and a posterior distribution is inferred beneath all of the more than 1800 TA stations across
the U.S. The resulting mean and standard deviation of the mean of the posterior distribution at each station
summarize the inversion results, which are then interpolated onto a regular 0.25°×0.25° grid across the U.S. to
define the final 3-D model. We present arguments that show that the standard deviation of the posterior
distribution overestimates the effect of nonsystematic errors in the final model by a factor of 4–5 and identify
uncertainties in density and mantle Q as primary potential sources of remaining systematic error in the final
model. The model presents a great many newly resolved structural features across the U.S. that require
further analysis and dedicated explication. We highlight here low-velocity anomalies in the upper mantle that
underlie the Appalachians with centers of anomalies in northern Georgia, western Virginia, and, most
prominently, New England.

1. Introduction

The USArray/Transportable Array (TA), one of the principal components of EarthScope, has been evolving for
more than the past 10 years. Since 2004, the TA has repeatedly deployed approximately 400 three-component
broadband seismometers at temporary sites with an interstation spacing of about 70 km. The array has crept
continuously across the U.S. to occupy sites that have eventually spanned the continent, completing its east-
ward migration in the fall of 2013. Nearly 2000 independent locations were occupied during the migration of
the array. This seismic observatory has stimulated many innovations in seismology designed to improve the
understanding of Earth structure and processes beneath the contiguous United States. In particular, crustal
imaging at continental scales has been revolutionized in response to the existence of data from this array.

The current paper is based on TA data. Methodologically, this paper is part of a series of research efforts that
have attempted to model crustal and uppermost mantle structure beneath the contiguous U.S. using newly
developed methods of data analysis, inversion, and inference designed for application to current generation
continental array data, of which the TA is a prime example. There have been two principal themes that have
guided these efforts: (1) the tracking of uncertainty frommeasured quantities to resulting 3-D models and (2)
assimilating new data types and resources into the inversion as they become available. With the completion
of the TA in 2013, models of the crust and uppermost mantle can now be constructed across the entire U.S.

These research efforts have been composed of five principal components on which the current paper builds
and of which it is a natural continuation. First, in order to constrain crustal structure, ambient noise surface wave
tomography was developed and has been applied to data beginning from the earliest days of operation of the
TA [e.g., Sabra et al., 2005; Shapiro et al., 2005; Bensen et al., 2007; Lin et al., 2008]. Ambient noise tomography has
become a standard method in crustal imaging and has provided unprecedented information about crustal
structure across the U.S. [e.g., Moschetti et al., 2007, 2010a, 2010b; Yang et al., 2008, 2011; Bensen et al., 2009;
Lin et al., 2011; Tian et al., 2013; Xie et al., 2015]. The eikonal tomography method was developed to optimize
information derived from ambient noise tomography [Lin et al., 2009]. Second, to generate higher-resolution
information from surface waves about upper mantle structure, the Helmholtz tomography method was
developed for application to data from earthquakes [Lin and Ritzwoller, 2011; Ritzwoller et al., 2011; Mordret
et al., 2013; Jin and Gaherty, 2015] similar to the method of Pollitz and Snoke [2010]. Eikonal tomography is a
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geometrical ray theoretical method, and Helmholtz tomography is a finite frequency method; finite frequency
corrections are needed at the longer periods at which earthquake-generated surface waves are observed. Third,
both eikonal and Helmholtz tomography provide information about azimuthal anisotropy and (importantly)
local uncertainty estimates of the resulting tomographic maps. Fourth, surface wave data alone typically do
not unambiguously constrain vertically discontinuous variations in model variables such as may occur at the
base of sedimentary basins or at the Moho. Lebedev et al. [2013] present a recent assessment of the problem.
It has long been known that the assimilation of other types of data in addition to surface wave dispersion helps
to resolve ambiguities that arise in the estimation of crustal and uppermost mantle structure, particularly
related to crustal thickness, structure near to the Moho, and near-surface structure [e.g., Last et al., 1997;
Özalaybey et al., 1997; Julia et al., 2000]. There are numerous examples of the joint inversion of surface wave
data and receiver functions [e.g., Chang et al., 2004; Lawrence and Wiens, 2004; Liu et al., 2010; Tokam et al.,
2010; Bodin et al., 2012]. We (and others) have developed methods to assimilate other types of data and invert
them systematically and jointly along with surface wave dispersion using uncertainty information, including
receiver functions [Shen et al., 2013a, 2013b, 2013c], local amplification measurements [Taylor et al., 2009; Lin
et al., 2012a; Eddy and Ekström, 2014], Rayleigh wave ellipticity (or H/V) measurements [Lin et al., 2012b; Lin
and Schmandt, 2014; Lin et al., 2014], and body waves [Obrebski et al., 2011; Porritt et al., 2014]. Fifth, Bayesian
Monte Carlo inversion methods have been developed [e.g., Shen et al., 2013a, 2013b, 2013c] to invert jointly
new high-resolution surface wave dispersion information together with other data types in order to produce
distributions of models that fit all data acceptably. The resulting posterior distributions of models are then sum-
marized to produce the 3-D model together with uncertainties.

The TA has stimulated a variety of approaches to inferring information about crustal and mantle structure
beneath the U.S. For example, the current paper is one of many based at least in part on ambient noise obser-
vations across the U.S., e.g., Liang and Langston [2008, 2009], Prieto and Beroza [2008], Ma et al. [2008], Gao
et al. [2011], Calkins et al. [2011], Porritt et al. [2011], Delorey and Vidale [2011], Gaite et al. [2012], Liu et al.
[2012], Tibuleac and von Seggern [2012], Gao and Shen [2012], Hansen et al. [2013], Allison et al. [2013], Kao
et al. [2013], Boué et al. [2014], Li and Lin [2014], Porter et al. [2014, 2015], Yang [2014], Ekström [2014],
Schmandt and Lin [2014], Fu and Li [2015], Zigone et al. [2015], Agrawal et al. [2015], and others. The measure-
ment of Rayleigh wave ellipticity (or H/V measurements) using earthquake data goes back to Boore and
Toksoz [1969] and has been recently rejuvenated by Tanimoto and Rivera [2008] and Lin et al. [2012b]. Lin
et al. [2014] extended the H/V measurements to ambient noise, and Lin and Schmandt [2014] also extended
them to azimuthal anisotropy. Lin et al. [2012b] performed a joint inversion of H/Vmeasurements along with
surface wave dispersion for crustal and uppermost mantle structure. In addition, there have been many stu-
dies of both P-to-S and S-to-P receiver functions across the U.S. based at least in part on USArray data [e.g.,
Agrawal et al., 2015; Benoit et al., 2014; Calkins et al., 2010; Eagar et al., 2011; Frassetto et al., 2011; Gao,
2015; Gashawbeza et al., 2008; Gilbert, 2012; Hansen and Dueker, 2009; Hansen et al., 2013; Hopper et al.,
2014; Levander and Miller, 2012; Levander et al., 2011; Parker et al., 2013; Porter et al., 2014; Stachnik et al.,
2008; Thurner et al., 2015; Wagner et al., 2012; Wilson et al., 2010; Yeck et al., 2014].

The joint inversion of surface wave dispersion, receiver functions, and Rayleigh wave H/V measurements
remains rare. To the best of our knowledge using USArray data the joint inversion of surface wave dispersion
together with receiver functions in the U.S. has been carried out regionally only by Bailey et al. [2012] and
Shen et al. [2013a, 2013b, 2013c] and the joint inversion of surface wave dispersion together with H/Vmeasure-
ments by Lin et al. [2012b]. The joint inversion of all three data sets has not been performed before in the U.S.
but has been accomplished in a regional study in China [Kang et al., 2016]. The current paper is a natural con-
tinuation of the studies of Shen et al. [2013a, 2013b, 2013c], which developed and applied BayesianMonte Carlo
inversion methods to the joint inversion of Rayleigh wave dispersion from ambient noise and earthquake data
and receiver function data across thewestern half of the U.S. The current papermodifies and extends this earlier
work by introducing a new data set of Rayleigh wave H/Vmeasurements across the entire U.S. and inverting all
data simultaneously (Rayleigh wave dispersion from 8 to 90 s period, receiver functions, and Rayleigh wave H/V
measurements from 18 to 80 s period) to estimate a unified crustal and uppermost mantle model across the
entire contiguous U.S. with attendant uncertainties. More than 5 years of TA data are added, and the region
of study extends about 3000km farther east compared to the earlier studies of Shen et al. [2013b]. In total,
we obtain observations using ~1800 TA stations deployed before June 2015 that spans a variety of tectonic fea-
tures of the contiguous US (Figure 1 and Table 1) and invert all data within a Bayesian Monte Carlo framework.
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Significantly, consistent with the findings of
Shen et al. [2013a, 2013b], the introduction
of receiver functions into the inversion sig-
nificantly improves determination of Moho
depth and structures near the crust-mantle
transition, and consistent with the findings
of Lin et al. [2012b], the introduction of the
H/V measurements significantly improves
estimates of structures in the top few kilo-
meters of the crust. Overall, combining all
three data sets improves the vertical resolu-
tion of the crust and uppermost mantle,
and the resulting 3-D Vs model reveals high-
fidelity features of the crust and uppermost
mantle across the entire U.S.

The discussion below begins with a descrip-
tion of the data set of Rayleigh wave
dispersion measurements, receiver func-
tions, and Rayleigh wave H/V measure-
ments in section 2. Although the full data
set is new, the methods of measurement
have been described elsewhere, and here
we only summarize the methods used to
estimate the principal quantities and errors
in them. The joint Bayesian Monte Carlo
inversion method also has been described
elsewhere. Only salient aspects of the
method are summarized in section 3, where
we focus attention on the description of the
assumptions and constraints that result in
the prior distribution of models at each
location. The Bayesian Monte Carlo method
jointly inverts all data, producing a poster-
ior distribution of models at each of more
than 1750 stations across the U.S. In
section 4, we discuss how we summarize
these distributions in terms of a mean and

standard deviation at each depth in the crust and uppermost mantle and location across the U.S. and how the
mean varies regionally and within regions across the U.S. We discuss how the posterior distribution can be used
to quantify the effects of random errors in themodel. In section 5, we present vertical transects of the model and
discuss systematic errors that may arise due to constraints and assumptions applied in the inversion.

2. Data: Measurement, Processing, and Uncertainty

This study is based on data from the 1822 (virtual) USArray Transportable Array seismic stations that are
shown in Figure 1b. These stations are fairly homogeneously distributed across the U.S., being spaced on
average about every 70 km. Based on data from these stations, we produce (1) Rayleigh wave dispersion
maps and local dispersion curves from ambient noise and earthquake data, (2) azimuthally independent
receiver functions, and (3) Rayleigh wave ellipticity measurements, also referred to as H/V measurements
[e.g., Lin et al., 2012b]. We construct Rayleigh wave phase speed curves from 8 to 90 s period beneath each
station from dispersion maps produced by eikonal tomography [Lin et al., 2009] for ambient noise data
and Helmholtz tomography [Lin and Ritzwoller, 2011] for teleseismic earthquake data. We generate Rayleigh
wave group velocity curves by traditional ray theoretic tomography [Barmin et al., 2001; Moschetti et al., 2010a]
between periods of 8 s and 40 s. In addition, we construct a back azimuth-independent receiver function using

Figure 1. Area of study, geographic and tectonic features, and station
coverage. (a) Map of the contiguous U.S. with major physiographic
boundaries [Fenneman and Johnson, 1946] shownwith red lines. Black
abbreviations note the names of tectonic regions; blue abbreviations
identify the two rifts; red symbols denote the sedimentary basins; and
the black dashed line, divided by the Mississippi Embayment, marks
the location of the Grenville Front (GF). Location names are identified in
Table 1. (b) Stations used in this study are shown as gray circles. Red stars
mark the locations of the six example stations whose data and inversion
results are shown later in the paper: Z21A near Winston, NM; Q22A near
Crested Butte, CO; C23A near Lambert, MT; 239A near Gary, TX; R43A
near Red Bud, IL; and X57A near Hartsville, SC.
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the harmonic stripping technique
[Shen et al., 2013a] at each station.
The details of the data processing
and subsequent data quality control
and refinement have been documen-
ted in a number of previous papers,
and we only briefly summarize the
data processing here.

