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Abstract 

Radial and azimuthal anisotropy in seismic wave speeds have long been observed using surface 

waves and are believed to be controlled by earlier episodes of deformation within the Earth’s crust 

and uppermost mantle. Although radial and azimuthal anisotropy reflect important aspects of 

anisotropic media, few studies have tried to interpret them jointly. We describe a method of 

inversion that reconciles simultaneous observations of radial and azimuthal anisotropy under the 

assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip 

and strike angles. We show that observations of radial anisotropy and the 2ψ component of 

azimuthal anisotropy for Rayleigh waves obtained using USArray data in the western US can be 

fit well under this assumption. Our inferences occur within the framework of a Bayesian Monte 

Carlo inversion, which yields a posterior distribution that reflects both variances of and 

covariances between all model variables. Principal results include the following: (1) Inherent S-

wave anisotropy (γ) is fairly homogeneous vertically across the crust, on average, and spatially 

across the western US. (2) Averaging over the region of study and in depth, γ in the crust is 

approximately 4.1%±2%. (3) There are two distinct groups of models in the posterior distribution 

in which the strike angle of anisotropy in the crust (defined by the intersection of the foliation 

plane with earth’s surface) is approximately orthogonal between the two sets. (4) γ in the crust is 

approximately the same in the two groups of models. (5) Dip angles in the two groups of models 

show similar spatial variability and display geological coherence. (6) However, Rayleigh wave 

fast axis directions are orthogonal to strike angle in the geologically preferred group of models. (7) 

The estimated dip angle may be interpreted in two ways: as a measure of the actual dip of the 

foliation of anisotropic material within the crust, or as a proxy for another non-geometric variable, 

most likely a measure of the deviation from hexagonal symmetry of the medium. (8) Tilting the 

symmetry axis of an anisotropic medium produces apparent radial and apparent azimuthal 
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anisotropies that are both smaller in amplitude than the inherent anisotropy of the medium, which 

means that most previous studies have probably underestimated the strength of anisotropy. 
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1. Introduction 

The study of anisotropy using surface waves is primarily of interest to seismologists 

because surface waves provide a homogenous sampling of the Earth’s crust and uppermost 

mantle over large areas. For this reason, robust inferences about anisotropy from surface 

waves are typically not restricted to small regions, which provides the possibility to draw 

conclusions broadly over a variety of geologic and tectonic settings (e.g., Anderson and 

Regan, 1983; Ekström and Dziewoński, 1998; Gung et al., 2003; Smith et al., 2004; 

Kustowski et al., 2008; Nettles and Dziewoński, 2008). Cross-correlations of ambient noise 

principally present relatively short and intermediate period surface waves for interpretation. 

Therefore, the introduction of ambient noise tomography into the set of standard 

seismological methods has allowed for increasingly detailed information to be gained about 

the crust (e.g., Shapiro et al., 2005; Yao et al., 2006; Bensen et al., 2009; Moschetti et al., 

2010a; Ritzwoller et al., 2011; Yang et al., 2012; Ekström, 2013), and information about 

anisotropy that is deriving from ambient noise is mainly crustal in origin (e.g., Huang et al., 

2010; Moschetti et al., 2010b; Yao et al., 2010; Lin et al., 2011; Xie et al., 2013). In this 

paper, surface waves from both ambient noise and earthquakes will be used, and the 

principal focus will be on crustal anisotropy. 

Studies of seismic anisotropy using surface waves primarily take two forms. In the first, 

azimuthally averaged (transversely isotropic) Rayleigh and Love wave travel time curves 

are studied to determine if they are consistent with an isotropic medium of propagation. If 

not, radial anisotropy (or polarization anisotropy) is introduced to the medium to resolve 

what is often called the “Rayleigh-Love discrepancy”. In the second form, the directional 

dependence of surface wave travel times is used to determine azimuthal anisotropy. In both 
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cases, the anisotropy is typically interpreted to result from the mechanism of formation of 

the medium, either through (1) the crystallographic or lattice preferred orientation of 

anisotropic minerals (Christensen, 1984; Ribe, 1992) or (2) the anisotropic shape 

distribution of isotropic materials, such as laminated structure (Backus, 1962; Kawakatsu et 

al., 2009) or fluid filled cracks (Anderson et al., 1974; Crampin, 1984; Babuška, 1991). 

Indeed, one of the principal motivations to study seismic anisotropy is to understand the 

deformation that a medium was subject to during its formation and evolution. 

Irrespective of the physical cause or causes of the anisotropy, however, assumptions are 

typically (and necessarily) made to aid in and simplify the inference from surface wave 

observations to information about the elastic tensor, which governs the propagation of 

surface waves and generates the observed anisotropy. In studies of radial anisotropy (e.g., 

Dziewoński and Anderson, 1981; Moschetti et al., 2010b; Xie et al., 2013), the typical 

assumption is that the medium is transversely isotropic or possesses hexagonal symmetry 

with a vertical symmetry axis ( ẑ -axis in Fig. 1). Such a medium is defined by five depth-

dependent elastic parameters (A, C, N, L, F or η), where A and C are compressional moduli 

and N and L are shear moduli. In this case, the 6x6 elastic modulus matrix, Cαβ, the Voigt 

simplification of the elastic tensor, can be written as the following symmetric matrix: 

VCαβ =

A A − 2N F 0 0 0
A − 2N A F 0 0 0
F F C 0 0 0
0 0 0 L 0 0
0 0 0 0 L 0
0 0 0 0 0 N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

                                                 (1)  

where η = F/(A-2L) and the superscript V stands for vertical symmetry axis. With a vertical 

symmetry axis, a hexagonally symmetric medium will produce no azimuthal variation in 
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surface wave speeds mainly because the C44 and C55 matrix elements are identical. In 

addition, because N is frequently greater than L in earth material, C66 > C44. This is referred 

to as positive S-wave radial anisotropy and implies that Love waves are faster than 

predicted from an isotropic medium that fits Rayleigh wave speeds. In contrast, studies of 

azimuthal anisotropy (e.g., Simons et al., 2002; Marone and Romanowicz, 2007; Yao et al., 

2010; Lin et al., 2011) may implicitly interpret the medium to have a horizontal symmetry 

axis ( x̂ -axis in Fig. 1). In the case of hexagonal symmetry, the elastic modulus matrix has 

the following form: 

HCαβ =

C F F 0 0 0
F A A − 2N 0 0 0
F A − 2N A 0 0 0
0 0 0 N 0 0
0 0 0 0 L 0
0 0 0 0 0 L

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

                                                (2)  

The fact that N is typically larger than L implies that C66 < C44, which is referred to as 

negative S-wave radial anisotropy and is observed in the mantle beneath the mid-ocean 

ridges (e.g., Ekström and Dziewoński, 1998; Zhou et al., 2006; Nettles and Dziewoński, 

2008) and is observed only rarely in the crust (e.g., Xie et al., 2013). Also, mainly because 

C44 ≠ C55, this elastic tensor will generate azimuthal variations in wave speeds. These 

assumptions of vertical and horizontal symmetry are obviously in conflict with one another 

and cannot explain the widely observed co-existence of positive radial anisotropy and 

azimuthal anisotropy (e.g., Huang et al., 2010; Yao et al., 2010; Yuan and Romanowicz, 

2010; Yuan et al., 2011; Xie et al., 2013; Hacker et al., 2014). 

The anisotropic properties of an elastic medium and the anisotropy of seismic wave speeds 

depend both on the detailed constitution of the elastic tensor and on its orientation. 
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Observational studies that have not explicitly considered the orientation of the elasticity 

tensor (perhaps by assuming either a vertical or horizontal symmetry axis) produce 

estimates of radial and azimuthal anisotropy, respectively, that we refer to as “apparent”, 

because the real symmetry axis of the medium (assuming it exists) may differ from 

horizontal or vertical. Observations of apparent anisotropy, therefore, depend on the 

unknown orientation of the medium, which limits the usefulness of such observations to 

constrain the elastic properties of the medium. Ultimately, in order to understand the 

anisotropy that seismic waves exhibit, it is important to seek information about the (depth-

dependent) elastic tensor within the crust and mantle together with its orientation. We refer 

to the anisotropic properties of a medium as “inherent anisotropy” only when they are 

measured (or inferred) for the untilted hexagonally symmetric elastic tensor. We use the 

term “inherent” as opposed to “intrinsic” anisotropy because the latter term often refers to 

anisotropy that results from a specific cause, namely, from crystal orientation (Wang et al., 

2013; Anderson and Thomsen, 2015). Further discussion of the distinction between apparent 

and inherent anisotropy takes place later in the paper.  

The purpose of this paper is to describe a method to reconcile simultaneous observations of 

radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic 

tensor with a tilted symmetry axis (Figure 1a), as was first suggested by Montagner and 

Nataf (1988). Such an assumption has been applied before to body wave observations (e.g., 

Okaya and McEvilly, 2003) as well as studies of the effect of mode-coupling on surface 

waves (e.g., Yu and Park, 1993). Applications here are made using Rayleigh and Love wave 

dispersion maps from the western US obtained using the Transportable Array (TA) stations 

from EarthScope USArray. We obtain isotropic Rayleigh wave phase speed maps from 8 to 
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40 sec period from ambient noise data and from 24 to 90 sec period from earthquake data. 

Isotropic Love wave maps are taken from ambient noise data from 10 to 25 sec period and 

from earthquake data from 24 to 50 sec period. These observations produce azimuthally 

isotropic Rayleigh and Love wave phase speed curves at each point on a 0.2°x0.2° grid 

across the study region. The 2ψ Rayleigh wave azimuthal anisotropy data are obtained from 

10 to 40 sec from ambient noise data and 24 to 60 sec period from earthquake data, where ψ 

is the azimuth of propagation of the wave. No azimuthal anisotropy data from Love waves 

are used in this study. Love wave azimuthal variations are expected (and observed) to 

display dominantly 4ψ azimuthal variation, which is a much more difficult observation to 

make than the 2ψ azimuthal variation of Rayleigh waves.  

The assumption of hexagonal symmetry is a starting point designed to reduce the number of 

free parameters that govern the anisotropic medium, which simplifies and accelerates the 

inverse problem. To describe the medium under this assumption at a given depth requires 

seven unknowns, the five moduli that govern the inherent characteristics of a hexagonally 

symmetric medium and two angles through which the elastic tensor is rotated: the dip and 

strike angles. There are, however, reasons to believe that crustal anisotropy, which is the 

primary focus of this paper, may display dominantly hexagonal symmetry. For example, 

strongly laminated or foliated rocks are nearly hexagonal in symmetry (Okaya and 

McEvilly, 2003) and lamination in the lower crust has been observed worldwide (Meissner 

et al., 2006). Also, the primary anisotropic mineral in the middle crust is probably mica 

(Weiss et al., 1999; Meissner et al., 2006), which displays approximate hexagonal 

symmetry. Therefore, if anisotropy derives from the CPO of anisotropic minerals, then mid-

crustal anisotropy may be well approximated by an inherently hexagonally symmetric 
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elastic tensor. However, as discussed later in the paper, amphiboles, which are common in 

the middle and lower crusts, are also strongly anisotropic but are more orthorhombic than 

hexagonal in symmetry (Meissner et al., 2006; Tatham et al., 2008). If amphiboles are a 

significant source of anisotropy, then what we estimate by assuming hexagonal symmetry 

may not have geologic meaning, but may yet contain information about the lower-order 

symmetry of the real elastic tensor, and inferences that are derived should be cognizant of 

this. 

Two further comments will conclude this discussion. First, Rayleigh and Love waves are 

strongly sensitive only to four (N, L, θ, ϕ, as described later) of the seven unknowns that 

define a rotated hexagonally symmetric elastic medium. Therefore, a straightforward 

inversion for the elastic tensor is impractical using surface wave data alone. For this reason 

we cast the inverse problem in terms of a Bayesian Monte Carlo approach in which we 

estimate a range of elastic tensors that agree with the data. This allows us to estimate 

uncertainties in all variables as well as the covariances or correlations between them as 

represented by the “posterior distribution” at each location and depth. As discussed later, we 

find that certain elements of the elastic tensor are well determined, others are not, and the 

posterior distribution is bimodal in three important variables. Second, the assumption of 

hexagonal symmetry is actually not required for the method we present, but simplifies it 

significantly. We could have, for example, cast the inverse problem in terms of an un-

rotated orthorhombic elastic tensor, but at the expense of introducing two additional free 

parameters. 

In Section 2 we briefly describe the data we use and the observations from surface waves 

that serve as the input data for the inversion. In Section 3, we explain the theoretical 
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background of the inversion, concentrating on the connections between surface wave 

observations and elastic constants. In Sections 4 and 5, the model parameterization and 

inversion are discussed. Finally, in Section 6, we present the inversion results and discuss 

possible physical implications of the estimated models. 

2. Surface wave data  

This paper is motivated by the need for a new inversion method, which is described in a 

later section, that self-consistently interprets observations of radial and azimuthal anisotropy 

of surface waves. The method is applied here to surface wave data obtained in a region that 

encompasses the western US and part of the central US, where USArray stations operated 

between the years 2005 and 2010. We use continuous ambient noise data to measure 

Rayleigh and Love wave phase speeds between station-pairs and data from earthquakes with 

Mw>5.0 to generate dispersion curves between event-station pairs. We follow the 

tomographic methods described by Lin$et$al.!(2009)!and!Lin$and$Ritzwoller!(2011) known 

as eikonal and Helmholtz tomography to estimate phase velocity maps with uncertainties. 

Our region of study extends somewhat further eastward than these earlier studies, however, 

and we obtain Love wave dispersion maps in addition to Rayleigh wave maps. 