2.1. Rayleigh Wave
Phase Velocities

We obtained Rayleigh wave phase
time (or speed) measurements
between periods of 8 and 40 s using
ambient noise cross correlations
between data from USArray TA
stations available from January 2005
to the end of June 2015 using
automated frequency-time analysis
(AFTAN) [e.g., Levshin and Ritzwoller,
2001; Bensen et al., 2007]. The ambient
noise data processing follows the pro-
cedure described by Bensen et al.
[2007] and Lin et al. [2008]. More than
650,000 cross correlations across the
study region are produced. At short
periods (8 to 40 s), we apply eikonal
tomography [Lin et al., 2009] to the
ambient noise phase travel time mea-
surements to generate Rayleigh wave
phase velocity maps with uncertainty

estimates (e.g., Figures 2c and 2d). At longer periods (28 to 80 s), we apply the Helmholtz tomography method
[Lin and Ritzwoller, 2011] to the earthquake-derived phase travel time measurements from AFTAN to obtain
Rayleigh wave phase velocity measurements with uncertainties. Both eikonal and Helmholtz tomography esti-
mate local uncertainties in phase speed from the scatter in the local azimuthally dependent phase times (and
thus speeds) after smooth variations with azimuth are removed. The standard deviation of the mean of the
observed scatter is then identified with the error in the local period-dependent phase speed. Rayleigh wave
phase travel times are measured using waveform data following 5898 earthquakes recorded between 2005
and 2015 with Ms> 5.5, and Helmholtz tomography is applied to produce the phase velocity maps. The
Helmholtz tomography method provides a finite frequency correction, which is needed at long periods, but
the eikonal tomography method (applied at shorter periods) does not. Sample maps are presented in Figures
2e and 2f. In the period band in which ambient noise and earthquake measurements overlap (28 to 40 s), there
is significant agreement between the maps. Several earlier studies found that phase speed measurements
inferred from earthquakes were somewhat faster than those from ambient noise measurements [Yao et al.,
2006; Yang et al., 2008]. As we have added increasing numbers of earthquake measurements, however, mea-
surements from earthquakes have converged to those from ambient noise [Lin and Ritzwoller, 2011; Ritzwoller
et al., 2011], such that, now at 28 s period, for example, the average difference across the U.S. is about 1m/s.
The standard deviation of the difference is about 12m/s, which is within the estimated average uncertainty
(~15m/s). Ritzwoller et al. [2011] presents a map demonstrating the high quality of agreement between the
30 s Rayleigh wave phase speed maps derived from ambient noise and earthquakes using eikonal tomography.
In both eikonal tomography applied to ambient noise data and Helmholtz tomography applied to earthquake
data, azimuthal anisotropy with 180° symmetry is estimated simultaneously with azimuthally independent
phase speeds. Thus, the effect of azimuthal anisotropy has been removed from the isotropic phase speedmea-
surements presented here.

Table 1. Abbreviations of Tectonic Features and Geographic Names
Marked in Figures 1, 21, and 22

Sedimentary basins AB Anadarko Basin
DB Denver Basin
GRB Green River Basin
GV Great Valley
MB Michigan Basin
MF Marcellus Formation
PB Pasco Basin
WB Williston Basin

Tectonic features AB Anadarko Basin
AM Appalachian Mountains
BR Basin and Range
CoP Colorado Plateau
CP Coastal Plains
CR Cascade Range
GPl Great Plains
GPr Grenville Province
MCR Mid-Continent Rift
ME Mississippi Embayment
NEA Northeastern Appalachians
RGR Rio Grande Rift
RM Rocky Mountains
RR Reelfoot Rift
SN Sierra Nevada
SRP Snake River Plain
WC Wyoming Craton
YS Yellowstone

Geographic names GA Georgia
IL Illinois
NE New England
OH Oklahoma
PA Pennsylvania
VA Virginia
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2.2. Rayleigh Wave Group Velocities

Both phase and group velocity dispersion curves are measured when automated frequency-time analysis
(AFTAN) is applied to ambient noise cross correlations. Although eikonal tomography is performed on
the phase time measurements from ambient noise, the eikonal equation governs the propagation of
phase but not group times. Thus, we use the traditional damped least squares tomographic method
of Barmin et al. [2001] for group velocities. The traditional tomographic method and eikonal tomography
provide similar results for phase speeds, as shown by Lin et al. [2009] and Zhou et al. [2012], which
gives us confidence in the use of the traditional method for group speeds. We ignore finite frequency
effects on group speeds here, because they are weak in the period band in which ambient noise is
considered (8–40 s [e.g., Lin and Ritzwoller, 2011; Ritzwoller et al., 2011]). Azimuthal anisotropy with
180° symmetry is estimated simultaneously with azimuthally independent group speeds. Thus, as with
phase speeds, the effect of azimuthal anisotropy has been removed from the isotropic group speeds
presented here.

Figure 2. Rayleigh wave group and phase speedmaps. (a and b) Group velocity maps at 8 and 28 s produced from ambient
noise straight-ray tomography, respectively. (c and d) Phase velocity maps at 8 and 28 s produced from ambient noise
eikonal tomography, respectively. (e and f) Phase velocity maps at 40 and 60 s produced from earthquake Helmholtz
tomography, respectively.
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The 8 and 28 s period group velocity maps are presented in Figures 2a and 2b. At 8 s period, group velocity is
most sensitive to shear wave speed in the top 10 km of the crust. Similar to the 8 s phase velocity map, major
basins exhibit slow group velocities (<2.4 km/s). At 28 s period, the group velocity map presents a slightly
different pattern than the phase velocity map because of the relatively shallower sensitivity of group veloci-
ties. Because a damped least squares inversion is used to generate the group velocity maps, meaningful
uncertainties are not obtained in the inversion, although resolution is estimated. The uncertainty of group
velocity is scaled from the uncertainty of phase velocity using the relationship described by Moschetti et al.
[2010b]. On average, group velocity uncertainty is magnified by a factor of about 3 compared with phase
velocity uncertainty. In this study, we use group velocity measurements only when the horizontal resolution
is better than 100 km; thus, group velocity measurements at some periods are discarded near the edges of
the study region. Finally, we obtain local dispersion curves for 1816 out of 1822 USArray/TA stations, and
examples of local Rayleigh wave group and phase velocity curves are presented in Figure 3.

2.3. Receiver Functions

Shen et al. [2013b] describe the method that we apply to process receiver functions for each station. For each
station, we select earthquakes from January 2005 to June 2015 with epicentral distances ranging between
30° and 90° and with magnitudes mb> 5.5. We apply a time domain deconvolution method [Ligorria and
Ammon, 1999] to each seismogram windowed between 20 s before and 30 s after the direct P wave arrival
to compute the radial component receiver function using a low-pass Gaussian filter with a width of 2.5 s
(pulse width~1 s). High-quality receiver functions are selected with an automated procedure. Corrections
are made both to the time and amplitude of each receiver function, normalizing to a reference slowness
of 0.06 s/km [Jones and Phinney, 1998]. Finally, we retain only the first 10 s after the direct P arrival. We
compute the azimuthally independent receiver function, R0(t), at each station by fitting a truncated Fourier
series at each time over azimuth and then stripping the azimuthally variable terms using a method referred
to as “harmonic stripping” by Shen et al. [2013b]. After removing the azimuthally variable terms at each time,
the RMS residual over azimuth is interpreted as the 1σ uncertainty in R0(t) at that time. On average, 84
individual receiver functions from different earthquakes are accumulated for each station. If fewer than 10
receiver functions pass quality control at a particular station, we do not use the receiver function in the joint
inversion. In total, we obtain azimuthally independent receiver functions for 1805 of the 1822 USArray/TA
stations. Example receiver functions are presented in Figure 3.

2.4. Rayleigh Wave Ellipticity (H/V)

As discussed in section 2.1, the data following more than 5800 teleseismic earthquakes are collected to
perform teleseismic Helmholtz tomography across the contiguous U.S. This data set is also used to measure
the Rayleigh wave H/V ratio following the processing procedure presented by Lin et al. [2012a], which we
summarize briefly here.

For each earthquake recorded at each available station, three-component seismograms are cut according to
the Rayleigh wave group travel time predicted by a global model [Shapiro and Ritzwoller, 2002], and the
mean, linear trend, and the station response are removed. The horizontal components (E and N) are then
rotated into the radial (R) and transverse (T) directions defined by the great circle path between the earth-
quake and the station. Automated frequency-time analysis, AFTAN [Bensen et al., 2007], is applied to deter-
mine the Rayleigh wave phase and group travel times, and the amplitudes of both the vertical (V) and
radial components are measured between 18 and 80 s period. In essence, a group velocity filter is applied
to extract the Rayleigh wave on both the vertical and radial components. A series of narrowband Gaussian
filters is applied to each component in the frequency domain, the result is back transformed to the time
domain, and the amplitude as a function of the central period of the Gaussian filter is measured in the time
domain for both components. The amplitude ratio between the two components (R/V) is used to evaluate the
H/V ratio as a function of period at the station location.

To insure the quality of the H/Vmeasurements, we impose the following five control criteria. First, the signal-
to-noise ratio must be greater than 15 for Rayleigh waves on both the radial and vertical components.
Second, Rayleigh waves on the radial and vertical components are expected to be phase shifted by 90°.
Thus, we apply a phase difference criterion: measurements with |φR(T)�φV(T)� π/2|(T/2π)> 2 s are removed,
where φR and φV are the observed phase of the radial (R) and vertical (V) components, respectively, and T is
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Figure 3. Example data from the (a–f) six locations identified with red stars in Figure 1. For each location three vertically
arrayed panels show the three data types: (top) the receiver function is shown with a gray corridor (1 standard deviation
error around the mean at each time), (middle) Rayleigh wave H/Vmeasurements are shown with 1 standard deviation error
bars, and (bottom) Rayleigh wave phase and group velocities (phase speeds are faster than group speeds at each period
here) are presented with 1 standard deviation error bars. Solid lines in each panel are the local predictions from the best
fitting model in the posterior distribution derived from the joint inversion of all three data sets.
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the period of the measurement. Third, group travel times measured on the vertical and radial components
must be within T/2 s. Fourth, large H/Vmeasurements (>10) are removed. These criteria are applied indepen-
dently to each station at each period. A final, fifth criterion is invoked in which we estimate the standard
deviation, σ, of the measurements at each station and at each period that satisfy the first three selection
criteria. To stabilize the measurements, we discard measurements outside the 2σ corridor of measurements.

After these quality control steps, a set of H/V ratio measurements is obtained for each period at each station.
For sets with ≥20 measurements, the mean and standard deviation of the mean are computed to represent
the H/V ratio measurement and its uncertainty at this period and station. We discard measurements at a sta-
tion if the number of measurements is less than 20 in order to enhance the reliability of the data set. At each
station, the H/V measurements estimated from different events are similar, although small variations (<2%)
dependent on back azimuth are observed. However, for about 15 stations the H/V ratio measurements pos-
sess large variations (>20%) over time. Conversations with Incorporated Research Institutions for Seismology
(IRIS) Data Management Center staff members (personal communication with Robert Busby, IRIS) suggest
that these variations are probably due to a differential signal output error of the seismometer sensors.
Table 2 lists these 11 stations with the time periods of malfunction. Some of the H/V ratio measurements
obtained during the malfunction periods can be corrected, whereas others must be discarded.

Example H/V maps at periods of 28 and 60 s
are presented in Figure 4. They are similar to
the maps shown by Lin et al. [2012a], but the
H/V ratios presented here are smaller on
average and extend over a larger area. At
28 s period, high H/V ratio is correlated with
the sedimentary basin distribution across
the continental U.S. (e.g., the Central Valley
in California, the Williston Basin near eastern
Montana and western North Dakota, and
the coastal basins near the Mississippi
Embayment). Low H/V ratio is observed in
major mountain ranges (e.g., the Sierra
Nevada and Rocky Mountains) in the wes-
tern U.S., in the Superior Upland Province,
and the Appalachian Highlands in the east-
ern U.S., all regions devoid of thick unconso-
lidated sediments. Beneath the Yellowstone
hot spot and southern Sierra Nevada, the
lowest H/V measurements across the conti-
nent (<0.65) are observed. At longer periods,
the H/V ratio is still largely sensitive to shal-
low Vs structure. Figure 24 later in the paper
presents sensitivity kernels that demonstrate
this. Thus, the effect frommajor basins is still
observed at long periods: the Green River
Basin in southwestern Wyoming and the
Mississippi Embayment areas possess the
highest H/V measurements at this period.
The sensitivity kernel of the H/V measure-
ment penetrates into the mantle at long

Table 2. Stations With Amplitude Errors

Type of Amplitude Errors Stations

Half-amplitude error (differential output) MSO, J17A, N02C, S43A, T41A, 634A, I50A
Other amplitude errors VES, VMZ, SCZ2

Figure 4. Rayleigh wave H/V ratio measurements at 28 and 60 s,
respectively, presented at the stations where they are observed.
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periods and is positively correlated with Vsv, so low H/V ratio is also observed beneath the Rocky Mountains and
the Snake River Plain where the mantle Vsv is low (Figure 2f).

Although our quality control procedure has been designed to produce high-quality H/V measurements, H/V
measurements may still be biased due to at least two factors. First, noise tends to be higher on the
horizontal than vertical components, which tends to bias H/V high. We attempt to use only high SNR
measurements on both the vertical and radial components to mitigate this effect. However, further efforts
to measure noise levels and correct the resulting H/V measurements for the effects of noise may be worth-
while. Second, off-great circle propagation tends to bias the horizontal amplitude and hence H/V low.
Pedersen et al. [2015] presents evidence that period-dependent average absolute deviations from 3° to 9°
are probably common, with larger deviations at shorter periods and considerably larger deviations possible.
In eikonal and Helmholtz tomography we also measure the angle of approach. Consistent with Pedersen
et al. [2015] we find that at the six stations presented in Figure 3, the average absolute deviation from
the great circle azimuth is about 6° at 30 s period. Variations in the deviation of great circle paths will scatter
the H/V measurements, but a 6° average deviation at a station would produce H/V biased low by about
0.5%. Thus, irrespective of the quality control procedures, our H/V measurements may be biased low by
more than 0.5%, although a bias at this level does lie within our uncertainty estimates (which average from
1% to 3%; as discussed in section 2.5). In the future it would be advisable to consider correcting the
amplitude of the horizontal component for apparent angle of approach. These two effects, higher noise
on the horizontal than vertical component and off-great circle propagation, will tend to offset one another,
but even greater attention to reducing potential bias in the future is advisable. We construct H/V ratio
curves for 1779 stations between periods of 20 and 90 s. Several typical H/V ratio curves with uncertainties
are presented in Figure 3.

2.5. Measurement Uncertainties

We obtain estimates of uncertainties (or errors) for all types of measurements employed here: Rayleigh wave
group and phase velocity maps, receiver functions, and local Rayleigh wave H/V ratios. Measurement errors
averaged spatially across the U.S. are shown in Figure 5 for Rayleigh wave dispersion and H/Vmeasurements.
Rayleigh wave phase speed measurement errors for both ambient noise and earthquake data are typically
less than about 10m/s (Figure 5a), which is about 0.25% of the phase speed. For an interstation path of
1000 km and a travel time of about 250 s, this is about a half-secondmeasurement error, which is largely inde-
pendent of period. Further improvements in surface wave tomography designed to beat down this error are
needed and would be particularly useful to improve estimates of azimuthal anisotropy. For ambient noise,
errors in group velocity maps are scaled from phase velocity errors as discussed in section 2.2. Group speed
errors average about 3 times phase speed errors [Moschetti et al., 2010b], but, as Figure 5a shows, above 25 s
period phase speed errors remain low even as group speed errors grow rapidly. This is because we

Figure 5. Estimated measurement uncertainties (1σ) as a function of period averaged across the U.S. (a) Raleigh wave
group and phase speed uncertainties are presented as a function of period. Group speed uncertainties are derived from
ambient noise tomography between 8 and 40 s period, and phase speed uncertainties are from ambient noise at periods from
8 and 26 s, a combination of ambient noise and earthquake tomography from 28 to 36 s period, and earthquake tomography
from 40 to 90 s period. (b) Uncertainty in Rayleigh wave H/Vmeasurements presented as a function of period from 20 to 90 s.
Dispersion uncertainties minimize around 20 s period and grow toward shorter and longer periods. Uncertainties in H/V
measurements grow approximately linearly with period.
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introduced earthquake-derived measurements of
phase speed at longer periods. Spatially averaged
estimates of Rayleigh wave H/V errors are pre-
sented in Figure 5b. Because H/V measurements
typically lie between 0.6 and 1.2 (Figure 4), uncer-
tainties in H/Vmeasurements typically range from
about 1% to 3% of the H/V value. We do not pre-
sent a plot of the average error in receiver func-
tions, but several typical receiver functions with
uncertainties are shown in Figure 3. Our receiver
function error estimates are conservative, and
therefore, we do not attempt to fit small wiggles
in the receiver functions.

The spatial variability of period-averaged mea-
surement uncertainties is presented in Figure 6
for Rayleigh phase speed, group speed, and H/V
ratio. Phase and group speed uncertainties are
fairly homogeneous spatially but degrade near
the periphery of the study region where azimuthal
coverage is suboptimal. For H/V measurements,
uncertainties are also spatially quite homoge-
neous but are slightly higher in the Central U.S.
than in the western or eastern U.S. because fewer
earthquakes are observed there.

2.6. Example Data

As discussed in section 3, we invert data at each sta-
tion individually. Receiver functions and Rayleigh
wave H/V measurements are obtained indepen-
dently at each station. However, dispersion maps
are produced on a spatial grid that extends
between stations, but we interpolate them to sta-
tion locations so as to produce station-specific
dispersion curves. Thus, at the vast majority of sta-
tions across the U.S., we have Rayleigh wave group
and phase speed curves as well as a Rayleigh wave
H/V curve and a receiver function, together with
uncertainty estimates of all quantities. Examples
of such station-specific data are presented in
Figure 3 for the six stations identified in Figure 1b
with red stars. Rayleigh wave data are presented
on a discrete grid of periods with 1σ error bars.
Receiver functions are presented in terms of a gray
corridor, which also represents the 1σ uncertainty
at each time.

Much information about local structure can be
seen directly in the data in Figure 3. For example,

the reverberations in the receiver function, high H/V values at short periods, and slow short-period group
velocities reveal that the stations at Lambert, MT, and Gary, TX, lie in sedimentary basins. The strong Moho
P-to-S phase conversion near 4.5 s on the receiver function at Winston, NM, indicates that there is a sharp
Moho there. A later P-to-S conversion at Crested Butte, CO, indicates a deeper Moho than at Winston, NM.
The location of the Airy phase on the group velocity curve at longer periods than at Winston, NM, similarly
is consistent with a deeper crust. The relatively flat receiver function at Red Bud, IL, indicates a gradient or

Figure 6. Period averaged measurement uncertainty (1σ) as a
function of spatial location. (a) Phase speed uncertainties
averaged from 8 to 90 s period. (b) Group speed uncertainty
averaged from 8 to 40 s period. (c) Raleigh wave H/V measure-
ment uncertainty averaged from 20 to 90 s period. Uncertainties
in all observables are fairly homogeneous spatially but grow
near the periphery of the array.
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perhaps complicatedMoho structure,
which is consistent with a relatively
shallow (nearly horizontal) Airy phase
on the group velocity curve.

3. Joint Bayesian Monte
Carlo Inversion

We describe here the joint Bayesian
Monte Carlo inversion. The inversion

procedure is very similar to that applied by Shen et al. [2013a, 2013b, 2013c] to Rayleigh wave dispersion
and receiver functions, except here the joint inversion is extended to incorporate measurements of
Rayleigh wave H/V ratios in three steps. In the first step, we perform an initial Monte Carlo inversion without
the involvement of receiver functions and the H/V ratio measurements. Such an inversion produces a model
of the crust and uppermost mantle Vsv for the contiguous U.S. based on surface wave dispersion alone. We
refer to this as the surface wave (SW) inversion. In the second step, we introduce receiver function data
and H/V measurements. Figure 3 presents example fits to the data for six stations and demonstrates the
compatibility of the three data sets that are inverted under the Bayesian Monte Carlo framework. The solid
lines in each plot of Figure 3 show predicted data from the best fitting model of the posterior distribution
of models that results from the joint inversion. In this step the 3-D model is constrained by all three types
of data (“All Data”). The model is determined from the posterior distribution of accepted models beneath
each station, and model uncertainties are related to the spread of the posterior distribution. We only perform
the inversion at 1750 stations (out of 1822) where we have surface wave dispersion, Rayleigh wave H/V
measurements, and receiver functions. In the third and final step, the model produced in the second step
is interpolated onto a 0.25° × 0.25° grid by simple kriging.

3.1. Model Specification

At present, the only surface wave data we use are Rayleigh waves (and not Love waves), which are primarily sen-
sitive to Vsv. Thus, although we assume themodel to be isotropic, Vsv =Vsh =Vs, and we refer to the model as a Vs
model, it is actually a Vsv model. The Vsmodel beneath each station is stratified into three principal layers in which
Vs changes smoothly vertically. The top layer is the sedimentary layer defined by three unknowns: layer thickness
and Vs at the top and bottomof the layer with Vs increasing linearly with depth. The second layer is the crystalline
crust, parameterized with five unknowns: four cubic B-splines and crustal thickness. Finally, there is the
uppermost mantle layer with five cubic B-splines, yielding a total of 13 free parameters at each location. We have
chosen the number of B-splines subjectively to insure that Vs changes smoothly with depth in the crust and
mantle but not so smoothly that the data cannot be fit. In addition, as discussed in the next paragraph, Vs will
be constrained to increase monotonically with depth in the crust. We set the thickness of the uppermost mantle
layer so that the total thickness of all three layers is 200 km. For the initial surface wave (SW) inversion, the model
space is based on perturbations to a referencemodel consisting of the 3-Dmodel of Shapiro and Ritzwoller [2002]
for crustal Vs, crustal thickness, and mantle Vs. The initial sedimentary model is from Mooney and Kaban [2010].
Table 3 presents a summary of the range of perturbations to model variables allowed in the inversion.

In addition, the following three prior constraints are imposed during the Monte Carlo sampling of model
space: (1) Vs increases with depth across the two model discontinuities at the base of the sediments and
Moho; (2) Vs increases monotonically with depth in the crystalline crust; and (3) at all depths, Vs < 4.9 km/s.
These constraints are viewed as hypotheses to be tested. In the sedimentary layer, we scale Vp and density
from Vs according to Brocher [2005]:

Vp ¼ 0:941þ 2:095Vs � 0:821Vs
2 þ 0:268Vs

3 � 0:0251Vs
4; (1)

ρ ¼ 1:227þ 1:53Vs � 0:837Vs
2 þ 0:207Vs

3 � 0:0166Vs
4; (2)

where we have rounded here to three significant figures. This scaling relationship makes the Vp/Vs ratio greater
than 2 in the sedimentary layer where Vs< 3 km/s. In the crystalline crust and uppermost mantle, the Vp/Vs ratio
is fixed to be 1.75. Equation (2) is also used for density in the crystalline crust. In the mantle, density is scaled
from Vs perturbations relative to 4.5 km/s with 10 kg/m3 per 1% velocity change [Hacker and Abers, 2004].
The Q model from the Preliminary Reference Earth Model (PREM) [Dziewonski and Anderson, 1981] is used in

Table 3. Range of Perturbations to Model Variables

Model Variable Range of Perturbation

Thickness, sedimentary layer ±100%
Thickness, crystalline crust ±20%
Vsv, top of sedimentary layer ±1 km/s
Vsv, bottom of sedimentary layer ±1 km/s
B-spline coefficients, crust ±20%
B-spline coefficients, mantle ±20%
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the sedimentary layer and crystalline crust to apply the physical dispersion correction [Kanamori and
Anderson, 1977], and each resulting model is reduced to 1 s period. Shear Q in the mantle is set to be
150 across the entire study region and with depth. A single value of Q is chosen for simplicity, so that
the effect of the choice of Q on the model can be determined easily (cf. section 5.3). The value of 150 is
chosen to be intermediate between the lower values expected across much of the western U.S. and the
higher values expected across the eastern U.S.