At short periods, we use only ambient noise data and at very long periods only earthquake 

data are used, but there is an intermediate period range where ambient noise data and 

earthquake data are combined. The short period interval extends from 8 to 22 sec period 

where we apply eikonal tomography to produce the Rayleigh wave dispersion maps (Lin et 

al., 2009). The period band of overlap of ambient noise and earthquake measurements for 

Rayleigh waves is broad, ranging from 24 - 40 sec period. Love wave measurements, 

however, only extend to 25 sec period so overlap between ambient noise and earthquake 
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measurements occurs only at 25 sec period. At longer periods (>40 sec for Rayleigh waves, 

> 25 sec for Love waves) earthquake data alone are used, with Rayleigh wave 

measurements extending to 90 sec period and Love wave measurements to 50 sec period. 

The signal-to-noise ratio is smaller at long periods for Love waves than for Rayleigh waves, 

which reduces the longest period that Love wave phase speed maps can be constructed. 

Following the recommendation of Lin and Ritzwoller (2011), we apply eikonal tomography 

up to 50 sec period but we apply Helmholtz tomography, which accounts for finite 

frequency effects, at periods longer than 50 sec. Also following Lin et al. (2009), the 

uncertainties in the isotropic maps are scaled up to encompass the differences between the 

ambient noise and earthquake-derived maps. 

An example of the output of eikonal and Helmholtz tomography for a point in the Basin and 

Range province (Point A, Fig. 3a) is shown in Figure 2 in which the local azimuthal 

variation of Rayleigh wave phase velocity is presented at three periods. At each period for 

each location a truncated Fourier series is fit to the data to estimate the azimuthal dependent 

of phase velocity for both Rayleigh and Love waves: 

c(T ,ψ ) = c0 (T ) 1+ a2 cos 2(ψ −ϕFA )( ) + a4 cos 4(ψ −α )( )⎡⎣ ⎤⎦         (3) 

where T is period, ψ is the azimuth of propagation of the wave measured clockwise from 

north, c0 is isotropic phase speed, ϕFA is what we call the 2ψ fast axis direction, α is an 

analogous phase angle for 4ψ variations in phase speed, and a2 and a4 are the relative 

amplitudes of the 2ψ and 4ψ anisotropy. Uncertainties in each of these quantities are 

determined at each location and period. 

Examples of isotropic phase speed maps for Rayleigh and Love waves are presented Figure 
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3, where the short period maps (10 sec period) are determined from ambient noise, the long 

period maps (Rayleigh: 70 sec, Love: 45 sec) are from earthquake data, and the intermediate 

period maps are a combination of both data sets. Although azimuthally anisotropic phase 

speed maps are estimated for both Rayleigh and Love waves we use only the 2ψ maps for 

Rayleigh waves here. Rayleigh wave azimuthal anisotropy is observed to be dominated by 

180° periodicity (or 2ψ anisotropy) as expected for slightly anisotropic media (Simth & 

Dahlen, 1973). For Love waves, we use only the azimuthally isotropic phase speed maps 

because Love wave anisotropy is dominated by 90° periodicity (or 4ψ anisotropy), which is 

a more difficult observable that we choose not to invoke. Examples of observations of 

Rayleigh wave azimuthal anisotropy are presented in Figure 4 at three periods, where the 

length of each bar is the peak-to-peak amplitude of 2ψ anisotropy, 2a2, and the orientation 

of each bar is the fast axis direction φFA.  

Examples of characteristic maps (Rayleigh: 32 sec period, Love: 25 sec period) of the 

estimated uncertainties in these quantities are presented in Figure 5. The spatially averaged 

uncertainties for the isotropic Rayleigh and Love wave speeds (Fig. 5a,b) are 8 m/s and 18 

m/s, respectively, illustrating that Love wave uncertainties are typically more than twice as 

large as Rayleigh wave uncertainties. Uncertainties in the fast axis directions depend on the 

amplitude of azimuthal anisotropy and the regions of large uncertainty in Figure 5c occur 

where the amplitude of azimuthal anisotropy is small. The average peak-to-peak amplitude 

of 2ψ anisotropy for the 32 sec Rayleigh wave is approximately 0.8%, and for this 

amplitude the uncertainty of the fast axis direction averages about 8°. The uncertainty grows 

sharply as the amplitude of anisotropy reduces below about 0.5% and diminishes slowly as 

the amplitude grows above 1%. The average uncertainty in the amplitude of 2ψ anisotropy 
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for the 32 sec Rayleigh wave is about 0.24%, which is less than 1/3 of the average 

amplitude of anisotropy. Thus, the amplitude of the 2ψ Rayleigh wave anisotropy is 

determined typically to better than 3σ. 

From the maps of isotropic phase speed for Rayleigh and Love waves and the amplitude and 

fast axis direction of 2ψ anisotropy for Rayleigh waves (and their uncertainties), we 

generate at each grid point in the study area isotropic phase speed curves for both Rayleigh 

and Love waves and 2ψ anisotropic dispersion curves for Rayleigh waves. This raw 

material forms the basis for the later inversion for a 3D model. Figure 6 presents examples 

for the two locations (A: Basin and Range, B: Colorado Plateau identified in Fig. 3a) that 

illustrate how these curves can vary. For Point A, the fast azimuth of Rayleigh wave does 

not change strongly with period, but the amplitude of azimuthal anisotropy increases with 

period. In contrast, for Point B, the fast azimuth changes with period, but the amplitude of 

azimuthal anisotropy tends to decrease with period.  

Similar data sets have been used previously to study the anisotropic structure of the western 

US. For example, Moschetti et al. (2010a, 2010b) used isotropic Rayleigh and Love wave 

phase speed dispersion curves such as those presented in Figure 6a,d to image apparent 

crustal radial anisotropy. Lin et al. (2011) used azimuthally anisotropic dispersion curves 

similar to those in Figure 6b,c,e,f to image the apparent crustal and uppermost mantle 

azimuthal anisotropy. These two data sets were interpreted separately, but here we attempt 

to explain both radial and azimuthal anisotropy simultaneously using tilted hexagonally 

symmetric media (Fig. 1). 

3. The elastic tensor and surface wave anisotropy 

In a linearly elastic medium, stress and strain are related by a linear constitutive equation, 
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σ ij = cijklε kl , where cijkl is the elastic tensor that describes the behavior of the medium under 

strain and, therefore, determines the speed of seismic waves. Without loss of generality, the 

elastic tensor can be compacted into the 6x6 elastic modulus matrix, Cαβ, following the 

Voigt recipe (e.g., Thomsen, 1986). Although a general elastic tensor is described by 21 

elastic constants, hexagonal symmetry is often used to characterize earth materials due to its 

simplicity (e.g., Dziewoński and Anderson, 1981), and can approximate many actual 

situations in the Earth (e.g., laminated structures, LPO of mica or micaceous rocks, 

alignment of olivine crystals along the a axis with randomly oriented b and c axes). The 

hexagonally symmetric elastic modulus matrices with vertical (VCαβ) and horizontal (HCαβ) 

symmetry axes are presented in the Introduction. A general reorientation of the symmetry 

axis, which we call a tilt, is achieved by rotating VCαβ through the dip and strike angles 

defined in Figure 1a, as described in the Appendix. The elastic constants for a tilted 

hexagonally symmetric medium can be characterized by seven independent parameters, five 

unique elastic constants (A, C, N, L, F) that describe the untilted hexagonally symmetric 

(transversely isotropic) elastic tensor, and two for the orientation of the symmetry axis.  

For a model of the elastic tensor as a function of depth at a given location, the forward 

problem in which period and azimuth dependent Rayleigh and Love wave phase speed 

curves are computed is described in Appendix A. For weakly anisotropic media, surface 

wave velocities are only sensitive to 13 elements of the elastic tensor and the remaining 8 

elements are in the null space of surface wave velocities (Montagner and Nataf, 1986). 

There is an additional symmetry in surface wave observations: phase speeds with dip angles 

of ! and ! − ! (with constant ϕ) are indistinguishable, as are observations at strike angles 

of ! and ! + ! (with constant θ). This means that surface wave observations cannot 
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distinguish between the left-dipping foliation plane in Figure 1a from a right-dipping 

foliation plane that has been rotated about the z-axis by 180°.  

Some terminology is needed to help distinguish between the properties of the anisotropic 

medium from observations of anisotropy with surface waves. By “inherent anisotropy”, we 

mean the anisotropy of the untilted hexagonally symmetric elastic tensor given by the 

moduli A, C, N, L, and F. We summarize the inherent anisotropy of a hexagonally 

symmetric medium with the Thomsen parameters (Thomsen, 1986; Helbig and Thomsen, 

2005; Anderson and Thomsen, 2015): 

ε ≡ A −C
2C

≈
Vph −Vpv

Vp

                                                                       (4)      

γ ≡ N − L  
2L

≈ Vsh −Vsv
Vs

                                                                       (5)    

δ ≡ (F + L)2 − (C − L)2

2C(C − L)
≈ F + 2L −C

C
                                              (6)

                   

where ε is referred to as inherent “P-wave anisotropy” and γ is called inherent “S-wave 

anisotropy”. A so-called “elliptical” anisotropic medium is one in which δ!=!ε, in which case 

P-wave and SH-wave fronts are elliptical and SV-wave fronts are spherical. As shown in the 

Appendix, upon tilting and reorienting in strike angle, a hexagonally symmetric elastic 

tensor can be decomposed into the sum of an azimuthally invariant (or effective transversely 

isotropic) tensor and an azimuthally anisotropic tensor. We refer to the moduli that compose 

the azimuthally invariant tensor ( Â,Ĉ, N̂ , L̂, F̂ ) as the “apparent” transversely isotropic 

moduli because these moduli govern the azimuthally averaged phase speeds of Rayleigh and 

Love waves. The Thomsen parameters can be recomputed using these moduli and they 

define apparent quasi-P wave and quasi-S wave radial anisotropy: 
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ε̂ ≡ (Â − Ĉ) / 2Ĉ,  γ̂ ≡ (N̂ − L̂) / 2L̂ . As discussed later, previous observational studies of 

radial anisotropy have estimated apparent radial anisotropy rather than the inherent 

anisotropy of the medium if earth media are, in fact, not oriented with a vertical symmetry 

axis. 

A tilted hexagonally symmetric elastic tensor will generate both radial and azimuthal 

anisotropy in surface waves. Figure 1b demonstrates how apparent SV-wave azimuthal and 

apparent S-wave radial anisotropy (Rayleigh-Love discrepancy) vary as a function of dip 

angle. Note that only the dip angle is changing so that the inherent anisotropy is constant as 

apparent anisotropy changes. These curves are computed from a simple elastic tensor. For 

this model, the amplitude of azimuthal anisotropy increases with increasing dip angle (θ), 

and the apparent radial anisotropy decreases with increasing dip angle. When the dip angle 

is 0, there is strong positive apparent S-wave radial anisotropy but no azimuthal anisotropy. 

At some dip angle, the apparent radial anisotropy vanishes and the azimuthal anisotropy is 

non-zero. As the dip angle increases further, the apparent radial anisotropy becomes 

negative (meaning Vsv is greater than Vsh) and azimuthal anisotropy attains it maximum 

value. This example is intended to qualitatively illustrate the trend with dip angle; the 

details (e.g., the absolute amplitude, the crossing point, and the number of crossing points) 

depend on the elastic tensor itself (especially F or !). 

The computation of Rayleigh and Love wave phase velocities from a given tilted 

hexagonally symmetric medium is discussed in the Appendix.  

4. Model parameterization and constraints in the inversion 

Our model parameterization, as well as the allowed variations in the model, are similar to 
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those described by Shen et al., (2013a, 2013b) in the inversion of isotropic Rayleigh wave 

phase speeds and receiver functions for an isotropic Vsv model of the crust and uppermost 

mantle in the western and central US. In fact, our model covers a subset of the region of 

Shen’s model, which is the starting model for the inversion performed in this paper. Shen’s 

model is isotropic with V0s = Vsh = Vsv, η0 = 1, and V0p = Vpv = Vph = 2.0*Vs in the 

sediments, V0p = Vpv = Vph = 1.75*Vs in the crystalline crust and mantle, density is 

computed through depth-dependent empirical relationships relative to Vs (Christensen and 

Mooney, 1995; Brocher, 2005), and the Q model is taken from the AK135 model (Kennett et 

al., 1995). Here, we fix the density and Q models to those values found by Shen.  

In the crust and mantle we assume that the elasticity tensor possesses hexagonal symmetry 

with orientation given by the dip and strike angles (Fig. 1a). The depth dependence of the 

elastic moduli A, C, N, L, and F (or Vph, Vpv, Vsh, Vsv, and η) is represented by four B-

splines in the crystalline crust from the base of the sediments to Moho, and five B-splines in 

the mantle from Moho to 200 km depth. Beneath 200 km the model is identical to AK135. 

The B-spline basis set imposes a vertical smoothing constraint on the model in both the 

crust and the mantle. If sedimentary thickness in Shen’s model is less than 5 km, then the 

sediments are isotropic and are fixed to the model of Shen in which the depth dependence of 

Vs is represented by a linear function. Otherwise, as described below, S-wave anisotropy is 

introduced in the sediments by varying Vsh. 

In addition to the parameterization, there are model constraints that govern the allowed 

variations around the starting model (V0s, V0p, η0) in the inversion (described in the next 

section). Because we perform a Monte Carlo inversion, which involves only forward 

modeling, the imposition of the constraints is straightforward as they affect only the choice 
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of models that we compare with data; i.e., which models are used to compute the likelihood 

function. In the following, when referring to the seismic velocities 

VPV = C / ρ ,VPH = A / ρ ,VSV = L / ρ ,VSH = N / ρ( )  and η = F/(A-2L) we mean the 

inherent elements of a hexagonally symmetric elasticity tensor; that is, the inherent 

characteristics of the elasticity tensor prior to tilting. (1) Constancy of tilt angles in the crust 

and mantle. At each location, the dip and strike angles (tilt angles θ, ϕ) that define the 

orientation of the symmetry axis of anisotropy are constant through the crystalline crust and 

constant through the mantle, although the crustal and mantle angles are allowed to differ 

from each other. (2) Range of model variables. The allowed variations of the elastic 

parameters in the crystalline crust and mantle relative to the starting model are as follows: 

Vsv±0.05*V0s, Vsh±0.15*V0s, Vpv±0.15*V0p, Vph±0.15*V0p. In addition, in the crust ηcrust

∈[0.6,1.1] and in the mantle it lies in the smaller range ηmantle∈[0.85,1.1]. Also, the tilt 

angles range through the following intervals: θ∈[0,90°], ϕ∈[0,180°]. (3) Sedimentary 

model. If sedimentary thickness is less than 5 km in Shen’s model, the sedimentary part of 

the model remains unchanged (i.e., it is isotropic and identical to Shen’s model). If the 

thickness is greater than 5 km, then only the Vsh part of the model is perturbed to introduce 

S-wave radial anisotropy with γ ∈[0,0.2] ; i.e., a maximum S-wave anisotropy of 20%. No 

tilt is introduced to the elastic tensor in the sediments. (4) Vp/Vs ratio. Vp/Vs = 

(Vpv+Vph)/(Vsv+Vsh)∈[1.65,1.85]. (5) Monotonicity constraint. Vsv, Vsh, Vpv, and Vph 

each increase monotonically with depth in the crystalline crust. A monotonicity constraint is 

not imposed on η or on any of the variables in the mantle. (6) Positive anisotropy. Vsh > 

Vsv, Vph > Vpv. (7) Fixed points of the model. Density and crustal thickness are not 

changed relative to the starting model.  
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The constraints can be considered to fall into two groups, one group is based on prior 

knowledge, and the other is introduced to simplify the model. The Vp/Vs ratio, positive 

anisotropy, and the fixed points of the model constraints are based on prior knowledge. For 

example, the inherent anisotropies are set to be positive because crustal rock samples show 

slow velocity perpendicular to the foliation plane and fast velocity within the foliation 

plane, and anisotropy caused by layering also shows positive inherent anisotropy (Anderson 

and Thomsen, 2014; Tatham et al., 2008; Brownlee et al., 2011; Erdman et al., 2013). We 

set the sedimentary thickness and crystalline crustal thickness constant based on the receiver 

function observations by Shen et al. (2013b). The Vp/Vs ratio is constrained to be within 

1.65 to 1.85 because most other observations of Vp/Vs fall in this range (e.g., Lowry and 

Perez-Gussinye, 2011; Christensen, 1996; Buehler and Shearer, 2014). 

In constrast, constraints such as the vertically constant tilt angle in the crust and mantle and 

monotonic increase of seismic wave speeds in the crust are used to simplify the resulting 

models. Everything else being equal, we prefer simpler models because they are more 

testable and falsifiable. For example, we could have parameterized the tilt angles as depth-

varying and still fit our data. (In fact, there are always an infinite number of possible and 

more complex alternatives that include more ad hoc hypotheses.) Without prior knowledge, 

more complex models can hardly be proven wrong because they can always fit the data. 

Besides, little can be learned from such complexities because they are not derived from the 

data. On the other hand, a simple model cannot always fit the data (e.g., a constant velocity 

profile cannot fit the dispersion curves), so it is more easy to prove wrong (if it is). When a 

model is too simple to fit the data, we then add complexity to the model or loosen 

constraints. Because this kind of added complexity is motivated by the data, it is more likely 
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to provide information about the earth. Therefore, we view the vertically constant tilt angle 

and monotonicity constraints as hypotheses that we test empirically. If we are unable to fit 

aspects of the data acceptably, we will return and loosen these constraints to help fit the 

data. Otherwise, these constraints are kept to generate a simple model. 

In summary, we seek an anisotropic model that is relatively close to the isotropic model of 

Shen, possesses hexagonally symmetric anisotropy with a symmetry axis of locally constant 

but geographically variable orientation in the crystalline crust and upper mantle, has only 

positive P-wave and S-wave anisotropy, a Vp/Vs ratio that varies around that of a Poisson 

solid, and possesses seismic velocities that increase with depth in the crust. Given the 

allowed variations in the elastic moduli, the maximum S-wave anisotropy (γ) considered in 

both the crust and mantle is 20%. Because Shen’s model was constructed with Rayleigh 

waves (and receiver functions) it only weakly constrains Vp and Vsh, but has rather strong 

constraints on the sedimentary and crustal thicknesses and Vsv in the crust. For this reason, 

we allow in our inversion wider variation in Vp and Vsh than in Vsv. η is allowed to vary 

through a wider range in the crust than mantle based on measurements of elastic tensors for 

crustal rocks (Tatham et al., 2008; Brownlee et al., 2011; Erdman et al., 2013) and olivine 

(Babuška, 1991), which is believed to be the major contributor to mantle anisotropy, and 

also to be consistent with mantle elastic moduli in other studies (e.g., Montagner and 

Anderson, 1989). We do not allow sedimentary thickness or crustal thickness to vary at all 

because receiver functions are not used in our inversion. However, we find that in areas 

where the sediments are thicker than 5 km, radial anisotropy is needed in order to fit the 

data at short periods. In this case, we introduce only S-wave anisotropy in the sediments (no 

P-wave anisotropy, no deviation of η from unity), which is probably physically unrealistic, 
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so we do not interpret the resulting model of anisotropy in the sediments. However, regions 

where sediments are thicker than 5 km in Shen’s model are relatively rare in the western 

US.  

5. Bayesian Monte Carlo inversion 

The data that are inverted are similar to those shown in Figure 6 for two locations in the 

western US. We apply a Bayesian Monte Carlo method to invert the data at each location.  

The implementation of the inversion is very similar to the method described in detail by 

Shen et al. (2013a), but we do not apply receiver functions. We construct observations such 

as those in Figure 6 on a 0.2°x0.2° grid. The isotropic model constructed by Shen et al. 

(2013b), which is our starting model, is constructed on the irregular grid given by the station 

locations where the receiver functions are defined. In contrast, we construct our model on a 

regular 1°x1° grid across the central and western US. At each grid point, the starting model 

in our inversion is Shen’s model at the nearest station, which in some cases may be as much 

as 40 km away.  

At each location the prior probability distribution is defined relative to Shen’s model based 

on the constraints described in the previous section. The prior distribution guides the 

sampling of model space. A model is determined to be acceptable or not based on its 

likelihood function L(m), which is related to the chi-squared misfit S(m) (Shen et al., 2013a; 

Xie et al., 2013). L(m) and S(m) are defined as follows: 

L(m) = exp(− 1
2
S(m))                                                 (7)  

where 
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S = (D(m)i
predicted − Di

observed )2

σ i
2

i
∑                      (8) 

The chi-squared misfit S(m) measures the weighted difference between the observed and 

predicted dispersion curves, where the forward model is computed as described in the 

Appendix. The chi-squared misfit is composed of four terms, corresponding to the four 

curves at each location shown in Figure 6. The first two are for isotropic Rayleigh and Love 

waves. The other two are for the amplitude and fast-axis direction of Rayleigh wave 

azimuthal anisotropy. The only weights in the misfit function are the standard deviations of 

the measurements.  

The model sampling process and acceptance criteria follow the procedure described Xie et 

al. (2013) where the partial derivatives are updated when 200 more models are accepted. 

Because the model sampling will not complete until at least 5000 models are initially 

accepted, the partial derivatives are updated at least 25 times during the sampling. After the 

sampling is complete, the entire set of initially accepted models is put through the selection 

process again to remove models with larger misfit (Xie et al., 2013). On average, models are 

accepted up to about twice the rms misfit of the best-fitting model. This reselected model set 

composes the (truncated) posterior probability distribution, which is the principal output of 

the inversion. The posterior distribution satisfies the constraints and observations within 

tolerances that depend on data uncertainties.  

Examples of prior and posterior probability distributions for the inherent variables at 20 km 

depth are shown in Figures 7 and 8 for the same two locations for which we present the 

data in Figure 6. The prior distributions are strongly shaped by the model constraints. For 

example, Vsv displays a narrower prior distribution because only 5% perturbations relative 
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to the starting model are sampled compared to 15% perturbations in Vsh, Vpv, and Vph. 

The non-uniform shape of many of the distributions arises from constraints that tie model 

variables between different depths or of different types, such as the monotonicity constraint. 

The prior distributions for the dip and strike angles are uniform, however, because they are 

constant across the crust and, therefore, are not explicitly tied to choices of variables at 

different depths or of different types. The posterior distribution is wider for variables that 

are poorly constrained by the data (e.g., Vph, !) than for those that are well constrained 

(e.g., !, !, Vsv, Vsh). Note that the crustal dip and strike angles, ! and !, are well 

constrained by the data in that their posterior distributions are relatively narrow. However, 

the posterior distribution of the crustal strike angle is bimodal, defining two model groups in 

which strike angles differ by 90°, on average. These two groups of models are presented as 

blue and red histograms in Figures 7 and 8. The physical cause of this bifurcation is 

discussed in Section 6.2 below. 

We define “Group 1” (red histograms) to be the set of models with a crustal strike angle that 

approximately parallels the Rayleigh wave fast direction averaged between 10 sec and 22 

sec period. “Group 2” is the set of models with a strike angle that is approximately 

orthogonal to the Rayleigh wave fast axis direction in this period range. There are subtle 

differences between the crustal moduli A, C, N, and L between the two groups, but much 

stronger differences in η, dip angle θ, and the non-elliptical parameter (ε-δ). Typically, 

Group 1 has larger values of η and more nearly elliptical anisotropy (ε ≈ δ) in the crust, 

whereas Group 2 has smaller η and a more non-elliptical anisotropy. Also, Group 1 models 

tend to have a slightly larger crustal dip angle, on average. We believe that the bifurcation in 

model space is controlled fundamentally by η, which is poorly constrained in the prior 

Page 22 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 23 

distribution or by the data. The effect of the bifurcation on our conclusions also will be 

discussed further in the next section of the paper. 

Ultimately, we summarize each posterior distribution by its mean and standard deviation, 

which define the final model and uncertainty at each depth, and for each model variable. 

Table 1 presents these statistics for the posterior distributions shown in Figures 7 and 8. 

Figure 9 presents vertical profiles of Vsv and Vsh (related to the moduli L and N), showing 

the mean and standard deviation for Group 1 and Group 2 models separately at locations A 

and B in the Basin and Range and Colorado Plateau (Fig. 3a), respectively. Differences 

between the moduli of the two groups are discussed further below. These profiles are 

derived to fit the data presented in Figure 6, where we also show how well the data are fit 

by the mean model from each group (Group 1: solid lines, Group 2: dashed lines). The two 

groups fit the isotropic phase speed data nearly identically but do display small differences 

in the details of the fit to Rayleigh wave azimuthal anisotropy, although both fit within data 

uncertainties. The differences in fit are largest for the amplitude of azimuthal anisotropy 

above 30 sec period where uncertainties in this variable grow. Note that both groups fit the 

fast azimuth direction of Rayleigh wave azimuthal anisotropy equally well, even though the 

strikes angles of the crustal anisotropy differ by 90°. 

In addition, posterior covariances between different model variables at a particular depth, 

and a given model variable at different depths, can also be determined from the posterior 

distributions. In fact, we compute posterior correlation matrices in which the elements of the 

covariance matrix are normalized by the appropriate standard deviation, which normalizes 

the diagonal elements of the matrix to unity. In practice, we use the terms correlation and 

covariance interchangeably here.  

Page 23 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 24 

As an example, the posterior covariance matrix for five variables (γ ,ε ,δ ,θ ,φ ) at 20 km 

depth is presented in Figure 10 for a point in the Basin and Range province (point A in Fig. 

3a). Most correlations are relatively weak, γ is negatively correlated with ε and δ , ε

and δ are strongly positively correlated in order to keep a relatively constant ε −δ . 

Importantly, θ has no correlation with other variables except δ . A correlation between 

these two variables is probably not surprising because δ affects the speed of waves 

propagating at an angle through the medium (oblique to the symmetry axis) and θ  orients 

the medium.  

Similarly, Figure 10b-d shows the posterior covariance matrix for each model variable with 

the same model variable at different depths. This is again for point A in the Basin and Range 

province, where crustal thickness is about 31 km. Thus, depths greater than 31 km are in the 

mantle and shallower depths are in the crust. Most of the correlations in this case are 

positive. The correlation length (a measure of the rate of decay of the covariance with 

distance) in the crust is smaller than in the mantle because the vertical resolution is better. 

The B-splines in the crust only span from the bottom of the sediments to the Moho (less 

than 30 km here), whereas in the mantle they span about 170 km. The correlation length for 

γ  is smaller than ε and δ , indicating a better vertical resolution of γ . 

Covariance matrices such as the examples presented here illuminate the implications of the 

parameterization and constraints imposed in the inversion, but we only interpret this 

information qualitatively; it is not used formally. 

6. Results 

Love wave phase speed dispersion curves extend only up to 50 sec period and the Rayleigh 
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wave anisotropic dispersion curves also do not extend to very long periods. Thus, 

constraints on crustal structure are stronger than on the mantle. We have tested variations in 

mantle parameterizations and constraints, and found that changes affect estimated crustal 

structure within uncertainties. In the following, therefore, we will concentrate detailed 

discussion on the crustal part of our model, and will discuss mantle structure principally in a 

spatially averaged sense. Later work will specifically aim to improve and interpret the 

mantle model in a spatially resolved sense. 