These choices reduce the volume of model space searched, but if they are inaccurate (as they will be at some
locations), they will impose a systematic error on the resulting models. Systematic errors are discussed in
section 5.3 and compared with random error, which we discuss in section 4.2.

3.2. Prior and Posterior Distributions

Shen et al. [2013b] describe the BayesianMonte Carlo joint inversionmethod in detail. Themethod is influenced
strongly byMosegaard and Tarantola [1995]. We only provide a cursory summary here and concentrate on the
presentation of the results. The joint inversionmethod constructs a prior distribution ofmodels at each location
defined by allowed perturbations relative to the reference model as well as model constraints. The principal
output is the posterior distribution of models that satisfy the receiver function and surface wave data
(Rayleigh phase and group speeds and H/V) within tolerances that depend on data uncertainties. The statistical
properties of the posterior distribution quantify aspects of model error as discussed later in the paper.

The Bayesian nature of the inversion refers to the fact that we sample model space to construct explicitly
both the prior and posterior model distributions and that the relationship between these distributions is
mediated by the likelihood function and governed by Bayes’ theorem. Let π(m) be the prior distribution of
models and P(m) be the posterior distribution. Bayes’ theorem tells us that

P mð Þ ¼ k L mð Þ π mð Þ; (3)

where k is a normalization constant (which does not affect the shape of the posterior distribution) and L(m) is
the likelihood function, which is a measure of the degree of fit to the data by the model m as follows:

L mð Þ ¼ exp �S mð Þð Þ; (4)

S mð Þ ¼
XN
i¼1

di � dpredi

� �2

2σ2i
: (5)

Here di is an observation with uncertainty σi, di
pred is the predicted datum frommodelm, and N is the number

of observations. Shen et al. [2013b] modified the likelihood function by introducing an additional weight to
discriminate between the dispersion measurements and receiver functions in the likelihood function (further
downweighting the receiver functions), but that is not done here. The only data weights are the estimated
measurement errors.

The posterior distribution reflects both the prior constraints and the data used in the inversion. The Monte
Carlo nature of the inversion refers to the fact that the search of model space is a stochastic process in which
Markov chains of models are governed by a transition probability that depends on the fit to the data. The
transition probability we use is the Metropolis law, as described by Shen et al. [2013b]. For each station we
retain on average about 8500 models in the posterior distribution. Most of these models are not statistically
independent of one another, and we discuss the impact of this fact on our interpretation of the posterior
distribution in section 4.2.

Examples of marginal prior and posterior distributions for particular model characteristics are shown for two
stations in Figure 7, in which there is an explicit comparison between results using surface wave dispersion
alone (SW) and using all three data sets (All Data: surface wave disperion, receiver functions, and H/Vmeasure-
ment). The prior distribution is represented with the gray histograms, the posterior distribution based on
Rayleigh wave dispersion alone is presented as the black-outlined white histograms, and the posterior
distribution based on all three data sets is shownwith the red histogram. As seen in Figure 3a, because of a clear
Moho P-to-S conversion in the receiver function at station Z21A (Winston, NM), the joint inversion better con-
strains lower crustal Vs and crustal thickness (Figures 7b and 7c). Surface wave data alone do not constrain
either crustal thickness or the jump in Vs across Moho at this station well. As seen in Figure 3c (C23A,
Lambert, MT), the receiver function and H/V ratio are characteristic of thick sediments, and the joint inversion
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better constrains shallow crustal structure than the inversion with surface wave dispersion alone (Figure 7d).
Because reverberations in the receiver function obscure a possible Moho P-to-S conversion in the receiver func-
tion, the joint inversion does not, however, constrain lower crustal structure or crustal thickness appreciably bet-
ter than the surface wave dispersion data alone (Figures 7e and 7f). The details of the inversion at each station
depend on the nature of the receiver function and H/Vmeasurements, but on average the vertical discontinuity
structure of the crust is clarified, and the vertical resolution of the model is improved by introducing these data
into the inversion with surface wave dispersion data. This is discussed futher in section 4.3 below.

We present examples of resulting models at a variety of locations in Figure 8. Each model is presented
beneath a single station and corresponds to the data presented in Figure 3. At each depth the width of
the full posterior distribution is shown, as are the mean and standard deviation of the posterior distribution
which we use to summarize the 3-D model.

3.3. Fit to the Data

There are fairly strong constraints imposed in the inversion, including the smoothness of the model between
discontinuities; the monotonic increase of shear wave speeds with depth in the crust; particular relationships

Figure 7. Example comparison of prior and posterior marginal distributions in the Bayesian Monte Carlo inversion for three
model characteristics at two stations: (a–c) Z21A (Winston, NM) and (d–f) C23A (Lambert, MT). Gray histograms are the prior
distribution; white histograms are the posterior distribution using surface wave dispersion data alone (Rayleighwave group
and phase speed measurements); and red histograms are the posterior distributions for the joint inversion of surface wave
dispersion data, receiver functions, and Rayleigh wave H/V measurements at each station. (top row) Shear wave speed
averaged between 0 and 5 km depth, (middle row) shear wave speed directly above the Moho, and (bottom row) crustal
thickness (local elevation + depth of Moho below the geoid). If the red distribution is narrower and more peaked than the
white distribution, then data other than surface wave dispersion constrain that model variable. For example, the receiver
function at station Z21A (Figure 3a) improves the crustal thickness estimate but not at station C23A where surface
sediments obscure the Moho phase conversion in the receiver function (Figure 3c).
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Figure 8. Examples of the depth dependence of the width of the posterior distribution from the joint inversion of all data at
the six locations identified with red stars in Figure 1. The full width of the posterior distribution for shear wave speed is
shown with the gray shaded corridor. The mean of the distribution is identified with a solid black line, and the 1 standard
deviation contours are shown with red lines. For each location, the model is presented in two plots: (top) the model to 8 km
depth in order to highlight sedimentary structure (shear velocity and thickness) and (bottom) the model to 150 km depth.
The standard deviation of the posterior distribution is largest near the Moho and below 120 km depth.
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between Vs, Vp, and ρ as a function of depth; and a specified range of values considered for each model
variable (Table 3). These constraints are imposed to reduce the model space searched and make the
Monte Carlo search more efficient, but we view them as hypotheses which are tested in the inversion. The
first question we have is whether the model is sufficiently flexible to allow the data to be fit across the entire
region of study. If the data can be fit subject to the constraints, then extending the model beyond the
constraints is not substantiated by the data alone. There may be good reasons to believe that the Earth does
not satisfy the particular constraints imposed here, but if the data are fit subject to the constraints, this issue
needs to be taken up in the construction of the prior distribution.

Figure 9 presents a summary of data fit in the joint inversion of all three data types, in which the square root
of reduced chi-square is shown for Rayleigh wave phase speed, Rayleigh wave group speed, Rayleigh wave
H/V measurements, and receiver functions. We refer to the square root of reduced chi-square misfit as
“reduced χ misfit,” which is defined as follows:

χred ¼
ffiffiffiffiffiffiffiffi
χ2red

q
¼ 2

N
S mð Þ

� �1=2

; (6)

where S(m) is the misfit function defined for model m by equation (5) and N is the number of observations.
Misfit to the Rayleigh wave data (Figures 9a–9c) is averaged over period, and misfit to the azimuthally inde-
pendent receiver functions is averaged over time (from 0 to 10 s). A χred of unity means that the data are fit on
average at the level of 1σ, where σ represents data error, a value of 2 implies that the data are fit on average at
the level of 2σ, and so forth.

On average, Rayleigh wave phase and group speeds are fit to better than 2σ (Figures 9a and 9b). Exceptions
occur in regions of thick sediments where short-period group speeds are particularly sensitive, e.g., the
Mississippi Embayment and Gulf Coast, the Green River basin of southwestern Wyoming, and the Central
Valley of California. In these regions, greater flexibility in the construction of the sedimentary model is prob-
ably required, perhaps to include a larger range and perhaps different depth variation of the Vp/Vs ratio and

Figure 9. Geographic variation in the fit to the data by the best fitting model that results from the joint inversion of all data,
presented at each station. Fit to (a) Rayleigh wave phase speed data averaged from 8 to 90 s period, (b) Rayleigh wave
group speed data averaged from 8 to 40 s period, (c) Rayleigh wave H/V measurements averaged from 20 to 90 s period,
and (d) receiver function data averaged from 0 to 10 s after the arrival of the P wave. Fits are defined as the square root of
the reduced χ2 misfit (equation (6)).
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relaxation of the constraint on the monotonic increase of Vswith depth in the basin. H/V is also fit on average
to better than 2σ (Figure 9c), but there are more regions where the data are fit poorly. Again, most of these
are in sedimentary basins and H/V is strongly sensitive to sedimentary structure. The overall higher level of
misfit for H/V illustrates that this datum tends to compete with short-period group speeds in the inversion.
These two data types can be reconciled on average, but greater model flexibility is probably needed in
several locations across the U.S. We have chosen not to allow this greater flexibility here, choosing instead
a single parameterization across the U.S. for simplicity. The model presented in this paper is not intended
to be the last word on structure across the U.S. As Figure 9d shows, receiver functions are typically fit to better
than 1σ across the U.S. There are exceptional stations where azimuthally independent receiver functions
cannot be well fit jointly with the other data in the inversion, but they are rare. The exceptional fit to the recei-
ver functions may mean that we have somewhat overestimated the uncertainties in the receiver functions.
The effect is that we do not attempt to fit small wiggles in the azimuthally independent receiver functions.

4. Results

At each location and for each depth, we summarize the posterior distribution of models with its mean (m) and
standard deviation (σm). Examples of the mean and standard deviation of the posterior distribution can be
read off the vertical profiles shown in Figure 8. The addition of different data into the inversion makes the
posterior distributions increasingly Gaussian in character. This effect can be seen clearly in the marginal
distributions presented in Figure 7. For example, at station Z21A (Figures 7a–7c), the prior distributions are
approximately uniform for all three model variables. For the inversion using surface wave data alone, the pos-
terior distribution is strongly bimodal in the lower crust and fairly uniform for crustal thickness. However,
when receiver functions and H/V measurements are added to the inversion, the posterior distributions are
much more Gaussian in shape and not multimodal. This is also true for stations C23A in the shallow crust (
Figure 7d) where the introduction of H/V measurements strongly has affected the posterior distribution.
However, the posterior distribution in the lower crust and for crustal thickness is bimodal or multimodal
(Figures 7e and 7f) because sedimentary reverberations in the receiver function at this location obscure con-
straints on crustal thickness. At most locations and for most model characteristics across the U.S., the mean
and standard deviation provide reliable summaries of the posterior distribution except in a small minority of
cases when lower crustal and Moho distributions may bifurcate. Thus, in the following, we summarize the
model in terms of these statistics (m and σm) but retain the caveat that in some locations (particularly in
sedimentary basins), the posterior distribution may possess complications not captured by the mean and
standard deviation. To define the final 3-D model, we follow Shen et al. [2013a, 2013b] and apply simple
kriging to interpolate the depth-dependent quantities (m and σm) onto a 0.25°×0.25° grid and construct a
uniform model of the crust and uppermost mantle to a depth of 150 km across the U.S.

4.1. Regionally Averaged Models and Variations Within Each Region

Before turning to discuss the subregional-scale variations in the 3-D model, we first seek to assess large-scale
averages and variations in themodel. To do this we divide the contiguous U.S. into three regions, identified in
Figure 10a as the western region, the continental core region, and the eastern region. The eastern region also
encompasses much of the south and is perhaps best viewed as the margin of the continent that has been
tectonically modified with influence from the south and east. Figure 10b presents the three regional averages
computed from themean of the posterior distribution at each station across each region. At each location we
stretch or compress the crustal model vertically to match the average crustal thickness in the region before
computing the regional average. Similarly, depth in the mantle is taken relative to Moho depth which we
then normalize to the Moho depth averaged across the region. Not surprisingly, the recently tectonically
deformed western region is distinct, with considerably slower crust and mantle and thinner crust than the
other regions. The eastern region is also somewhat slower than the core region with a thinner crust.