6.1 Crustal anisotropy across the western US 

The results presented to this point are only for two locations, in the Basin and Range 

province and the Colorado Plateau (points A and B, Fig. 3a). We have applied the Bayesian 

Monte Carlo inversion described above to the US west of 100°W longitude and produced a 

3D model of the crustal elastic tensor (with uncertainties) on a 1°x1° grid across the region. 

The mean and standard deviation of aspects of the posterior distribution averaged across the 

crystalline crust (from the base of the sediments to Moho) are shown in Figures 11 and 12.  

As discussed above, the posterior distribution bifurcates at each location into two disjoint 

groups of models based on the strike angle, and we present results in the crust for both 

groups of models. For Group 1, crustal anisotropy is nearly elliptical meaning that the 

Thomsen parameters ε and δ, defined in Equations (4) and (6), are nearly identical. Figure 

11a shows that ε – δ is close to zero across the entire western US for Group 1 models. We 

refer to ε – δ as the “non-elliptical” parameter because values much larger or smaller than 

zero indicate the deviation from elliptical anisotropy. Group 2 models have more non-

elliptical anisotropy as Figure 11d illustrates, and ε is generally greater than δ so that the 

non-elliptical parameter is generally positive. 
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Although the elasticity tensors in the two groups of models differ in the extent to which the 

anisotropy is non-elliptical, the geographical distribution and the amplitude of inherent S-

wave anisotropy, given by the Thomsen parameter γ (Equation (5)), are similar. The 

amplitude averages about 3.9% for Group 1 and 4.2% for Group 2 (Fig. 11b,e). The 

differences in γ between Groups 1 and 2 are within estimated uncertainties (Fig. 12a,d), 

which average about 2% across the region. On average, γ does not vary strongly with depth 

in the crust, as Figure 13 illustrates. The error bars represent the inherent S-wave anisotropy 

at normalized crustal depth averaged across the study region. γ tends to be somewhat 

stronger in the shallow (~4%± 2%) and deep (~6%± 3%) crust than in the middle crust 

(~3%± 2%), but the trend is weak and does not occur everywhere. The amplitude of 

inherent S-wave anisotropy is everywhere positive (as it is constrained to be), and is fairly 

homogeneous laterally across the western US. It is, however, largest in the Basin and Range 

province and smallest in the Colorado Plateau and the western Great Plains. The positivity 

constraint on γ does not have to be relaxed anywhere to fit the data. γ is larger than its 

uncertainty across nearly the entire western US with the possible exception of some of the 

peripheral regions where uncertainties grow due to less ideal data coverage. For this reason, 

we suggest that γ not be interpreted near the Pacific coast.  

Compared with earlier estimates of (apparent) S-wave radial anisotropy across the western 

US (e.g., Moschetti et al., 2010a, 2010b), the amplitude of γ (inherent S-wave anisotropy) 

does not change as strongly across the region. This discrepancy is correlated with the 

difference between ‘inherent’ and ‘apparent’ anisotropy, and is discussed below in Section 

6.5.  

In contrast with γ, the dip angle does change appreciably across the study region and the dip 
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and strike angles differ appreciably between the two model groups. Differences between dip 

angles, shown by varying the background coloration in Figure 11c,f, are somewhat subtle. 

The spatially averaged uncertainty in the dip angle across the western US is 9° to 10° for 

both model groups. The geographical distribution of the variation in dip angle is similar 

between the two groups of models, but models in Group 2 have dip angles that average 

about 25° whereas Group 1 models average about 30°. Recall that the dip angle in the 

elasticity tensor is introduced to produce azimuthal anisotropy. Thus, elasticity tensors with 

nearly elliptical anisotropy must be tilted more to fit the azimuthal anisotropy data than 

tensors with substantially non-elliptical anisotropy. The dip angle in the crust everywhere 

across the western US is less than about 70° and greater than about 10°, with the majority of 

the angles falling within the range of 10º and 45º. The Basin and Range province has a 

shallower dip whereas the Colorado Plateau has a steeper dip, on average.  

There is a more prominent difference in strike angle than dip angle between the two groups 

of models. The strike angle directions for Group 1 and Group 2 models differ by 90°. This is 

a significant enough observation to warrant its own subsection, and is discussed further in 

Sections 6.2 and 6.3. Uncertainty in strike angle averages 12°-13° across the study region. 

There are also significant differences between the two groups of models in η and the other 

Thomsen parameters, ε (inherent P-wave anisotropy) and δ. η averages about 0.83 (±0.08) 

for Group 1 models and 0.077 (±0.07) for Group 2. In addition, there are larger values of 

inherent P-wave anisotropy (ε) in Group 1 (8.1%±4.8%) than in Group 2 (6.6%±4.2%). 

Group 1 models have nearly elliptical anisotropy, so δ ≈ ε. Thus, for Group 1 models, δ is 

on average larger (8.5% ± 6.7%) than for Group 2 models (2.8% ± 5.3%). For Group 2 

models δ ≪ ε, on average. 
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6.2 On the cause of the bifurcation in strike angle of crustal anisotropy 

The fact that two groups of solutions with orthogonal strike angles both fit the crustal 

sensitive Rayleigh wave data may be explained in terms of the phase speed surface 

produced by different elastic tensors. The phase speed surface can be computed by solving 

the Christoffel equation. For waves traveling in any direction, there are always three 

mutually orthogonal wave solutions, one (quasi-) P wave and two (quasi-) S waves. 

Normally, the S wave with faster speed is called S1, and the slower one is called S2. Note 

that S1 and S2 should not be associated with SV or SH waves, because S1 and S2 are defined 

based on the wave speed instead of the polarization direction.  

Figure 14 shows the phase speed surface of P, S1, and S2 waves, together with the 

polarization direction of the S wave for two tilted elastic tensors with hexagonal symmetry, 

one is elliptical with a dip angle of 20° and strike angle of 210°, the other is non-elliptical 

with dip angle 20° and a strike angle 300°. Each surface plots a particular speed (Vs1, Vs2, 

P) for waves propagating in different directions. Figure 14 shows a lower hemisphere plot 

so that horizontally propagating waves (surface waves) are sensitive to wave speeds at the 

edge of the diagram. These two tensors represent our Group 1 and Group 2 models that have 

different ellipticity properties and orthogonal strike angles. The most prominent feature of 

the non-elliptical tensor is that the polarization direction of the S1 wave suddenly changes 

from radial to tangential at some degree oblique to the symmetry axis. A Rayleigh wave that 

is propagating horizontally in a hexagonally symmetric medium with a shallow to moderate 

dip is mainly sensitive to the phase speed of the S2 wave (Vs2). In the following paragraphs, 

therefore, we will concentrate discussion on the speed Vs2. We will show that the two 

groups of elasticity tensors produce the same azimuthal pattern in wave speed Vs2 even 
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though their strikes angles differ by 90°. 

In an elliptical hexagonal medium (Group 1), the Vs2 surface has its minimum value oblique 

to the symmetry axis. In a non-elliptical hexagonal material, the pattern of the Vs2 surface is 

reversed: Vs2 has its maximum value oblique to the symmetry axis. Because horizontally 

propagating Rayleigh waves are only sampling the outer margin of the wave speed surface, 

we plot the value of Vs2 at the edge of the surface as a function of azimuth (Fig. 15a). We 

find that despite the orthogonal strike directions, the two groups of models produce similar 

azimuthal patterns of Vs2, with the same fast axis directions. Group 1 models have their Vs2 

fast axis direction parallel to the strike angle of the elasticity tensor, whereas Group 2 

models have their fast axis directions orthogonal to the strike. This phenomenon results in 

the same fast direction for the Rayleigh waves, even when the orientation of the inherent 

elasticity tensor is different. 

In contrast with the propagation of S2 waves, however, a horizontally propagating P wave is 

always fastest parallel to the strike of a dipping hexagonally symmetric elastic tensor (Fig. 

15b). Therefore, a P wave’s fast direction always indicates the strike direction.  

In conclusion, for both groups of models the Rayleigh wave fast axis direction is the same 

even if the strike of the anisotropy rotates by 90°. However, the P wave fast directions in the 

two groups will be orthogonal to each other, consistent with a 90˚ rotation of the strike. 

Therefore, observations of P wave anisotropy provide unambiguous information about the 

orientation of the strike angle of anisotropy, but Rayleigh waves do not. 

6.3 The strike angle of crustal anisotropy and the Rayleigh wave fast axis direction  

As discussed in Section 5, the posterior distribution divides into two disjoint groups of 
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crustal models according to the estimated strike angle (ϕ) of anisotropy, which is defined in 

Figure 1a. The physical cause of this bifurcation is discussed in Section 6.2. Thus, at each 

spatial grid point there are two distinct distributions of elastic tensors and orientations (or 

tilts) that will fit the Rayleigh wave data approximately equally well. For Group 1, the set of 

models with approximately elliptical anisotropy (ε ≈ δ) and typically larger value of η, the 

distribution of strike angles is shown in Figure 11c. These strike angles are very similar to 

the Rayleigh wave fast axis directions for waves that sample the crust (e.g., 10-20 sec 

period, Fig 4a). Figure 16 illustrates this fact by comparing the strike angles with the 16 sec 

period Rayleigh wave fast axis directions using blue symbols. The mean and standard 

deviation of the difference are 0.2° and 21.0°, respectively. The geographical distribution of 

the strike angles (and fast axis directions for crustal sensitive Rayleigh waves) are similar to 

those found by Lin et al. (2011), who discuss the geological coherence of the observations, 

so we forgo this discussion here. 

The second group of models, Group 2, possesses strike angles that are distinct from Group 

1, ε is typically significantly larger than δ, so the anisotropy is decidedly non-elliptical, and 

η is usually smaller than 0.8. As Figure 16 also shows with red symbols, the strike angles of 

Group 2 are, on average, perpendicular to the strike angles of Group 1 such that the average 

angular difference and standard deviation are 90.2° and 8.8°, respectively. This distribution 

is tighter than the comparison with Rayleigh wave fast axis directions because Rayleigh 

wave fast axes at a particular period are measurements and are, therefore, noisy. 

In summary, Rayleigh wave fast axis directions are ambiguously related to the strike of 

inherent crustal anisotropy. In fact, the fast axis direction will only parallel the strike 

direction if the crustal anisotropy is largely elliptical in nature. As information has grown on 
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the petrology of seismic anisotropy in the crust, evidence has mounted that crustal 

anisotropy is probably not strongly elliptical (e.g., Tatham et al., 2008; Brownlee et al., 

2011; Erdman et al., 2013). Thus, the geologically favored models are probably from Group 

2. Therefore, crustal sensitive Rayleigh waves must only be used with caution to reveal the 

orientation of the geological features that are causing the anisotropy. It is probably more 

likely for the fast axis direction of crustal sensitive Rayleigh waves to point perpendicular to 

the strike direction than parallel to it. Similarly, assuming nearly-vertical shear waves, 

crustal shear wave splitting will have its fast axis in the direction of the Rayleigh-wave fast 

axis. Therefore, the fast splitting direction of crustal SKS is also more likely to point 

perpendicular to the strike direction than parallel to it. 

To recover unambiguous information on the strike angle, other types of data need to be 

introduced. As discussed in Section 6.2, observations of crustal P wave anisotropy can 

resolve the ambiguity because the P wave fast direction is always parallel to the strike 

direction. Admittedly, however, this is a difficult observation to make. 

6.4 On the interpretation of the inferred dip angle 

There are two alternative interpretations of the inferred dip angle, θ: that it is a measurement 

of the actual geometry of the foliation plane of material composing the medium, or that it is 

a proxy for another potentially unknown non-geometric variable. We will first discuss the 

latter alternative. 

First, it is possible that the observed dip angle is proxy for other variables. Even though our 

models are expressed in terms of a tilted hexagonally symmetric medium, crustal anisotropy 

may not actually be hexagonally symmetric, or the approximation to hexagonal symmetry 

may not be accurate everywhere. Crustal anisotropy may indeed possess lower order 
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symmetry than hexagonal. Tilting a material can have the effect of decreasing the apparent 

symmetry of the material if viewed in the same coordinate system (Okaya and McEvilly, 

2003). In principle, therefore, a lower order elasticity tensor could be approximated by a 

higher order tensor (e.g., hexagonally symmetric) through tilting. It is possible that the 

efficacy of this approximation is enhanced by the fact that surface wave travel time data are 

insensitive to 8 of the 21 moduli that constitute a general elasticity tensor (Appendix). It is 

conceivable, therefore, that the effect on our data that we interpret as a tilt (non-zero dip 

angle) could have resulted from the non-hexagonal component of the actual elasticity tensor 

of the medium. What we would estimate in this case is an “apparent dip angle” that is proxy 

for the extent to which the medium deviates from hexagonal symmetry. 

We have experimented with numerically fitting tilted hexagonally symmetric elasticity 

tensors to nearly orthorhombic tensors from crustal rock samples (Tatham et al., 2008; 

Brownlee et al., 2011; Erdman et al., 2013) using only the 11 combinations to which 

observations of the 2! component of Rayleigh wave and the azimuthally isotropic 

Rayleigh and Love wave data are sensitive (Appendix). We estimate an apparent dip angle 

that measures the medium’s deviation from hexagonal symmetry. Apparent dip angles 

resulting from this fit typically range between 15˚ to 25˚. The dip angles that we infer, 

therefore, may be a result of approximating orthorhombic or other lower-symmetry material 

with hexagonally symmetric tensors, in which case steeper dip angles would reflect a 

greater deviation from hexagonal symmetry.  

Second, there is also likely to be at least some component of the inferred crustal elasticity 

tensors related to the actual dip of the foliation of the material. In fact, variations in 

observed dip angles make geologic sense in some regions. For example, observed dips are 
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shallow beneath the Basin and Range province, which is consistent with large-scale crustal 

extension along low-angle normal faults and horizontal detachment faults (e.g. Xiao et al. 

1991; Johnson and Loy, 1992; John and Foster, 1993; Malavieille 1993). The steeper dip 

angles observed in California are also consistent with a lower crust consisting of foliated 

Pelona-Orocopia-Rand schist (e.g. Jacobson 1983; Jacobson et al. 2007; Chapman et al. 

2010), which was under-plated during Laramide flat-slab subduction (e.g. Jacobson et al., 

2007). In other regions, such as beneath the Colorado Plateau, the potential geologic 

meaning of the steeper observed dip angles is less clear; perhaps the steeper dips are an 

indication of a change in crustal composition resulting in an elastic tensor with low 

symmetry. 

6.5 Comparison with previous studies: Inherent versus apparent anisotropy 

A tilted hexagonally symmetric elastic tensor will generate both apparent radial and 

azimuthal anisotropy in surface waves as demonstrated by Figure 1b. At a given depth, 

referencing the notation in the Appendix, we define apparent S-wave radial anisotropy as:  

γ̂ = (N̂ − L̂) / 2L̂                                                (9)  

where 

N̂ = (C11 +C22 ) / 8 −C12 / 4 +C66 / 2      L̂ = (C44 +C55 ) / 2         (10)  

We also define the amplitude of apparent SV-wave azimuthal anisotropy as: 

G L = Gc
2 +Gs

2 L                                       (11)  

where 
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Gc = (δC55 −δC44 ) / 2 = (C55 −C44 ) / 2                        (12)
Gs = δC45 = C45                                                            (13)

 

The components of the modulus matrix, Cαβ , are functions of the inherent elastic moduli (

A,C,N ,L,F ) and tilt (θ ,φ ). The strength of inherent S-wave anisotropy is defined by 

equation (5).  

As shown in Figure 1b, when the inherent elastic moduli (A,C,N ,L,F ) are fixed, 

variations in dip angle θ  produce the variations in the apparent anisotropies. The 

amplitudes of apparent anisotropies are always smaller than the inherent anisotropy except 

for two extreme cases, θ = 0° and θ = 90° . Thus, if earth structure has θ ∈ 0°,90°( ) , then 

neither apparent radial nor apparent azimuthal anisotropy will reflect the real strength of 

anisotropy (inherent anisotropy) in the earth. 

In studies that use either isotropic dispersion curves or azimuthally anisotropic dispersion 

curves alone, it is the apparent anisotropy instead of the inherent anisotropy that is 

estimated. For example, in studies of radial anisotropy using surface waves (e.g., Moschetti 

et al., 2010a, 2010b; Xie et al., 2013), only the azimuthally isotropic Rayleigh and Love 

wave dispersion curves are used to produce a transversely isotropic model (hexagonally 

symmetric with a vertical symmetry axis), which produces no azimuthal anisotropy. 

Because the azimuthally isotropic dispersion curves are only sensitive to the effective 

transversely isotropic part of the elastic tensor ( Â,Ĉ, N̂ , L̂, F̂ , Appendix), this transversely 

isotropic model is the effective transversely isotropic (ETI) part of our model. To prove this, 

we compute the ETI part of our model, from which the apparent S-wave radial anisotropy 

can be generated (Fig. 17). The apparent S-wave radial anisotropy for both Group 1 and 
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Group 2 models are very similar to each other, they both change appreciably across the 

study region, with large amplitudes in the Basin and Range province and small amplitudes 

in the Colorado Plateau. This pattern is very similar to that observed by Moschetti et al. 

(2010b), and thus demonstrates that inversion with isotropic dispersion curves alone results 

in observations of apparent S-wave radial anisotropy. Similarly, inversion with azimuthally 

anisotropic dispersion curves alone results in apparent SV-wave azimuthal anisotropy (e.g., 

Lin et al., 2010). 

The apparent radial and apparent azimuthal anisotropy reflect different aspects of the 

inherent elastic tensor and both mix information from the inherent elastic moduli and the 

orientation. As described in Section 6.1, the amplitude of γ , the inherent S-wave 

anisotropy, does not change strongly across the region, and averages about 4%. In contrast, 

the amplitude of γ̂ , the apparent radial anisotropy, changes strongly across the region in a 

pattern similar to the variation of the dip angle θ , and averages to about 2%. Thus, the 

lateral variation of γ̂  results mainly from the variation of θ , and does reflect the strength 

of γ .  

In most surface wave studies, only the apparent anisotropies are estimated. Therefore, the 

results depend on the unknown orientation of the medium, which limits their usefulness to 

constrain the elastic properties of the medium (e.g., the inherent S-wave anisotropy,γ ).  

 

6.6 Mantle anisotropy across the western US 

Although the focus of this paper is on crustal anisotropy we present here a brief discussion 

of the mantle anisotropy that emerges from the inversion. Figure 18 shows the prior and 

Page 35 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 36 

posterior distributions at 60 km depth at point A in the Basin and Range province. At this 

point, the mean of the posterior distribution is between 4-5% for both inherent S-wave (γ) 

and P-wave (ε) anisotropy, both the dip and strike angles are fairly well resolved with a 

mean dip angle of 27° (±7°) and strike angle of 66° (±8°), the mean of the posterior 

distribution for η is 0.96 (±0.04) which is much higher than in the crust, and the anisotropy 

is indistinguishable from elliptical (ε-δ = -0.04 ± 0.06). The nearly elliptical nature of 

mantle anisotropy is also quite different from what we observe in the crust. This location is 

fairly typical of mantle anisotropy across the western US, as γ averages 4.4% (±2.6%) 

across the western US with an average dip angle of 21° (±8°). We note in passing that such 

a steep dip angle may result from a strong orthorhombic component to the mantle elasticity 

tensors and may not result from the actual tilt of the medium. Because, unlike the crust, the 

posterior distribution in the mantle does not bifurcate according to strike angle, Rayleigh 

wave fast axis directions are unambiguously related to the strike angle in the mantle. 

Because mantle anisotropy is nearly elliptical (with η close to one), Rayleigh wave fast axes 

actually align with the strike angle rather than orthogonal to it. However, mantle strike angle 

is not everywhere well determined across the region as the average uncertainty is nearly 

30°. The inability to resolve mantle strike angle unambiguously across the region with the 

current data set and method is one of the reasons we focus interpretation on crustal 

anisotropy here and will return to mantle anisotropy in a later contribution. 

 

7. Summary and Conclusions 

The motivation of this paper is to present a method of inversion that reconciles observations 

of radial and azimuthal anisotropy with surface waves. Studies of radial (or polarization) 
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anisotropy and azimuthal anisotropy tend to interpret such observations by invoking 

elasticity tensors with hexagonal symmetry, due to their simplicity but also because earth 

(particularly crustal) materials often display approximate hexagonal symmetry. Hexagonal 

symmetry with a vertical symmetry axis is transversely isotropic, so no azimuthal 

anisotropy exists under this assumption. Therefore, whether explicitly or implicitly, studies 

of radial anisotropy typically assume a vertical symmetry axis and studies of azimuthal 

anisotropy suppose a horizontal symmetry axis. Because observations of radial and 

azimuthal anisotropy often coincide spatially, the common assumptions of the orientation of 

symmetry axes are inconsistent. The method we present here is also based on the 

assumption of a hexagonally symmetric elasticity tensor, but with an arbitrarily oriented 

symmetry axis, which we refer to as “tilted”. The elasticity tensor itself at each depth is 

given by five elastic moduli (A, C, N, L, and F or η) and the tilt is defined by two rotation 

angles: the dip and strike, which are illustrated in Figure 1a. We refer to these moduli as 

“inherent”, as they reflect the characteristics of the elasticity tensor irrespective of its 

orientation. 

We show that observations of radial anisotropy and the 2ψ component of azimuthal 

anisotropy for Rayleigh waves obtained using USArray in the western US can be fit well by 

tilted hexagonally symmetric elastic tensors in the crust and mantle, subject to the 

constraints listed in the text. The inversion that we produce is a Bayesian Monte Carlo 

method, which yields a posterior distribution that reflects both the data and prior constraints. 

The most noteworthy constraint is that the tile angles (dip, strike) are constant in the crust 

and mantle, but may differ between the crust and mantle. The results are summarized as 

posterior distributions of smoothly depth-varying inherent (unrotated) moduli (A or Vph, C 
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or Vpv, N or Vsh, L or Vsv, and F or η) as well as dip and strike angles. The standard 

deviation of the posterior distribution defines the uncertainties in these quantities. 

Anisotropy is summarized with the Thomsen parameters, inherent S-wave anisotropy (γ) 

and inherent P-wave anisotropy (ε), and either η or δ (which is the third Thomsen 

parameter). 

Because the crust is constrained by the data better than the mantle, and γ (inherent S-wave 

anisotropy) is determined more tightly than ε (inherent P-wave anisotropy), we focus 

interpretation on γ in the crust as well as the tilt angles. Major results include the following. 

(1) γ is fairly homogeneous vertically across the crust, on average, and spatially across the 

western US. (2) Averaging over the region of study and in depth, γ in the crust is 

approximately 4%±2%. (3) Crustal strike angles (ϕ) in the posterior distributions bifurcate 

into two sets of models that we refer to as Groups 1 and 2. Models in Group 1 have strike 

angles that approximately parallel crust-sensitive Rayleigh wave fast axis directions, and 

typically have larger values of η and nearly elliptical anisotropy (ε ≈ δ). Group 2 models 

have strike angles that are approximately orthogonal to crust-sensitive Rayleigh wave fast 

directions, smaller values of η, and more strongly non-elliptical anisotropy where typically ε 

> δ. Mantle strike angles do not bifurcate as they do in the crust because of tighter 

constraints imposed on η in the inversion. (4) γ in the crust is approximately the same in the 

two groups of models. (5) Dip angles in the two groups of models vary spatially in similar 

ways and display geological coherence; for example, they are smaller in the Basin and 

Range province than in the Colorado Plateau or the Great Plains. However, in Group 1 they 

are slightly larger than in Group 2, averaging 30°±10° in Group 1 and 25°±9° in Group 2. 

(6) Rayleigh wave fast axis directions are ambiguously related to the strike of anisotropy, 
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but recent studies of the anisotropy of crustal rocks (e.g., Tatham et al., 2008; Brownlee et 

al., 2011; Erdman et al., 2013) imply that the crustal anisotropy is probably not nearly 

elliptical, which favors Group 2 models. Therefore, under the assumption that crustal 

anisotropy is approximately hexagonally symmetric with an arbitrary tilt, Rayleigh wave 

fast axis directions for crust sensitive Rayleigh waves will be oriented orthogonal rather 

than parallel to the strike of anisotropy. Interpretation of Rayleigh wave fast axis directions 

in terms of crustal structure must be performed with caution. (7) The estimated dip angle 

may be interpreted in two alternative ways. It is either an actual measurement of the dip of 

the foliation plane of anisotropic material within the crust, or it is proxy for another non-

geometric variable, most likely a measure of the deviation from hexagonal symmetry of the 

medium. (8) By attempting to estimate the inherent moduli that compose the elastic tensor 

of the crust (and mantle), our approach differs from earlier studies that produce 

measurements of “apparent” moduli. Because tilting a medium produces apparent radial and 

apparent azimuthal anisotropies that are both smaller than the inherent anisotropy in 

amplitude, previous studies have tended to underestimate the strength of anisotropy.  

In the future, we intend to improve long period data in order to produce improved results for 

the mantle and apply the method more generally to observations of surface wave anisotropy. 

It will also be desirable to apply increasingly strong constraints on allowed anisotropy and 

continue to revise the interpretation of results as more information accrues about crustal 

anisotropy from laboratory measurements. In particular, it may make sense to experiment 

with more general theoretical models of anisotropy in the inversion, perhaps by considering 

a mixture of elasticity tensors with hexagonal and orthorhombic symmetry. Ultimately, we 

aim to interpret the results in terms of petrological models that agree with the inferred 
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elasticity tensor. 
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FIGURE CAPTIONS 

Figure 1. (a) Graphical depiction of a tilted hexagonally symmetric medium with 

definitions of the foliation plane, symmetry axis, strike angle, and dip angle. (b) Illustrative 

computation of the variation of apparent S-wave radial (red curve) and SV-wave azimuthal 

(blue curve) anisotropy as a function of dip angle !. All amplitudes are normalized.by the 

amplitude of maximum inherent S-wave anisotropy, These quantities are defined by 

Equations (9) and (11) in the text, and they are obtained by rotating a hexagonally 

symmetric elasticity tensor based on the effective anisotropic medium theory (Montagner 

and Nataf, 1986). This figure aims to qualitatively summarize the variation of anisotropy 

with dip angle,.Details (e.g., the absolute amplitude, the zero-crossing angle, and the 

number of crossing angles) will depend on the elasticity tensor. 

Figure 2. Examples of 10-, 32-, and 50-sec-period Rayleigh wave phase velocity 

observations as a function of azimuth for location A identified in Fig. 3a. Blue dashed lines 

give the best fitting 2ψ curves. 