Spatial variations across each of the three regions are shown in Figure 10c, in which the standard deviation
relative to the regional mean is presented at each depth. Spatial variability is greatest near the surface, which
is caused predominantly by variations between locations with and without sediments. Due to the exception-
ally thick sediments in theMississippi Embayment, the greatest shallow variability lies in the eastern region. In
the middle crust, the western region is considerably more variable (~3%) than the other regions, being
approximately twice as variable as in the core region (~1.5%). Variability peaks up near the Moho due to
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lateral variations in Moho structure; some locations have a gradient Moho, and others have a sharp Moho.
These variations have a greater imprint on uppermost mantle structure than on lower crustal structure and
decay quickly with depth in the mantle. In the mantle, regional variations lie between 1.5% (eastern region)
and 3% (western region). The core region has larger geographical variations in the mantle than the eastern
region due to heterogeneity beneath the western Great Plains, which appears to be affected by orogens that
lie largely in the western region and affect crustal structure only in the western region. Mantle heterogeneity
in the core region, which is about 2%, is actually larger than midcrustal heterogeneity in that region (~1.5%).

4.2. Assessing Model Error: Differentiating Between Nonsystematic and Systematic Errors

In order to interpret the spatial variations observed in the means of the posterior distributions, it is necessary
to compare them with estimates of model uncertainties. What we have estimated at every location is the
posterior distribution of models {mi} that satisfy the data at the point. Here let us consider mi to represent
a model characteristic, say for example, Vs at a particular depth. We summarize the set {mi} with its mean,
m, and standard deviation, σm. We use m as the estimate of the model at each location. The question we
consider here is what is the best estimate for the error or uncertainty in our estimated model at this location?

Figure 10. (a) The definition of the three regions in which regional averages and variability are computed: (red circles)
“Western Region” west of the Rocky Mountain front, (blue circles) “Continental Core Region” between the Rocky
Mountain front and the Grenville front (dashed line), and (green circles) the “Eastern Region” east and south of the Grenville
front. (b) Shear wave speed as a function of depth averaged within each of the regions, color coded in accordance with the
regional colors in Figure 10a. (c) Spatial variations in shear wave speeds across each region presented with colors as in
Figure 10b, defined as the standard deviation around the mean at each depth. The dashed black line is the estimate of the
standard deviation in themean of the posterior distribution (σm) averaged across the U.S., which we interpret as the average
model error due to random processes.
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By “error,” we mean the way our model deviates from the Earth, where our model is m. We will gloss over
how we define “Earth” here and assert the following: model error =em ¼ m�m⊕, wherem⊕ is the property of
the Earth that the model variablesmi represents. If we let the notation <> represent an estimated value, then
we seek the estimated error inmor<em>. One candidate for themodel error estimate is the standard deviation
of the posterior distribution, σm. The first thing we do here is eliminate σm as a candidate for <em>.
4.2.1. Inadequacy of the Standard Deviation of the Posterior Distribution to Represent Model Error
The average of σm across the contiguous U.S. as a function of depth is shown with the solid black line in
Figure 11a. Average values for σm are about 1.5% in the crust, although they dip appreciably in the middle
crust and are somewhat larger in the mantle (~1.8% on average). These values peak near the free surface
and Moho due to trade-offs between internal structures and boundary topography.

A great many factors affect the standard deviation of the posterior distribution, σm. Posterior distributions are
affected by uncertainties in the data, which control which models are accepted to form the distributions, but
they are also affected strongly by trade-offs between model variables at different depths. Vertical model
oscillations are particularly troublesome and important and are often nonphysical. In defining the prior
distribution, we have attempted to limit such oscillations and trade-offs by introducing vertically smooth
basis functions as well as model constraints (positive jump across discontinuities, maximum velocity in each
layer, and monotonic increase of shear wave speed in the crust). Nevertheless, the spread of the posterior
distribution still reflects such effects and, as a consequence, strongly reflects themodel prior. Indeed, relaxing
the prior constraints produces more vertically oscillatory models, which produces a larger standard deviation
in the posterior distribution, but it has a much smaller impact on the mean of the distribution. For this reason,
the standard deviation of the posterior distribution σm is not a good estimate of fluctuations in the mean of
the posterior distribution.

The inadequacy of σm to measuremodel uncertainty can be seen further by comparing the spatially averaged
σm, shown with a solid black line in Figure 11a, with the spatial variations within each of the three regions,
shown in Figure 10c. The spatially averaged σm is about the same size as the variations within each region.
If σm were used as the estimate of model uncertainty, then the interpretation of structural variations within
regions may be questionable. The geological coherence of the model and the stability of the posterior distri-
butions, however, imply that σm is an overly conservative estimate of model uncertainty, albeit one that
captures an estimate of the relative reliability of the resulting model. An example of this is shown in
Figure 11b, which illustrates that the mean of the posterior distribution at 70 km depth in the mantle changes
smoothly along the Snake River Plain and fluctuates at a level much smaller than σm.

Figure 11. (a) Black line is the standard deviation of the posterior distribution (σm) averaged across the entire U.S. Red line
is the estimate of the standard deviation of the mean (σm) of the posterior distribution averaged across the U.S. (computed
by scaling σm by 0.2), which we interpret as the average model error due to random processes (same as dashed line in
Figure 10c). (b) Variation in Vs (solid black line is the mean of the posterior distribution) along the Snake River Plain (profile
X2; Figure 22). Dashed lines mark ±1 σm, and the gray corridor marks ±1 σm. (c) Comparison of (black line) σm and (red line)
σm for the inversion at station X57A (Hartsville, SC).σm is computed by brute force in which numerous posterior distributions
are computed at this station and the standard deviation of themeans of the posterior distributions is computed from them.
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In summary, σm does not provide a good absolute estimate of the error in the estimated modelm. Rather, it is
actually an estimate of the error in each of the constituent models in the posterior distribution, {mi}. The aver-
aging process to compute m beats down random errors as discussed in section 4.2.2.
4.2.2. Nonsystematic Error: The Standard Deviation of the Mean of the Posterior Distribution
We seek a more useful estimate of model uncertainty than σm. In doing so we would like to discriminate
between nonsystematic model fluctuations, which we interpret as model errors caused by observational
errors and trade-offs between model parameters, from systematic errors caused by choices made in the con-
struction of the prior distribution, including such things as model parameterization, the extent of the model
space searched, and constraints imposed in the inversion. The estimated model,<m>, will be a combination
of the real Earth, m⊕, and the estimated error, <em>, as follows:

< m >¼ m⊕þ < em >¼ m⊕þ < esys þ edata þ enull >¼ m⊕þ < esys > þ < enonsys > : (7)

We consider the model error to arise from two components, a systematic (esys) and a nonsystematic (enonsys)
contribution. We also refer to nonsystematic error as random error or eran. The nonsystematic contribution to
model error arises from errors in the data, edata, and model errors caused by trade-offs between variables that
define the model, which we refer to as enull. The last equality in equation (7) follows from the assumed inde-
pendence between the systematic errors, which are caused locally by the deviation of the Earth from our
assumptions and constraints, and the nonsystematic errors caused by data errors and trade-offs.

Here we discuss our attempt to quantify nonsystematic or random error, which is much less problematic than
estimating systematic error or model bias. Model bias is the subject of section 5.3.

Our approach is to equate nonsystematic or random error with model fluctuations, which are inversely related
to the stability of themean of the posterior distribution. The aim is for our assessment of random error to reflect
the fluctuations observed in the model, such as those seen in Figure 11b along the Snake River Plain. We posit
that the standard deviation of the mean of the posterior distribution, σm, provides a reasonable estimate of the
stability of the mean of the model or the random error in the model, <enonsys>. The standard deviation of the
mean of the model, σm, contrasts with the standard deviation of the posterior distribution, σm, as follows:

σ2m ¼ 1
Nm

XN
i¼1

mi �mð Þ2; (8)

σ2m≈
1
NI

σ2m; (9)

where Nm is the number of models in the posterior distribution and NI is the number of independent models
in the posterior distribution. As discussed further below, NI is typically unknown but it definitely much smaller
than Nm.

One method to estimate σm (and hence <enonsys>) is to scale the standard deviation of the posterior distri-
bution (σm) by the inverse square root of the number of independent models in the distribution as suggested
by equation (9). We describe how we estimate the number of independent models, NI, in the next paragraph,
but when we apply the scaling we obtain an averageσm across the U.S. shownwith a dashed line in Figure 10c
and a red line in Figure 11a. We estimate thatσm on average in the central crust is about 0.2% and in the man-
tle at about 100 km depth it is about 0.4% except directly beneath Moho. These values are considerably smal-
ler than the variations we observe within the three regions of Figure 10 and fairly represent our degree of
belief in the model characteristics. The variations in structure within the regions are the subject of sections
4.3, 4.4, 5.1, and 5.2.

The standard deviation of the mean of the posterior distribution, σm , which we identify with the random
model error, is determined from the mean of the posterior distribution here by dividing by a number
between 4 and 5: σm ≈ σm=4. We arrive at this range by determining that the number of independent models
in the posterior distribution is 0.2%–0.3% of the models in the distribution. The average number of models in
the posterior distribution, Nm, is about 8500; thus, the number of independent models NI lies between 16 and
25 models, on average. Applying the square root we get a scaling factor of 4 or 5 in the standard deviation.
4.2.3. Computing the Standard Deviation of the Mean of the Posterior Distribution
The procedure we use to determine the number of independent models is based on the discussion of
Mosegaard and Tarantola [1995], who present a method based on analyzing the likelihood function within
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the equilibrium part of each Markov chain. Let {mi} be an ordered set of models that compose the equilibrium
part of a Markov chain sampling of model space. Typically, the likelihood function increases in magnitude as
the Markov chain progresses from the initial or seed model and then plateaus [e.g., Shen et al., 2013b, Figure 8]
where it oscillates. The equilibrium part of the Markov chain is the plateau region. Now consider the discrete
function L(mi), which is the likelihood as a function of model number within the equilibrium region of the
Markov chain. Mosegaard and Tarantola [1995] suggest computing the autocorrelation of L(mi), such that the
number of models that are required for the autocorrelation to return to 0 is the number of models needed
to reestablish statistical independence. Given our sampling algorithm, we find that the Markov chain has to
march through between 300 and 500 accepted models before it achieves independence relative to its starting
state. Thus, only approximately 1 in 300 to 500 models in the posterior distribution is independent. This means
that, on average, NI lies between 16 and 25 so that the local standard deviation of the distribution should be
divided by between 4 and 5 to estimate the standard deviation in the mean of the distribution, σm , which
we equate with <enonsys>.

As a consistency test of this estimate of the standard deviation of the mean of the posterior distribution, σm, we
have performed several brute force calculations of the standard deviation of the mean for a number of stations
by rerunning the Bayesian Monte Carlo inversions many times. This allows us to construct a set of different pos-
terior distributions from which we can compute the standard deviation of the mean across these distributions.
The results for station X57A (Hartsville, SC) are shown in Figure 11c, which compares the standard deviation of
the mean with the original standard deviation of the posterior distribution at this point. On average, from 5 to
150 km depth, the standard deviation of the mean, σm, is about 25% of the standard deviation of the posterior
distribution, σm. This result is consistent with the scaling analysis based on the likelihood function but is numeri-
cally much more expensive to compute. We obtain similar but not identical results at other stations.

Figure 12. Various crustal features. (a) Mean of the posterior distribution of the average shear wave speed averaged in the
top 5 km below the free surface using surface wave dispersion measurements alone. (b) Same as in Figure 12a, but the
inversion uses all data (including receiver functions and Rayleigh wave H/V measurements). Shallow structure is modified
predominantly by the introduction of the H/V data. (c) Mean of the posterior distribution of the shear wave speed in the
middle crust averaged within 4 km of the midpoint between the free surface and Moho, taken from the inversion using all
data. (c) Mean of the posterior distribution of the shear wave speed in the lower crust averaged within 3 km of Moho in the
crust, taken from the inversion using all data.