Figure 3. The Rayleigh and Love wave isotropic phase speed maps. (a)-(c) Rayleigh wave 

phase speed maps at 10, 32, and 70 sec period. The 10 sec map comes from ambient noise 

data, the 40 sec map from a combination of ambient noise and earthquake data, and the 70 

sec map comes from earthquake data. (d)-(f) Love wave phase speed maps at 10, 25, and 45 

sec period. The 10 sec map is from ambient noise data, the 25 sec map is from a 

combination of ambient noise and earthquake data, and the 45 sec map comes from 

earthquake data. 

Figure 4. The Rayleigh wave 2ψ azimuthal anisotropy maps. (a)-(c) Rayleigh wave 
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azimuthal anisotropy maps at 10, 32, and 50 sec period. The 10 sec map comes from 

ambient noise data, the 32 sec map is from a combination of ambient noise and earthquake 

data, and the 50 sec map comes from earthquake data. The bars are Rayleigh wave fast 

directions with lengths representing the peak to peak amplitude (in percent).  

Figure 5. Uncertainty maps for (a) the azimuthally isotropic Rayleigh wave phase speeds at 

32 sec period, (b) the azimuthally isotropic Love wave phase speed at 25 sec, (c) the fast 

azimuth of Rayleigh wave azimuthal anisotropy at 32 sec, and (d) amplitude of Rayleigh 

wave azimuthal anisotropy at 32 sec. 

Figure 6. (a-c) The local dispersion curves for Point A in the Basin and Range province 

(identified in Fig. 3a). The local (a) phase speed, (b) fast azimuth direction, and (c) 

azimuthal anisotropy amplitude curves are presented as one-standard deviation error bars. 

Red error bars are the Love wave data and blue error bars are the Rayleigh wave data. The 

solid and dashed lines are the dispersion curves computed from the average of the model 

ensemble for Point A: solid lines are from Group 1 models while dashed lines are from 

Group 2 models. (d-f) Similar to (a-c) but for Point B in Colorado Plateau (Fig. 3a). 

Figure 7. Prior and posterior distributions for several model parameters at 20 km depth for 

Point A (in the Basin and Range, identified in Fig. 3a). White histograms indicate the prior 

distributions; both blue and red histograms are the posterior distributions but result from the 

two different model groups.  

Figure 8. Similar to Fig. 7 but for Point B in the Colorado Plateau (Fig. 3a). 

Figure 9. (a) Group 1 model ensemble at Point A showing the inherent Vsv (blue) and Vsh 

(red), where the one-standard deviation model distribution is shown with the gray corridors 
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and the average of each ensemble is plotted with bold lines. (b) Same as (a), but for Group 

2, Point A. (c) Same as (a), but for Group 1, Point B. (d) Same as (a), but for Group 2, Point 

B. Points A and B are identified in Fig. 3a. 

Figure 10. Aspects of the correlation matrix observed at Point A. (a) The correlations 

between several model parameters at 20 km depth. (b) The correlations between Vsv at 

different depths. (c-h) Similar to (b), but for six other model parameters: Vsh, Vpv, Vph, η, 

θ, and ϕ. 

Figure 11. Map view of the crustal averaged non-ellipticity of anisotropy ( ), the 

crustal averaged inherent S-wave anisotropy, the crustal dip and strike angles for Group 1 

(a-c) and Group 2 (d-f) models. In (c) and (f), the dip angles are represented by the 

background color and the strike angle directions are given by the black bars. Average values 

across each map are inset. 

Figure 12. Uncertainties for the model variables shown in Fig. 11. Average uncertainties 

across each map are inset. 

Figure 13. The spatially averaged inherent S-wave anisotropy as a function of depth. The 

middle of the error bar is the average amplitude of the inherent S-wave anisotropy, γ, in 

percent and the half width of the error bar is the spatial average of the one-standard 

deviation uncertainty. The blue dashed line indicates 4% anisotropy, which is the amplitude 

of anisotropy averaged over the whole crystalline crust and over the study region. The depth 

is indicated as a percent of local crustal thickness. 

Figure 14. Phase velocity surfaces of Vs1, Vs2, and Vp for two elastic tensors with 

hexagonal symmetry, one is elliptical (a-c, represents Group 1 model), and the other one is 

ε −δ
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non-elliptical (d-f, represents Group 2 model). Vs1 polarizations are indicated in (a) and (c), 

the black bars are the projection of Vs1 vector onto plane of stereonet. The orientations of 

the two elastic tensor groups are shown at the right hand side of the figure.  

Figure 15. Azimuthal velocity variations of the horizontally propagating (a) S2 wave and (b) 

P wave where all the velocities are normalized. The red and blue dots represent the 

velocities computed from the elasticity tensor of Group 1 and Group 2, respectively (the 

velocities at the edge of Fig. 14b, d). The thick line indicates the strike direction, red for 

Group 1 and blue for Group 2. 

Figure 16. (Red dots) Comparison between the Group 2 strike angle (φ2 ) and the Group 1 

strike angle (φ1 ), where the red line represents y=x+90°. The strike angles in the two groups 

are estimated to be approximately orthogonal. (Blue dots) Comparison between the fast 

azimuth of the Rayleigh wave at 16 sec and the Group 1 strike angle, where the blue line 

represents y=x. Crustal sensitive Rayleigh wave fast axis directions are approximately 

parallel to Group 1 strike directions and perpendicular to Group 2 strike directions. 

Figure 17. The mean of the posterior distribution of apparent S-wave radial anisotropy, γ̂ , 

averaged vertically across the crust for (a) Group 1 models and (b) Group 2 models. 

Average values are inset.  

Figure 18. Prior and posterior distributions for several model parameters at 60 km depth for 

Point A (in Basin and Range, identified in Fig. 3a). Similar to Fig. 7, white histograms 

indicate the prior distributions and red histograms represent the posterior distributions.  
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  Table 1. The mean and standard deviations for the posterior distributions in Figure 7, 8 

 

! L ρ = VSV !
(km/s)!

N ρ = VSH !
(km/s)!

C ρ =VPV !
(km/s)!

A ρ =VPH !
(km/s)!

Dip!
angle!
θ ! (º)!

Strike!
angle!
φ ! (º)!

F/(A?
2L)=η !

Non?
ellipticity!
ε −δ !

Point!A! !
! =
2.79!/!"!! !

Group!1! 3.57!(0.04)! 3.74!(0.06)! 6.14!(0.15)! 6.52!(0.15)! 21!(6)! 37!(12)! 0.87!
(0.07)!

?0.01!(0.04)!

Group!2! 3.54!(0.03)! 3.72!(0.07)! 6.15!(0.13)! 6.47!(0.18)! 22!(7)! 126!(13)! 0.74!
(0.05)!

0.06!(0.02)!

Point!B!
! =
2.73!/!"!! !

Group!1! 3.48!(0.04)! 3.63!(0.04)! 5.94!(0.17)! 6.28!(0.18)! 34!(7)! 19(6)! 0.82!
(0.06)!

0.02!(0.03)!

Group!2! ! 3.45!(0.04)! 3.61!(0.04)! 6.06!(0.12)! 6.24!(0.19)! 27!(6)! 110!(5)! 0.72!
(0.03)!

0.08!(0.01)!

Page 45 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 46 

References 

Anderson, D. L., and J. Regan (1983), Uppermantle anisotropy and the oceanic lithosphere, 
Geophys. Res. Lett., 10(9), 841–844, doi:10.1029/GL010i009p00841. 

Anderson, D. L., B. Minster, and D. Cole (1974), The effect of oriented cracks on seismic 
velocities, J. Geophys. Res., 79(26), 4011–4015, doi:10.1029/JB079i026p04011. 

Anderson, D. L., and Thomsen, L. (2015), Weak elastic anisotropy in global seismology, submitted 
to the “Don L. Anderson Tribute” volume, Foulger, G. et al, Eds., to be published by GSA and 
AGU, 2015. 

Auld, B. A. (1973), Acoustic fields and waves in solids, Vol. I, p. 423, Wiley, New York. 

Babuška, V. (1991), Seismic Anisotropy in the Earth, Modern approaches in geophysics v. 10, 
Kluwer Academic Publishers, Dordrecht, The Netherlands�; Boston. 

Backus, G. E. (1962), Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. 
Res., 67(11), 4427–4440, doi:10.1029/JZ067i011p04427. 

Bensen, G. D., M. H. Ritzwoller, and Y. Yang (2009), A 3-D shear velocity model of the crust and 
uppermost mantle beneath the United States from ambient seismic noise, Geophys. J. Int., 
177(3), 1177–1196, doi:10.1111/j.1365-246X.2009.04125.x. 

Brocher, T. M. (2005), Empirical relations between elastic wavespeeds and eensity in the Earth’s 
crust, Bull. Seismol. Soc. Am., 95(6), 2081–2092, doi:10.1785/0120050077. 

Brownlee, S. J., B. R. Hacker, M. Salisbury, G. Seward, T. A. Little, S. L. Baldwin, and G. A. 
Abers (2011), Predicted velocity and density structure of the exhuming Papua New Guinea 
ultrahigh-pressure terrane, J. Geophys. Res. Solid Earth, 116(B8), B08206, 
doi:10.1029/2011JB008195. 

Carcione, J. J. M. (2007), Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, 
Porous and Electromagnetic Media, Elsevier. 

Chapman, A. D., S. Kidder, J. B. Saleeby, and M. N. Ducea (2010), Role of extrusion of the Rand 
and Sierra de Salinas schists in Late Cretaceous extension and rotation of the southern Sierra 
Nevada and vicinity, Tectonics, 29(5), TC5006, doi:10.1029/2009TC002597. 

Christensen, N. I. (1984), The magnitude, symmetry and origin of upper mantle anisotropy based 
on fabric analyses of ultramafic tectonites, Geophys. J. Int., 76(1), 89–111, 
doi:10.1111/j.1365-246X.1984.tb05025.x. 

Christensen, N. I., and W. D. Mooney (1995), Seismic velocity structure and composition of the 
continental crust: A global view, J. Geophys. Res. Solid Earth, 100(B6), 9761–9788, 
doi:10.1029/95JB00259. 

Page 46 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 47 

Crampin, S. (1984), Effective anisotropic elastic constants for wave propagation through cracked 
solids, Geophys. J. Int., 76(1), 135–145, doi:10.1111/j.1365-246X.1984.tb05029.x. 

Dziewoński, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth 
Planet. Inter., 25(4), 297–356, doi:10.1016/0031-9201(81)90046-7. 

Ekström, G., and A. M. Dziewoński (1998), The unique anisotropy of the Pacific upper mantle, 
Nature, 394(6689), 168–172, doi:10.1038/28148. 

Ekström, G. (2013), Love and Rayleigh phase-velocity maps, 5–40 s, of the western and central 
USA from USArray data, Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2013.11.022. 

Erdman, M. E., B. R. Hacker, G. Zandt, and G. Seward (2013), Seismic anisotropy of the crust: 
electron-backscatter diffraction measurements from the Basin and Range, Geophys. J. Int., 
195(2), 1211–1229, doi:10.1093/gji/ggt287. 

Gung, Y., M. Panning, and B. Romanowicz (2003), Global anisotropy and the thickness of 
continents, Nature, 422(6933), 707–711, doi:10.1038/nature01559. 

Hacker, B.R., M.H. Ritzwoller, and J. Xie, Central Tibet has a partially melted, mica-bearing crust, 
Tectonics, 33, doi:10.1002/2014TC003534, 2014. 

Helbig, K., and L. Thomsen (2005), 75-plus years of anisotropy in exploration and reservoir 
seismics: A historical review of concepts and methods, GEOPHYSICS, 70(6), 9ND–23ND, 
doi:10.1190/1.2122407. 

Huang, H., H. Yao, and R. D. van der Hilst (2010), Radial anisotropy in the crust of SE Tibet and 
SW China from ambient noise interferometry, Geophys. Res. Lett., 37, 5 PP., 
doi:201010.1029/2010GL044981. 

Jacobson, C. E. (1983), Structural geology of the Pelona Schist and Vincent thrust, San Gabriel 
Mountains, California, Geol. Soc. Am. Bull., 94(6), 753–767, doi:10.1130/0016-
7606(1983)94<753:SGOTPS>2.0.CO;2. 

Jacobson, C. E., M. Grove, A. Vucic, J. N. Pedrick, and K. A. Ebert (2007), Exhumation of the 
Orcopia Schist and associated rocks of southeastern California: Relative roles of erosion, 
synsubduction tectonic denudation, and middle Cenozoic extension, Geological Society of 
America Special Paper 419, 1-37. 

John, B. E., and D. A. Foster (1993), Structural and thermal constraints on the initiation angle of 
detachment faulting in the southern Basin and Range: The Chemehuevi Mountains case study, 
Geol. Soc. Am. Bull., 105(8), 1091–1108, doi:10.1130/0016-
7606(1993)105<1091:SATCOT>2.3.CO;2. 

Johnson, R. A., and K. L. Loy (1992), Seismic reflection evidence for seismogenic low-angle 
faulting in southeastern Arizona, Geology, 20(7), 597–600, doi:10.1130/0091-
7613(1992)020<0597:SREFSL>2.3.CO;2. 

Page 47 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 48 

Kawakatsu, H., P. Kumar, Y. Takei, M. Shinohara, T. Kanazawa, E. Araki, and K. Suyehiro (2009), 
Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates, Science, 
324(5926), 499–502, doi:10.1126/science.1169499. 

Kennett, B. L. N., E. R. Engdahl, and R. Buland (1995), Constraints on seismic velocities in the 
Earth from traveltimes, Geophys. J. Int., 122(1), 108–124, doi:10.1111/j.1365-
246X.1995.tb03540.x. 

Kustowski, B., G. Ekström, and A. M. Dziewoński (2008), Anisotropic shear-wave velocity 
structure of the Earth’s mantle: A global model, J. Geophys. Res. Solid Earth, 113(B6), 
B06306, doi:10.1029/2007JB005169. 