Journal of Geophysical Research: Solid Earth 10.1002/2016JB012887

SHEN AND RITZWOLLER CRUSTAL AND UPPERMOST MANTLE MODEL OF U.S. 4325



4.2.4. Discussing Model Error
In the rest of the paper and in all figures, when summarizing the posterior distribution we will present the
standard deviation of the posterior distribution, σm, which provides a reasonable relative error estimate. To
estimate the random or nonsystematic error in order to quantify the stability of the model, however, one
should divide these values by 4–5 to get a better estimate of the standard deviation of the mean, σm . The
standard deviation of the mean not only includes the effect of measurement errors but also the effects of
covariances between model variables and, therefore, remains a fairly conservative estimate of model
uncertainty caused by random errors. However, the standard deviation of the mean does not include the
effect of systematic errors caused by erroneous assumptions and constraints imposed in the inversion. An
assessment of the nature and potential magnitude of systematic error is presented in section 5.3.

4.3. Crustal Model

Horizontal slices of the mean of the posterior distribution for several depths in the crust are presented in
Figure 12. Figures 12a and 12b illustrate the effect on estimated shallow structures of the inclusion of receiver

Figure 13. Crustal thickness. (a) Mean of the posterior distribution of crustal thickness (distance from the free surface to
Moho) taken from the inversion using all data. (b) Standard deviation of the posterior distribution (σm) of crustal thickness
from the inversion using all data.

Journal of Geophysical Research: Solid Earth 10.1002/2016JB012887

SHEN AND RITZWOLLER CRUSTAL AND UPPERMOST MANTLE MODEL OF U.S. 4326



functions and Rayleigh wave ellipticity measurements. Sedimentary basins dominate the structural variations
in the top 5 km of the crust. The introduction of receiver functions and Rayleigh wave ellipticity measure-
ments brings shallow structures, notably sedimentary basins, into sharper focus both laterally and vertically.
This improves the crustal model, at least in the upper half of the crust.

There are a great many crustal features worthy of note and serious discussion, but this is beyond the scope of
this paper. However, we note that there is stronger variation across themidcontinent in themiddle crust than
in the lower crust. We believe that the relatively low wave speeds (green anomalies) in the middle crust in
Figure 12c across Nebraska, Kansas, Missouri, and Iowa are what Chu and Helmberger [2014] refer to as the
“massive low-velocity zone in the lower crust.” If so, it is in fact amidcrustal feature and although large in areal
extent is only slow in a relative sense.

Figure 14. (a) The jump in Vs across Moho presented as the difference in Vs directly below and aboveMoho, taken from the
mean of the posterior distribution at each depth and location. (b) The standard deviation of the difference between the
shear wave speed below and above Moho computed using all models in the posterior distribution at each point.
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We note that the discussion in section 4.1
based on the regionalization of the U.S.
into three regions was motivated by lower
crustal structure, which is quite homoge-
neous across the core of the continent
between the Rocky Mountain Front and
the Grenville Front, which cuts across the
south and eastern Midwest of the U.S.

The mean of the posterior distribution for
crustal thickness is presented in Figure 13.
The thickest crust lies under the Rocky
Mountains in Colorado, and the thickest
crust in the east is beneath the Appalachian
Mountains. These results are not surprising,
but there are many local variations in crustal
thickness that deserve greater attention than
we can pay them here, e.g., the very thin
crust of eastern North Dakota, the thick
crust extending from western New York
through Kentucky in the region between
the Grenville Front and the Appalachian
Mountains, and the large region of relatively
thick crust spanning the Mid-Continent Rift.

The mean of the posterior distribution of
the vertical jump in Vs from the crust to
the mantle is presented in Figure 14. On
average Vs increases across the Moho from
the crust to the mantle by about 300m/s.
However, there is substantial variation. For
example, there are much larger jumps
across the Moho in much of the Basin and
Range Province and in southern Ontario
between Lake Huron and Lakes Erie and
Ontario. However, much smaller jumps pro-
duce a near gradient Moho, which is
observed beneath the Colorado Plateau, in
the Pacific Northwest overlying the sub-
ducting slab, beneath Illinois, and in other
places distributed across the U.S.

The standard deviation of the posterior
distribution of crustal velocities, crustal
thicknesses, and the jumps in Vs across
Moho are presented in Figures 13b, 14b,
and 15. As discussed in section 4.2, to
obtain an estimate of the standard devia-
tion of the mean of the posterior distribu-

tion, which is a better representation of the random error in the model, one should divide the
uncertainties shown in Figures 13b, 14b, and 15 by approximately 4–5.

Uncertainties in the Vs jump across Moho are presented in Figure 14b. Generally, uncertainties are largest
where the jumps in Vs are largest, for example, the Basin and Range and the Colorado Rocky Mountains.
Large jumps are usually imposed by the receiver functions, which do not provide precise constraints on
the magnitude of the jump in Vs.

Figure 15. The standard deviation of the posterior distribution, σm,
for Vs at different depths in the crust: (a) averaged over the top
5 km, (b) averaged in the middle crust within 4 km of the midpoint
between the free surface and Moho, and (c) averaged in the lower
crust within 3 km of Moho. In the crust, σm is largest near the free
surface and Moho.
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Uncertainties in crustal velocities grow
toward the top and bottom of the crust, as
shown in Figure 11a and discussed already,
and are quite laterally homogeneous across
the U.S. (Figure 15). They are largest in the
Mississippi Embayment due to the extre-
mely thick sediments found there. The geo-
graphical pattern of uncertainties in crustal
thickness correlates with crustal thickness,
such that the larger uncertainties tend to
be near the core of the continent. The
depth of Moho for thicker crust is simply
harder to determine than for thinner crust
because the Airy phase in the group velo-
city curve, which reflects crustal thickness,
migrates to longer periods and is more
difficult to resolve clearly. The introduction
of receiver functions in the inversion
reduces the uncertainty in crustal thickness,
on average. This is shown in Figure 16a.
The inversion of surface wave dispersion
together with receiver functions and
Rayleigh wave ellipticity reduces uncer-
tainty in Moho depth at about two thirds
of the stations. At the other stations, how-
ever, the introduction of receiver functions
in the inversion actually increases the
uncertainty. In many cases this is because
the receiver function reveals that the sta-
tion is underlain by a gradient Moho or a
complicated Moho structure such that

crustal thickness is difficult to resolve. Indeed, the uncertainty in crustal thickness is strongly correlated with
the jump in Vs across Moho as Figure 16b shows. A gradient Moho, characterized by a small jump at Moho,
tends to produce large uncertainties in crustal thickness.

4.4. Mantle Model

Uppermost mantle structure directly
beneath the Moho varies strongly across
the U.S. as shown in Figure 17. Across most
of the U.S., the vertical slope of uppermost
mantle Vs right beneath the Moho is essen-
tially neutral; such that, Vs changes only
minimally with depth. A vertical profile that
provides an example of this is at Hartsville,
SC, and is seen in Figure 8f. Such locations
are colored white in Figure 17. At some
locations, however, there is a strong nega-
tive slope with depth in the uppermost
mantle, which typically indicates the exis-
tence of a low-velocity zone (LVZ) in the
shallow mantle. Such locations are identi-
fied with warm colors in Figure 17 and are
mainly confined to the western U.S. An
example vertical profile is at Crested Butte,

Figure 16. (a) Histogram of the difference between the local standard
deviation of the posterior distribution (σm) of crustal thickness
determined in the inversion using all data (Figure 13b), std dev (All),
and the standard deviation based on surface wave data alone, std dev
(SW), at the same location. (b) Plot of std dev (All) versus the jump
across Moho (Figure 14a) at the same location.

Figure 17. A low-velocity-zone (LVZ) in the shallow mantle? Plot of
the difference between Vs at the top of the mantle directly below
Moho and Vs 20 km below Moho, using the mean of the posterior
distribution at each location. Warm colors indicate a negative vertical
gradient indicative of a shallow LVZ, and cool colors indicate a posi-
tive vertical gradient in the uppermost mantle indicative of no LVZ.
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CO, as can be seen in Figure 8b. In contrast,
some locations have a positive slope with
depth, meaning that there is no LVZ in the
shallow mantle. Such locations are identi-
fied with cool colors in Figure 17 and are
mainly found in the eastern U.S. An exam-
ple vertical profile is at Red Bud, IL, as can
be seen in Figure 8e. Typically, shallow
mantle LVZs are found across much of the
western U.S. outside the Wyoming Craton,
the Colorado Plateau, and the Cascadia
subduction zone. The strongest positive
slopes in the uppermost mantle occur
between the Grenville Front and the
Appalachian Mountains, although weaker
positive slopes also extend across large
parts of the Midwest.

Several horizontal slices of Vs at depths of 70,
90, and 120 km in the upper mantle are pre-
sented in Figure 18. The most prominent
contrast is the east-west dichotomy. Many
of the structural features within the west
(e.g., Snake River Plain and High Lava Plains
low-velocity anomaly, rimming low-velocity
anomalies around the Colorado Plateau
and Wyoming Craton) are well known now,
as they appeared in earlier studies that were
prefaces to the current paper [e.g.,Moschetti
et al., 2007, 2010a, 2010b; Yang et al., 2008,
2011; Bensen et al., 2009; Lin et al., 2011;
Shen et al., 2013a, 2013b, 2013c]. Unlike
low-velocity anomalies that typically attenu-
ate with depth, the Wyoming Craton high-
velocity anomaly increases in prominence
with depth. The Cascadia slab is apparent
at 120 km depth. The most prominent upper
mantle anomaly in the east is the Reelfoot
Rift [Pollitz and Mooney, 2014], which is
predominantly a shallow low-velocity
mantle anomaly. Relative low velocities in
the uppermost mantle also underlie the
Appalachian Mountains, the most promi-
nent of which are found beneath New
England and western Virginia.

The standard deviation of the posterior distribution in upper mantle shear wave speeds is presented in
Figure 19. Again, as discussed earlier, to obtain a better estimate of the random error in the model, one
should divide the uncertainties shown in Figure 19 by approximately 4–5. Uncertainties are fairly homoge-
neous with location across the U.S. but grow below 100 km depth as Figure 11a indicates.

5. Discussion

The features of the model are often most clearly discerned in vertical transects. Here we expand the
discussion of model features by discussing four long east-west transects across the entire U.S. as well as three
pairs of shorter vertical profiles situated in crossing patterns through notable features: the Snake River Plain,

Figure 18. Mantle shear wave speeds at three depths, presented as
the mean of the posterior distribution at each location: (a) 70 km
depth, (b) 90 km depth, and (c) 120 km depth. Vs values are averaged
vertically within 5 km of each stated depth.
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the Reelfoot Rift, and the Appalachian
Mountains with the bull’s-eye of the last
pair of profiles in western Virginia. The
locations of these profiles are identified in
Figure 20. In addition, we discuss the
potential for systematic bias of the result-
ing 3-D model. In particular, we consider
the effect of the assumed relation between
Vs and density as well as our assumption of
a constant intermediate Q value of 150 in
the mantle.

5.1. Long East-West Transects Through
the Model

Figure 21 presents vertical transects
through the 3-D model across the entire
U.S. along four lines of latitude: A-A′ 46.5°
N, B-B′ 42°N, C-C′ 38°N, and D-D′ 34°N. As
with the horizontal views of the model
shown in Figures 12 and 18, the vertical
transects present the mean of the posterior
distribution at each depth derived from the
model based on all data: surface wave dis-
persion, receiver functions, and Rayleigh
wave H/V measurements. Each vertical
transect is divided into a “crustal panel,”
which presents the top 60 km, and a “man-
tle panel,” which presents depths from 30
to 150 km. The vertical exaggeration of
the crustal panel is greater so that crustal
features can be seen. Crustal velocities are
presented as absolute quantities, but man-
tle velocities are presented as perturbations
relative to 4.4 km/s.