Lin, F.-C., and M. H. Ritzwoller (2011), Helmholtz surface wave tomography for isotropic and 
azimuthally anisotropic structure, Geophys. J. Int., 186(3), 1104–1120, doi:10.1111/j.1365-
246X.2011.05070.x. 

Lin, F.-C., M. H. Ritzwoller, and R. Snieder (2009), Eikonal tomography: surface wave 
tomography by phase front tracking across a regional broad-band seismic array, Geophys. J. 
Int., 177(3), 1091–1110, doi:10.1111/j.1365-246X.2009.04105.x. 

Lin, F.-C., M. H. Ritzwoller, Y. Yang, M. P. Moschetti, and M. J. Fouch (2011), Complex and 
variable crustal and uppermost mantle seismic anisotropy in the western United States, Nat. 
Geosci., 4(1), 55–61, doi:10.1038/ngeo1036. 

Masters, G., M. P. Barmine, and S. Kientz (2007), Mineos user's manual, in Computational 
Infrastructure for Geodynamics, Calif. Inst. of Technol., Pasadena. 

Malavieille, J. (1993), Late Orogenic extension in mountain belts: Insights from the basin and 
range and the Late Paleozoic Variscan Belt, Tectonics, 12(5), 1115–1130, 
doi:10.1029/93TC01129. 

Marone, F., and B. Romanowicz (2007), The depth distribution of azimuthal anisotropy in the 
continental upper mantle, Nature, 447(7141), 198–201, doi:10.1038/nature05742. 

Meissner, R., W. Rabbel, and H. Kern (2006), Seismic lamination and anisotropy of the Lower 
Continental Crust, Tectonophysics, 416(1–4), 81–99, doi:10.1016/j.tecto.2005.11.013. 

Montagner, J.-P., and D. L. Anderson (1989), Constrained reference mantle model, Phys. Earth 
Planet. Inter., 58(2–3), 205–227, doi:10.1016/0031-9201(89)90055-1. 

Montagner, J.-P., and H.-C. Nataf (1986), A simple method for inverting the azimuthal anisotropy 
of surface waves, J. Geophys. Res., 91(B1), 511, doi:10.1029/JB091iB01p00511. 

Montagner, J.-P., and H.-C. Nataf (1988), Vectorial tomography—I. Theory, Geophys. J., 94(2), 
295–307, doi:10.1111/j.1365-246X.1988.tb05903.x. 

Moschetti, M. P., M. H. Ritzwoller, F.-C. Lin, and Y. Yang (2010a), Crustal shear wave velocity 
structure of the western United States inferred from ambient seismic noise and earthquake 

Page 48 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 49 

data, J. Geophys. Res., 115, 20 PP., doi:2010 10.1029/2010JB007448. 

Moschetti, M. P., M. H. Ritzwoller, F. Lin, and Y. Yang (2010b), Seismic evidence for widespread 
western-US deep-crustal deformation caused by extension, Nature, 464(7290), 885–889, 
doi:10.1038/nature08951. 

Nettles, M., and A. M. Dziewoński (2008), Radially anisotropic shear velocity structure of the 
upper mantle globally and beneath North America, J. Geophys. Res., 113, 27 PP., 
doi:200810.1029/2006JB004819. 

Okaya, D. A., and N. I. Christensen (2002), Anisotropic effects of non-axial seismic wave 
propagation in foliated crustal rocks, Geophys. Res. Lett., 29(11), 2–1–2–4, 
doi:10.1029/2001GL014285. 

Okaya, D. A., and T. V. McEvilly (2003), Elastic wave propagation in anisotropic crustal material 
possessing arbitrary internal tilt, Geophys. J. Int., 153(2), 344–358, doi:10.1046/j.1365-
246X.2003.01896.x. 

Ribe, N. M. (1992), On the relation between seismic anisotropy and finite strain, J. Geophys. Res. 
Solid Earth, 97(B6), 8737–8747, doi:10.1029/92JB00551. 

Ritzwoller, M. H., F.-C. Lin, and W. Shen (2011), Ambient noise tomography with a large seismic 
array, Comptes Rendus Geosci., 343(8–9), 558–570, doi:10.1016/j.crte.2011.03.007. 

Shapiro, N. M., M. Campillo, L. Stehly, and M. H. Ritzwoller (2005), High-Resolution Surface-
Wave Tomography from Ambient Seismic Noise, Science, 307(5715), 1615–1618, 
doi:10.1126/science.1108339. 

Shen, W., M. H. Ritzwoller, V. Schulte-Pelkum, and F.-C. Lin (2013a), Joint inversion of surface 
wave dispersion and receiver functions: a Bayesian Monte-Carlo approach, Geophys. J. Int., 
192(2), 807–836, doi:10.1093/gji/ggs050. 

Shen, W., M. H. Ritzwoller, and V. Schulte-Pelkum (2013b), A 3-D model of the crust and 
uppermost mantle beneath the Central and Western US by joint inversion of receiver 
functions and surface wave dispersion, J. Geophys. Res. Solid Earth, 118(1), 262–276, 
doi:10.1029/2012JB009602. 

Simons, F. J., R. D. Van Der Hilst, J.-P. Montagner, and A. Zielhuis (2002), Multimode Rayleigh 
wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle, 
Geophys. J. Int., 151(3), 738–754, doi:10.1046/j.1365-246X.2002.01787.x.Smith, D. B., M. 
H. Ritzwoller, and N. M. Shapiro (2004), Stratification of anisotropy in the Pacific upper 
mantle, J. Geophys. Res. Solid Earth, 109(B11), B11309, doi:10.1029/2004JB003200. 

Smith, M. L., and F. A. Dahlen (1973), The azimuthal dependence of Love and Rayleigh wave 
propagation in a slightly anisotropic medium, J. Geophys. Res., 78(17), 3321–3333, 
doi:10.1029/JB078i017p03321. 

Tatham, D. J., G. E. Lloyd, R. W. H. Butler, and M. Casey (2008), Amphibole and lower crustal 

Page 49 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 50 

seismic properties, Earth Planet. Sci. Lett., 267(1–2), 118–128, 
doi:10.1016/j.epsl.2007.11.042. 

Thomsen, L. (1986), Weak elastic anisotropy, Geophysics, 51(10), 1954–1966, 
doi:10.1190/1.1442051. 

Wang, N., J.-P. Montagner, A. Fichtner, and Y. Capdeville (2013), Intrinsic versus extrinsic 
seismic anisotropy: The radial anisotropy in reference Earth models, Geophys. Res. Lett., 
40(16), 4284–4288, doi:10.1002/grl.50873. 

Weiss, T., S. Siegesmund, W. Rabbel, T. Bohlen, and M. Pohl (1999), Seismic velocities and 
anisotropy of the Lower Continental Crust: A review, Pure Appl. Geophys., 156(1-2), 97–122, 
doi:10.1007/s000240050291. 

Xiao, H.-B., F. A. Dahlen, and J. Suppe (1991), Mechanics of extensional wedges, J. Geophys. Res. 
Solid Earth, 96(B6), 10301–10318, doi:10.1029/91JB00222. 

Xie, J., M. H. Ritzwoller, W. Shen, Y. Yang, Y. Zheng, and L. Zhou (2013), Crustal radial 
anisotropy across Eastern Tibet and the Western Yangtze Craton, J. Geophys. Res. Solid 
Earth, 118(8), 4226–4252, doi:10.1002/jgrb.50296. 

Yang, Y., M. H. Ritzwoller, Y. Zheng, W. Shen, A. L. Levshin, and Z. Xie (2012), A synoptic view 
of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet, J. 
Geophys. Res., 117, 20 PP., doi:201210.1029/2011JB008810. 

Yao, H., R. D. Van Der Hilst, and M. V. De Hoop (2006), Surface-wave array tomography in SE 
Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps, Geophys. 
J. Int., 166(2), 732–744, doi:10.1111/j.1365-246X.2006.03028.x. 

Yao, H., R. D. van der Hilst, and J.-P. Montagner (2010), Heterogeneity and anisotropy of the 
lithosphere of SE Tibet from surface wave array tomography, J. Geophys. Res., 115(B12), 
B12307, doi:10.1029/2009JB007142. 

Yu, Y., and J. Park (1993), Upper mantle anisotropy and coupled-mode long-period surface waves, 
Geophys. J. Int., 114(3), 473–489, doi:10.1111/j.1365-246X.1993.tb06981.x. 

Yuan, H., and B. Romanowicz (2010), Lithospheric layering in the North American craton, Nature, 
466(7310), 1063–1068, doi:10.1038/nature09332. 

Yuan, H., B. Romanowicz, K. M. Fischer, and D. Abt (2011), 3-D shear wave radially and 
azimuthally anisotropic velocity model of the North American upper mantle, Geophys. J. Int., 
184(3), 1237–1260, doi:10.1111/j.1365-246X.2010.04901.x. 

Zhou, Y., G. Nolet, F. A. Dahlen, and G. Laske (2006), Global upper-mantle structure from finite-
frequency surface-wave tomography, J. Geophys. Res. Solid Earth, 111(B4), B04304, 
doi:10.1029/2005JB003677. 

Page 50 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 1

(a)
(b)

N
orth

Ƨ
dip angle

foliation plane

Hexagonally sym
m

etric m
edia

x (N
)

y (E)

z

strike 
dip 

sym
m

etry 
axisstrike angle  

N
orth

ï���

���

���

���

normalized anisotropy

�9
�6

�3
�

dip angle Ƨ (deg)

$
QLVRWURSLHV�YV��'

LS�$
QJOH

|G
|/L

apparent SV
-w

ave azim
uthal anisotropy

apparent S-w
ave radial anisotropy

Inherent S-w
ave anisotropy

(N̂
L̂)/(2L̂)

(N
-L)/(2L)

Page 51 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3.00

3.05

3.10

3.15

phase velocity (km/s)

0
90

180
270

360

azim
uth (deg)

10 sec

(a)

Figure 2        

3.55

3.60

3.65

3.70

0
90

180
270

360

azim
uth (deg)

32 sec

(b)

3.70

3.75

3.80

3.85

0
90

180
270

360

azim
uth (deg)

50 sec

(c)

Page 52 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ï���Ý
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

���VHF
/RYH
1
RLVH

(d)

����
����

3.34
����

3.48
����

����
3.69

����

SKDVH�YHORFLW\

km
/V

ï���Ý
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

���VHF
/RYH
&RP

ELQHG

�H�

����
����

����
����

����
����

����
����

����

SKDVH�YHORFLW\

km
/V

ï���Ý
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

���VHF
/RYH
(DUWKTXDNH

(f)

����
3.98

����
����

����
����

����
����

����

SKDVH�YHORFLW\

NP
�V

��Ý

��Ý

��Ý

��Ý

���VHF
5D\OHLJK
1
RLVH

(a)

A
B

)LJXUH��

����
����

����
����

����
����

����
����

����

SKDVH�YHORFLW\

km
/V

��Ý

��Ý

��Ý

��Ý

���VHF
5D\OHLJK
&RP

ELQHG

(b)

����
����

����
����

����
����

����
����

����

SKDVH�YHORFLW\

km
/V

��Ý

��Ý

��Ý

��Ý

���VHF
5
D\OHLJK

(DUWKTXDNH

�F�

����
����

����
3.86

����
3.96

����
����

����

SKDVH�YHORFLW\

NP
�V

Page 53 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



−125˚
−120˚

−115˚
−110˚

−105˚
−100˚

30˚

35˚

40˚

45˚

1%
10 sec
R

ayleigh
N

oise

(a) Figure 4

−125˚
−120˚

−115˚
−110˚

−105˚
−100˚

30˚

35˚

40˚

45˚

1%
32 sec
R

ayleigh
C

om
bined

(b)

−125˚
−120˚

−115˚
−110˚

−105˚
−100˚

30˚

35˚

40˚

45˚

1%
50 sec
R

ayleigh
Earthquake

(c)

Page 54 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ï���Ý ï���Ý ï���Ý ï���Ý ï���Ý ï���Ý

��Ý

��Ý

��Ý

��Ý

Rayleigh wave velocity uncertainty
���VHF

(a)

����� ����� ����� �����
YHORFLW\�XQFHUWDLQW\��NP�V�

km/V

ï���Ý ï���Ý ï���Ý ï���Ý ï���Ý ï���Ý

��Ý

��Ý

��Ý

��Ý

Love wave velocity uncertainty
���VHF

(b)

����� ����� ����� ����� �����
YHORFLW\�XQFHUWDLQW\��NP�V�

km/V

ï���Ý ï���Ý ï���Ý ï���Ý ï���Ý ï���Ý

��Ý

��Ý

��Ý

��Ý

Rayleigh wave angle uncertainty
���VHF

(c)

� � �� �� �� ��
angle uncertainty (deg)

deg

ï���Ý ï���Ý ï���Ý ï���Ý ï���Ý ï���Ý

��Ý

��Ý

��Ý

��Ý

Rayleigh wave amp uncertainty
���VHF

(d)

��� ��� ��� ��� ���
amplitude uncertainty (%)

%

)LJXUH���

Page 55 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



a
2, R

FA
, R

2

0.0

0.5

1.0

1.5

2.0

Azi. Aniso. amp (%)

10
20

30
40

50
60

period (s)

G
roup 1 

G
roup 2 

(c)

ï�� 0 30 60 90

120

fast azimuth (deg)
10

20
30

40
50

60

(b)

3.0

3.5

4.0

4.5

phase velocity (km/s)

10
20

30
40

50
60

70
80

90

R
ayleigh 

Love 

(a)

0.0

0.5

1.0

1.5

2.0

Azi. Aniso. amp (%)