Transect A-A′ goes through the northern
Cascades and northern Rocky Mountain
Cordillera; the Great Plains of Montana,
North Dakota, and Minnesota; through the
Upper Peninsula of Michigan and parts of
Lake Superior, through southern Ontario
and Quebec; and then terminates near the
northern tip of Maine. Six model features
are particularly noteworthy, which we dis-
cuss from west to east, most of which are

near the western end of the profile. (1) The supraslab mantle wedge is imaged as a slow feature in the
uppermost mantle beneath the Cascades. The subducting slab lies to the west of the wedge and appears
as relatively fast locally. (2) Shallow low velocities underlie the Pasco basin of south-central Washington. (3)
Relatively low crustal velocities lie beneath the Cordillera, although the thickest crust along the transect lies
east of the Cordillera beneath the Great Plains of Montana and western North Dakota. (4) The fast mantle
wave speeds of the Great Plains set on slowly east of the Cordillera through eastern Montana so that there
is no abrupt onset of high mantle wave speeds in the west at this latitude. (5) In eastern North Dakota, crustal
thickness reduces abruptly and enigmatically. (6) The model is relatively homogeneous fromMinnesota east-
ward both in the crust and mantle, with the highest wave speeds in the mantle occurring from Minnesota
to Michigan.

Figure 19. The standard deviation of the posterior distribution, σm, for
Vs at different depths in themantle within ±5 km of (d) 70 km, (e) 90 km,
and (f) 120 km, respectively. This quantity is generally larger in the
mantle than in the crust and grows particularly below 100 km depth.
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Transect B-B′ extends along 42°N from the
southern Cascades, through the northern
Basin and Range Province and High Lava
Plains, through the Wyoming Craton and
central Great Plains, and terminates in east-
ern Massachusetts. We highlight four fea-
tures from west to east. (1) The relatively
high-velocity subducting slab contrasts
with the exceptionally low-velocity supra-
slab mantle wedge, which merges with
the slow upper mantle beneath the Basin
and Range Province and High Lava Plains
to the east. (2) The very slow Green River
sediments overlie theWyoming Craton that
has velocity anomalies that amplify with

depth in the mantle. (3) Relatively slow mantle velocities lie between the Wyoming Craton and the Great
Plains, following the “Cheyenne Belt” [e.g., Houston et al., 1989] from northeastern Colorado to the Black
Hills (Figures 18b and 18c) of southwestern South Dakota. (4) Fast mantle velocities found across the eastern
U.S. terminate abruptly near the edge of the northern Appalachians in eastern New York.

Transect C-C′ extends along 38°N from the Great Valley of California, through the Sierras, the Basin and Range
Province, the Colorado Plateau and Rockies, and then across the central Great Plains and Appalachians to
terminate near the coast of central Virginia. This transect has a large number of noteworthy features, which
we again discuss them from west to east. (1) The sediments of the Great Valley appear clearly. (2) Low upper
mantle velocities underlie the central Basin and Range Province beneath a clearly defined mantle lid. As seen
in Figure 14, some of the strongest uppermost mantle negative vertical velocity gradients exist in the central
Basin and Range Province. This is not because uppermost mantle velocities beneath the central Basin and
Range Province are the lowest across the continent but because of the existence of a relative high-velocity
lid right below Moho. (3) The crust and mantle of the Colorado Plateau are distinct from surrounding areas,
being much faster than the Basin and Range or the Colorado Rockies. (4) In contrast, the crust and mantle
of the Colorado Rockies are quite slow and the thickest crust along this transect occurs beneath the
Rockies. (5) High velocities in the crust and mantle beneath the Great Plains set on rapidly east of the Rocky
Mountain front, although the transition occurs near to the front in the crust and farther to the east in themantle.
(6) Low velocities occur in the mantle beneath the eastern Appalachians in western Virginia near the eastern
edge of thick crust. Thinner crust is observed in eastern Virginia, but it is underlain by faster mantle.

Finally, transect D-D′ extends along 34°N from the Southern California coast near Los Angeles, through the
Coastal Range and Mojave desert, through the southern Basin and Range Province, across the Rio Grande
Rift, through the Southern Great Plains, the Mississippi Embayment and the Reelfoot Rift, and the southern
Appalachians to terminate near the coast of southern North Carolina. (1) Low-velocity mantle underlies the
Mohave desert and southern Basin and Range Province, but as with the Basin and Range farther north there
is a significant relative high-velocity lid in the uppermostmantle. (2) The lowestmantle wave speeds lie beneath
the Rio Grande Rift, and they are shallower than the lowest velocities beneath the Basin and Range Province. (3)
The Great Plains high velocities in the mantle set on abruptly near the eastern terminus of the Rio Grande Rift.
(4) At this latitude, the thickest Mississippi Embayment sediments lie just to the west of the Reelfoot Rift, which
appears as a shallowmantle relative low-velocity feature. (5) Relatively lowwave speeds in the uppermostman-
tle extend from the Reelfoot Rift in southern Arkansas across the southern U.S. to eastern South Carolina and
then are replaced by faster mantle shear wave speeds nearer to the Atlantic coast.

5.2. Shorter Crossing Transects Through the Model

The transects X1 and X2 in Figure 22a run along and across the Snake River Plain (SNP). Profile X2 runs along
the SNP. The slow mantle velocities predominantly lie between depths of 50 and 100 km, deepen slightly to
the southwest along the SNP, and are slowest where the SNP crosses 42.7°N latitude, which is considerably
west of Yellowstone. The crossing profile, X1, illustrates the cross-sectional width of the low-velocity anomaly
in the mantle beneath the SNP. This profile also contrasts the SNP low-velocity anomaly with the high

Figure 20. The location of the vertical transects through the 3-D
model. Long east-west transects A-A′, B-B′, C-C′, and D-D′ are presented
in Figure 21. The shorter pairs of crossing transects, X1-X2, Y1-Y2, and
Z1-Z2, are shown in Figure 22.
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Figure 21. Four east-west oriented vertical transects through the 3-D model, with locations identified in Figure 20, defined
as the mean of the posterior distribution of Vs at each location and depth. Each transect is part of a pair of depth profiles
with different vertical exaggerations: one for the crust (top 60 km) and the other for the uppermost mantle (30–150 km).
Depth is defined as the distance below the free surface, absolute crustal velocities are presented according to the inset
legend, crustal thickness is identified with a bold solid black line, isolines in the crust and mantle are placed at intervals of
0.2 km/s and 3%, respectively, and mantle velocities are presented as perturbations relative to 4.4 km/s in percent. Local
surface topography is also indicated, as are abbreviated names of selected structural and geographic features, most of
which are identified in Table 1 with the exception of NRM (northern Rocky Mountains), NBR, and SBR (northern and
southern Basin and Range, respectively).
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velocities beneath the Wyoming Craton southeast of the SNP. The velocity anomaly beneath the Wyoming
Craton intensifies with depth in contrast to the shallower focus of the low-velocity anomaly beneath the SNP.

Transects Y1 and Y2 in Figure 22b run through a geologically much older feature, the Reelfoot Rift. The ampli-
tude of the velocity anomaly is, therefore, smaller. The profile along the rift, Y2, shows that the lowest mantle
shear wave speeds lie between depths of about 50 and 90 km. The lowest velocities lie in a nearly horizontal

Figure 22. Three pairs of shorter crossing vertical transects with locations identified in Figure 20. Profiles X1 and X2 are oriented along and across the Snake River
Plain, profiles Y1 and Y2 target the Reelfoot Rift, and profiles Z1 and Z2 target the Appalachians, crossing in western Virginia. Definitions and formatting are similar
to Figure 21 but there are differences. Crustal velocities are presented on the same absolute scale as in Figure 21 and mantle velocities are perturbations relative to a
constant value, but the mantle reference for profiles X1 and X2 is 4.3 km/s and the reference for profiles Y1, Y2, Z1, and Z2 is 4.55 km/s. The color scale for profiles X1
and X2 ranges between ±8%, as in Figure 21, but the scale for the other profiles ranges only between ±4%. Abbreviations are identified in Table 1 with the exception
of SAM (southern Appalachian Mountains).
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band, but relatively low-velocity anomalies extend deeper into the mantle in the southwestern part of the
profile. The crust thickens along the rift to the northeast and becomes faster in the northern part of the rift
compared to the southern rift, as evidenced by upward curved crustal isolines. The crossing profile, Y1, reveals
the width of the mantle low-velocity anomaly. The low-velocity anomaly beneath the far southern extent of
the Appalachians in the shallow mantle also can be seen in profile Y1.

Transects Z1 and Z2 in Figure 22c lie along and transverse to the Appalachian Mountains, crossing in western
Virginia. Transect Z2 highlights that along the Appalachians there are three centers with mantle low-velocity
anomalies: beneath northern Georgia, beneath the Blue Ridge Mountains of western Virginia, and below the
Green Mountains and White Mountains of New England. The transverse profile in Z1 goes through western
Virginia and shows that the anomaly is concentrated in the shallow mantle but extends through the model
to at least 150 km. This is in contrast to the northern Georgia anomaly, which is confined to the shallow man-
tle above 80 km depth, but is similar to the anomaly beneath New England. The New England velocity anom-
aly is considerably stronger than the other two along the Appalachians and is arguably stronger than the
anomaly that underlies the Reelfoot Rift. We note that Chu et al. [2013] discuss a potential Cretaceous hot
spot track that would lie along the central and northern Appalachians, from western Virginia into New
England where mantle low velocities are seen in Figure 22c.

Due to different average velocities in the mantle and different color scales it may not be immediately obvious
that the velocity anomalies in Figure 22 beneath the Snake River Plain are much slower than beneath the
Reelfoot Rift and the Appalachians. The lowest velocities beneath the Snake River Plain are about 8% below
4.3 km/s (~3.96 km/s), but the lowest velocities beneath New England are only about 4% below 4.55 km/s
(~4.36 km/s). Nevertheless, mantle structure beneath the Reelfoot Rift and the Appalachians illustrates that
significant mantle heterogeneity occurs across the eastern and Central U.S.

5.3. Potential for Systematic Error

In section 4.2, we considered the estimate of model error, <em>, to be composed of systematic and nonsys-
tematic or random components:

< em >¼< esys > þ < enonsys > : (10)

We argued that <enonsys> should encompass model fluctuations and will be controlled predominantly by
errors in the data and trade-offs between model variables at different depths. We came to identify it with
the standard deviation of the mean of the posterior distribution at each location and depth:

< enonsys >¼ σm: (11)

We computed σm by scaling the standard deviation of the posterior distribution, σm, inversely by the square
root of the number of independent models in the posterior distribution and estimated this number by con-
sidering the characteristics of the likelihood function as suggested by Mosegaard and Tarantola [1995]. We
found on average that to compute σm , we needed to scale σm by 1/4–1/5. On average, this result captures
our degree of belief in the models concerning the effect of random or nonsystematic errors in the mean of
the posterior. Estimates of random error are designed to capture model stability and quantify the degree
of fluctuation in the model that results from measurement error. However, as we discuss here, systematic
errors may be considerably larger than random errors and random error estimates should be seen as providing
a lower bound on the likely errors in the resulting model.

The evaluation of systematic errors in the resulting model is a thornier subject than random errors because it
involves an assessment of the effect of assumptions and constraints imposed in the inversion in the final
models, and we do not know how the Earth deviates from our assumptions. Three of the most important
effects to consider are (1) the scaling of Vp with Vs, (2) the scaling of density (ρ) with Vs, and (3) the choice
of Q in the mantle. The effect of the choice of Q on the estimated model arises through the correction for
physical dispersion [Kanamori and Anderson, 1977], which is strongest when Q is low. The large Q of the crust
mitigates the effect on our model of ignorance of its exact value, butQ in themantle is typically much smaller,
which means that ignorance of mantle Q may have a more significant impact on the estimated model. The
assumptions we made about Vp, ρ, and Q are discussed in section 3.1, in equations (1) and (2), and the para-
graph that follows them.
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Shen et al. [2013b] discussed at some length the effect of varying the Vp/Vs ratio in the inversion. They intro-
duced the crustal Vp/Vs ratio as a variable in their inversion and found two important effects. First, they found
that using surface wave dispersion data and receiver functions truncated 10 s after the P phase arrival, the
posterior distribution of Vp/Vs was approximately uniform. This means that Vp/Vs could not be estimated with
the data they used. We introduce Rayleigh wave H/V measurements relative to their data set but do not
believe that this will influence the posterior distribution of Vp/Vs appreciably. Second, they found that the
choice of the Vp/Vs ratio dominantly affected their estimate of crustal thickness. Varying Vp/Vs from 1.70 to
1.80, for example, changes the mean of the posterior distribution for crustal thickness by about 3 km, on aver-
age. Thus, a reasonable estimate of the effect on crustal thickness of variations in Vp/Vs around the value of
1.75 that we impose in the crust is about ±1.5 km. This will impact regions where receiver functions constrain
crustal thickness in our model and, therefore, will exclude sedimentary basins where reverberations in the
receiver functions typically obscure the observation of the time of the Moho phase conversion. The standard
deviation of the mean of crustal thickness in the posterior distribution (divided by 4–5; Figure 13b) is on
average about 1 km across the U.S. Thus, the systematic error caused by Vp/Vs deviating from our assumed
value of 1.75 in the crust may very well be larger than random error in some locations.

We now discuss systematic effects on the estimated models due to Q in the mantle differing from our
assumption of 150 and ρ in the crust differing from the relation with Vs given by equation (2). The results
we present here are shown for the inversion at station X57A in Hartsville, SC. Results at other stations are simi-
lar but not identical.

Rayleigh wave phase speeds are sensitive to Q because Vs presented in the model depends on the physical
dispersion correction [Kanamori and Anderson, 1977]. Figure 23a illustrates the effects on Rayleigh wave
phase speed of changing Q in the mantle from 150 to both 75 and 300 using blue and green lines, respec-
tively. The effect on H/V measurements is shown in Figure 23b. Halving Q from 150 to 75 has a larger effect
than doubling Q from 150 to 300 on Rayleigh wave phase speeds and H/V measurements. The effect on

Figure 23. Simulated effects of systematic errors evaluated by (blue lines) changing Q from 150 to 75 in the mantle, (green
lines) changing Q from 150 to 300 in the mantle, and (red lines) increasing density by 0.1 g/cm3 throughout the crystalline
crust. (a) Effect on Rayleigh wave phase velocity as a function of period. (b) Same as in Figure 23a but for the effect on
Rayleigh wave ellipticity, H/V. (c) The effect on the estimated mean of the posterior distribution of Vs. All results are
presented by perturbing around the mean of the posterior distribution for station X57A (Hartsville, SC).

Journal of Geophysical Research: Solid Earth 10.1002/2016JB012887

SHEN AND RITZWOLLER CRUSTAL AND UPPERMOST MANTLE MODEL OF U.S. 4336



estimates of the mean of the posterior dis-
tribution of changing mantle Q from 150
to 75 and 300 is shown in Figure 23c. The
effect is largely confined to the mantle
with much smaller effects in the crust. If
mantle Q were in fact 75 rather than the
150 we assumed, then the estimated Vs in
the mantle would be increased by about
0.7% on average from 60 to 150 km depth.
In contrast, if Q were actually 300, then the
estimated Vs in the mantle would be
decreased on average by about 0.4% in
the same depth range. Because much of
the western U.S. probably may have a
lower mantle Q than 150 and the eastern
U.S. probably has a larger Q than this value
[Dalton et al., 2008], model bias due to the
assumed Qmodel is probably larger in the
west than in the east. The net impact is
that our estimate of mantle Vs in the west
may be biased low by in excess of 0.5%.
The Vs values we estimated in the east
may be biased high by this effect by a
smaller value, perhaps in excess of 0.25%.

The bias in the east due to uncertainty in Q probably lies within the standard deviation of the mean, which
we equate with random error, but the bias in the west may be larger than our estimate of random error.
However, both in the west and in the east, the bias may be spatially coherent over large areas.

Rayleigh wave phase speeds and H/Vmeasurements also possess sensitivity to crustal density. Figure 24 pre-
sents sensitivity kernels showing the sensitivity of Rayleigh wave phase speeds and H/V measurements to
density and Vs perturbations. An important difference is that for phase speeds the density kernel changes
sign. A positive Vs perturbation in the crust will produce a positive perturbation in Rayleigh wave phase
speed, but a positive crustal density perturbation will produce an effect on phase speed that could be
positive, negative, or zero depending on period and how the perturbation is distributed vertically in the
crust. However, for density perturbations that are focused on the top half of the crust, a positive crustal
density perturbation will produce a negative effect on phase speed. For H/V, the shapes of the Vs and density
kernels are similar and both change sign with depth. However, the largest kernel amplitudes are negative and
near the surface. Again, if perturbations are focused in the upper half of the crust, then positive perturbations
in density or Vs will produce negative perturbation on H/V. Finally, it is worth noting that for kernels that
change sign in the crust, the effect of perturbations applied across the whole crust will tend to cancel. As
described in the next paragraph, we apply a constant crustal density perturbation across the entire crust.
Thus, the effect both on phase speeds and H/V is mostly at long periods where the sign change of the kernel
occurs in the mantle.

Figures 23a and 23b show the impact on phase speed and H/Vmeasurements of changing crustal density by
0.1 g/cm3 across the entire crust relative to the value given by equation (2). This perturbation ranges from 3%
to 4% depending on depth in the crust. A positive crustal density perturbation will decrease phase speed at
all periods, but due to the oscillation of the sensitivity kernel in the crust at short periods, the impact will be
experienced dominantly at intermediate periods (Figure 23a). Similarly, the impact on H/Vwill predominantly
be at longer periods (Figure 23b). Bias of the model, therefore, will mostly be confined to the uppermost
mantle as Figure 23c illustrates. A systematic error of density of 3%–4% across the entire crust would produce
a bias in Vs of 0.6%–0.8% from the Moho to about 100 km depth in the mantle, with a smaller effect in the
lowermost crust. The details of the bias will depend on the vertical distribution of the density error, but we
believe that systematic errors in the mantle of 0.5% may be common. If density errors are not distributed
as evenly in the crust, then a bias of crustal Vs could occur.

Figure 24. Sensitivity of (a) Rayleigh wave phase speed and (b) ellipti-
city (H/V) to perturbations in (red lines) Vs and (green lines) density at
periods of 20 s and 50 s.
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In summary, we have discussed three potential sources of systematic error here: the scaling relation between
Vp and Vs, the scaling relation between density and Vs, and the assumed value of Q in the mantle. We believe
that errors in the assumed crustal Vp/Vs ratio mostly likely will bias estimates of crustal thickness. Errors of up
to 1.5 km are to be expected in some places, which is larger than average random error across the U.S.
(~1 km). The impact of error in the assumed crustal density on estimated model Vs will depend in detail on
the vertical distribution of the error in density, but we show that (perhaps contrary to expectation) model bias
in the mantle can be appreciable. We show that a systematic error in crustal density across the entire crust of
3%–4% can bias Vs in the uppermost mantle by more than 0.5%, which is larger than average random error.
Finally, errors in Q assumed in the mantle will also bias estimated Vs in the mantle. We discuss ways in which
systematic errors may be reduced in the future in section 6.

6. Conclusions

We present a 3-D model of crustal and uppermost mantle Vs to a depth of about 150 km across the contiguous
U.S. The model is constructed from a set of vertical 1-D profiles beneath 1816 USArray Transportable Array (TA)
stations produced by jointly inverting Rayleighwave dispersion, receiver functions, and Rayleighwave ellipticity
(H/V) measurements. Rayleigh wave dispersion curves are derived from ambient noise and earthquakes, which
agree in the period band of overlap. Estimates of measurement error for all data allow us to invert the different
data sets together. A Bayesian Monte Carlo procedure provides the basis for the inversion and a posterior dis-
tribution of models is constructed beneath each TA station. We summarize these distributions at each location
and depth with the mean, m , and standard deviation, σm, and we then interpolate these depth-dependent
statistics onto a 0.25°×0.25° across the U.S. by simple kriging. The resulting depth-dependent interpolated pair
(m and σm) as a function of depth across the U.S. forms the 3-D model.

We argue here that the standard deviation of the posterior distribution, σm, is not an ideal estimate of abso-
lute model uncertainty, but it provides useful information about relative uncertainty. It is too large to repre-
sent random error and does not include an estimate of systematic error. A better estimate of random or
nonsystematic error of the model is the standard deviation of the mean of the posterior distribution, σm .
This statistic provides a better estimate of the fluctuations observed in the 3-D model and more accurately
reflects the impact on model variables of data uncertainties. Using two different methods, we demonstrate
that on average σm can be estimated by scaling σm by about 0.2–0.25. Doing so, we find that nonsystematic
model error in Vs averages about 0.2% in the midcrust and 0.4% in the mantle, but these errors grow near
Moho and the free surface.

A great many structural features are determined reliably in the 3-D model. We do not focus here on interpret-
ing these features or even pointing them out systematically but provide views of the model across the con-
tinent. We do highlight three prominent features of the model beneath and across the Snake River Plain, the
Reelfoot Rift, and the Appalachian Mountains. The observation of three low-velocity features beneath the
Appalachians in western Virginia, northern Georgia, and New England is new to the best of our knowledge.
We believe that the explication of the model will require a number of papers dedicated to individual struc-
tural features, such as the paper on the Mid-Continent Rift by Shen et al. [2013c].

Although we discuss random or nonsystematic error at some length, systematic error is probably larger and
of greater concern because it is more difficult to estimate reliably. Systematic error results from the deviation
of the constraints and assumptions that we impose in the inversion from the real Earth. Our discussion of sys-
tematic error aims to quantify the probable magnitude and nature of several important types of error. In so
doing, it provides the basis to identify fruitful directions to advance the model as part of future research.

We discuss three potential sources of systematic error here: deviation of crustal Vp/Vs from 1.75, the introduc-
tion of a crustal density perturbation relative to the assumed ρ:Vs scaling relation given by equation (2), and
deviation of mantleQ from the value of 150 assumed in our inversion. We find that systematic errors are most
likely to accrue to estimates of crustal thickness and Vs in the mantle. Even crustal density errors, if they per-
severe throughout the crust, will manifest dominantly as bias of Vs in the mantle rather than in the crust,
although bias of crustal Vs is also possible if density error is confined to shallow depths. Such systematic errors
arising from several separate sources may constructively or destructively interfere with one another, but
errors of 0.5%–1% in Vs at upper mantle depths are probably not unlikely, which is larger than average
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random error. Such errors may be coherent over large regions (e.g., mantle Q in the west may be consistently
lower than 150 and in the east consistently higher) or may vary rapidly laterally (e.g., geological variations
affecting crustal density).

Future research is called for that will beat down systematic error by introducing better information in the
inversion to improve constraints on Vp, density, and mantle Q. For example, Vp/Vs can be better constrained
by introducing longer P-to-S receiver functions into the analysis [e.g., Zhu and Kanamori, 2000; Chen and Niu,
2013]. S-to-P receiver functions would also provide new and valuable constraints [e.g., Hansen and Dueker,
2009; Lekić and Fischer, 2014; Fischer, 2015]. In addition, a more accurate density-to-Vs scaling relationship
may arise by applying gravity [e.g., Maceira and Ammon, 2009] and surface wave local amplification data in
the inversion simultaneously [e.g., Eddy and Ekström, 2014; Lin et al., 2012a]. Moreover, there are many other
fruitful directions to improve and extend the model presented here in future work. We mention only three.
First, it will be important to include the introduction of Love waves, which will provide information about
radial anisotropy [e.g., Moschetti et al., 2010a, 2010b; Xie et al., 2013]. Second, it is also important to perform
the simultaneous interpretation of Rayleigh wave azimuthal anisotropy [e.g., Lin et al., 2011] with other data
in order to constrain the full elasticity tensor [e.g., Xie et al., 2015]. Third, the increasing availability of dense
(large N) arrays improves the ability to constrain discontinuities in the interior of the crust, which are not
included in the present study [e.g., Deng et al., 2015].
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