10
20

30
40

50
60

period (s)

G
roup 1 

G
roup 2 

(f)

ï�� 0 30 60 90

120

fast azimuth (deg)

10
20

30
40

50
60

(e)

3.0

3.5

4.0

4.5

phase velocity (km/s)

10
20

30
40

50
60

70
80

90

R
ayleigh 

Love 

(d)

period (s)

period (s)

period (s)

period (s)

Point A

Point B

Figure 6

C
0 (T

)
R, L

Page 56 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0

20

40

pe
rc

en
t (

%
)

3.5 4.0

(a)

Figure 7   Point A

Group 1
Group 2
prior

0

20

3.5 4.0

(b)

0

20

40

pe
rc

en
t (

%
)

5.5 6.0 6.5 7.0

(c)

0

20

40

5.5 6.0 6.5 7.0

(d)

0

20

40

pe
rc

en
t (

%
)

0 30 60 90

(e)

0

20

0 60 120 180

(f)

0

20

40

pe
rc

en
t (

%
)

0.6 0.8 1.0 1.2

(g)

0

20

40

ï��2 0.0 0.2

(h)

 )��$ï�/�

dip angle       (deg) strike angle      (deg)

VSV = /   (km/s) VSH = N   (km/s)

VPV = C   (km/s) VPH = A   (km/s)

Page 57 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0

20

40

pe
rc

en
t (

%
)

3.5 4.0

(a)

Figure 8  Point B

Group 1
Group 2
prior

0

20

40

3.5 4.0

(b)

0

20

40

pe
rc

en
t (

%
)

5.5 6.0 6.5 7.0

(c)

0

20

40

5.5 6.0 6.5 7.0

(d)

0

20

40

pe
rc

en
t (

%
)

0 30 60 90

(e)

0

20

40

0 60 120 180

(f)

0

20

40

60

pe
rc

en
t (

%
)

0.6 0.8 1.0 1.2

(g)

0

20

40

60

80

ï��2 0.0 0.2

(h)

 )��$ï�/�

dip angle       (deg) strike angle      (deg)

VSV = /   (km/s) VSH = N   (km/s)

VPV = C   (km/s) VPH = A   (km/s)

Page 58 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0

50

100

de
pt

h 
(k

m
)

crust:

(c) 0

50

100

de
pt

h 
(k

m
)

crust:

(d)

L " VSV

N " VSH 

Group 1 inherent

L " VSV 

N " VSH

Group 2 inherent

" 34s t 7s
" 19s t 6s

" 27s t 6s
" 110s t 5s

L = VSV

N = VSH

L = VSV

N = VSH 

Group 1 inherent Group 2 inherent0

50

100

de
pt

h 
(k

m
)

shear velocity (km/s)

crust:

(a) 0

50

100

de
pt

h 
(k

m
)

crust:

(b)

" 21s t 6s
" 37s t12s

" 22s t 7s
" 126s t13s

Point A     Basin and Range

Point B    Colorado Plateau

shear velocity (km/s)

shear velocity (km/s) shear velocity (km/s)
3.0            3.5           4.0           4.5          5.0

3.0            3.5           4.0           4.5          5.0 3.0            3.5           4.0           4.5          5.0

3.0            3.5           4.0           4.5          5.0

Figure 9

Page 59 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1 2 3 4 5

1
2

3
4

5

20km

10 20 30 40 50 60

depth (km)

10
20

30
40

50
60

depth (km
)

10 20 30 40 50 60

depth (km)

10
20

30
40

50
60

depth (km
)

10 20 30 40 50 60

depth (km)

10
20

30
40

50
60

depth (km
)

10 20 30 40 50 60

depth (km)

10
20

30
40

50
60

depth (km
)

10 20 30 40 50 60

depth (km)
10

20
30

40
50

60
depth (km

)

ï���
ï���

ï���
ï���

ï��2
0��

��2
0��

��6
0��

��0
correlation coefficient

Figure 10  
  

  
  

Page 60 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



anisotropy
dip angle

-0.015
0.015

Group 1: nearly elliptical Group 2: non-elliptical 

Figure 11

ï���Ý
ï���Ý

ï���Ý
ï���Ý

ï���Ý

��Ý

��Ý

��Ý

��Ý

G
roup 2

0.038

(d)
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

G
roup 2

4.2%

(e)
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

G
roup 2

25

(f)

ï���Ý
ï���Ý

ï���Ý
ï���Ý

ï���Ý

��Ý

��Ý

��Ý

��Ý

G
roup 1

ï�����

(a)
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

G
roup 1

3.9%

(b)
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

G
roup 1

30

(c)

oo

ï�����
0.100

ï��1
0.0

1.1
2.2

3.3
4.4

5.5 %

5
15

25
35

45 deg

crustal inherent S-w
ave anisotropy

crustal dip and strike angles
crustal            non-ellipticity

Page 61 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Group 1: nearly elliptical Group 2: non-elliptical 

ï���Ý
ï���Ý

ï���Ý
ï���Ý

ï���Ý

��Ý

��Ý

��Ý

��Ý

����
G

roup 2

(d)
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

9 G
roup 2

(e)
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

14 G
roup 2

(f)

1.�
1.3

1.6
1.9

2.2
2.�

anisotropy
uncertainty

�

�
�

��
��

��
dip

angle
uncertainty

deg

�
��

��
��

��
strike

angle
uncertainty

deg

ï���Ý
ï���Ý

ï���Ý
ï���Ý

ï���Ý

��Ý

��Ý

��Ý

��Ý

����
G

roup 1

(a)

Figure 12

ï���Ý
ï���Ý

ï���Ý
ï���Ý

ï���Ý

��Ý

��Ý

��Ý

��Ý

�� G
roup 1

(b)
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

12 G
roup 1

(c)

crustal inherent S-w
ave

aniaostropy uncertainty
crustal dip angle uncertainty

crustal strike angle uncertainty

o
o

o
o

Page 62 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0.0

0.5

1.0

ra
tio

 o
f c

ru
st

al
 th

ic
kn

es
s

0 4 8 12

LQKHUHQW�6ïZDYH�DQLVRWURS\���)

Figure 13
Page 63 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3.56

3.57

3.54

3.55

3.56

3.57

3.58

3.59

3.6

3.61

3.62

3.63

3.64

3.65

6.15

6.2

6.25

6.3

6.35

6.4

6.45

6.15

6.2

6.25

6.3

6.35

6.4

Figure 14

(a)
(b)

(c)

(d)
(e)

(f)

V
s1 and V

s1 polarization
V

s2
V

p

3.74

3.58

3.66

3.72

3.54

3.63

strike=210°

dip=20°

strike=300° dip=20°

Page 64 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



−1.0

−0.5

0.0

0.5

1.0

no
rm

al
iz

ed
 V

s2

0 90 180 270 360

Group 1
Group 2

(a)

Figure 15

−1.0

−0.5

0.0

0.5

1.0

no
rm

al
iz

ed
 V

p

0 90 180 270 360

azimuth (deg)

(b)

Page 65 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0

40

80

120

160

200

240

280

   
   

   
(r

ed
), 

R
ay

le
ig

h 
w

av
e 

16
s f

as
t a

xi
s (

bl
ue

)  
(d

eg
)

0 40 80 120 160 200

 (deg)

Rayleigh (16s) vs. 1

1

Figure 16

2 vs. 1

2

Page 66 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ï���Ý
ï���Ý

ï���Ý
ï���Ý

ï���Ý

��Ý

��Ý

��Ý

��Ý

G
roup 2

2.2%

(b)
ï���Ý

ï���Ý
ï���Ý

ï���Ý
ï���Ý

��Ý

��Ý

��Ý

��Ý

G
roup 1

2.2%

(a)

anisotropy
ï��1

0.0
1.1

2.2
3.3

4.4
5.5 %

Figure 17

crustal apparent S-w
ave radial anisotropy

Page 67 of 76 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0

20

pe
rc

en
t (

%
)

4.0 4.5 5.0

(a)

0

20

4.0 4.5 5.0

(b)

0

20

pe
rc

en
t (

%
)

6.5 7.0 7.5 8.0 8.5

(c)

0

20

6.5 7.0 7.5 8.0 8.5

(d)

0

20

40

pe
rc

en
t (

%
)

0 30 60 90

(e)

0

20

0 60 120 180

(f)

0

20

40

pe
rc

en
t (

%
)

0.8 1.0 1.2

(g)

0

20

ï��2 0.0 0.2

(h)

 )��$ï�/�

dip angle       (deg) strike angle      (deg)

VSV = /   (km/s) VSH = N   (km/s)

VPV = C   (km/s) VPH = A   (km/s)

Figure 18

Page 68 of 76Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Appendix. The Forward Problem: Computation of period and azimuthally variable 

phase speeds for an arbitrarily oriented hexagonally symmetric elastic tensor 

Given an elastic tensor that varies with depth at a given location, we seek to compute how 

Rayleigh and Love wave phase velocities change with period T and azimuth ψ. The code 

MINEOS (Masters et al., 2007) computes period dependent Rayleigh and Love wave phase 

speeds at high accuracy for a transversely isotropic medium; i.e., a medium with hexagonal 

symmetry and a vertical symmetry axis. Instead, we are interested in a medium whose 

elastic properties are given by an elastic tensor for a hexagonally symmetric medium with 

an arbitrarily oriented symmetry axis.  

First, let the moduli A, C, N, L, and F represent the elastic tensor at a particular depth for a 

hexagonally symmetric medium with a vertical symmetry axis, given by Equation (1) in the 

Introduction. Four of the five moduli are directly related to P and S wave speeds for waves 

propagating perpendicular or parallel to the symmetry axis using the following 

relationships: . Here, ρ is density, Vph and Vpv are 

the speeds of P waves propagating horizontally and vertically respectively, Vsv is the speed 

of the S wave propagating horizontally and polarized vertically or propagating vertically 

and polarized horizontally, and Vsh is the speed of the S wave that is propagating in a 

horizontal direction and polarized horizontally. The modulus affects the 

speed of waves propagating oblique to the symmetry axis and controls the shape of the 

shear wave phase speed surface (Okaya and Christensen, 2002). For an isotropic medium, 

  

A = ρVph
2 ,C = ρVpv

2 ,L = ρVsv
2,N = ρVsh

2

F =η(A − 2L)

A = C,L = N ,F = A − 2L,η = 1.
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Next, rotate the tensor in Equation (1) through the two angles, θ (the dip angle) and ϕ (the 

strike angle), defined in Figure 1a, to produce the modulus matrix . We refer to a 

general reorientation of the symmetry axis as a tilt, which is achieved by pre- and post-

multiplying the elastic modulus matrix by the appropriate Bond rotation matrix and its 

transpose, respectively (e.g, Auld, 1973; Carcione, 2007), which act to rotate the 4th-order 

elasticity tensor appropriately. The order of the rotations matters because the rotation 

matrices do not commute: first a counter-clockwise rotation through angle ! around the x-

axis is applied followed by a second counter-clockwise rotation through angle !!around the 

z-axis. The rotation can fill all components of the modulus matrix but will preserve its 

symmetry: 

       (A1) 

Montagner and Nataf (1986) showed that this modulus matrix may be decomposed into an 

effective transversely isotropic (azimuthally independent) part, , and an azimuthally 

anisotropic part, , as follows:

  (A2) 

Cαβ (θ ,φ)

Cαβ (θ ,φ) =

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
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where ,    

 and   

Equations (1) and (A2) present a clear definition of what we call the “inherent” and 

“apparent” elastic moduli, respectively. The inherent moduli are from the 

elastic tensor with a vertical symmetry axis and the apparent moduli are

from the effective transversely isotropic part of the rotated elastic tensor. 

We seek expressions for the period dependence of the phase speed for both Rayleigh and 

Love waves as well as the 2ψ azimuthal dependence for Rayleigh waves because these are 

the observations we make. This computation is based on the introduction of a transversely 

isotropic reference elasticity tensor composed of the depth dependent reference moduli

. The code MINEOS will compute Rayleigh and Love wave phase 

speed curves for the reference model ( ). Then we define the effective 

transversely isotropic moduli relative to this reference:  

 .  

In this case, Montagner and Nataf present the required expressions for Rayleigh and Love 

wave phase speeds, which break into contributions from the reference moduli, the 

perturbation by the effective transversely isotropic (ETI) moduli relative to the reference 

moduli, and the azimuthally anisotopic (AA) moduli: 

 

where 

Â = 3(C11 +C22 ) / 8 +C12 / 4 +C66 / 2 Ĉ = C33, N̂ = (C11 +C22 ) / 8 −C12 / 4 +C66 / 2,

L̂ = (C44 +C55 ) / 2, F̂ = (C13 +C23) / 2.

A,C,N ,L,  and, F

Â,Ĉ, N̂ , L̂,  and, F̂

A0,C0,N0,L0,  and, F0

c0
R(T ),c0

L (T )

Â = A0 +δ Â,Ĉ = C0 +δ Ĉ, N̂ = N0 +δ N̂ , L̂ = L0 +δ L̂,  and F̂ = F0 +δ F̂

cR(T ,ψ ) = c0
R(T )+δcR

ETI (T )+  δcR
AA(T ,ψ )                                           (A3)

cL (T ) = c0
L (T )+δcL

ETI (T )                                                                     (A4)
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The moduli Bc, Bs, Gc, Gs, Hc, and Hs are linear combination of the components of the 

azimuthally variable part of the elastic modulus matrix in Equation (A2), , as follows: 

    

 and  Note that the azimuthally independent and 2ψ 

variations in surface wave phase speeds are sensitive only to 13 of the elements of the 

elastic tensor, and notably only the (1,6), (2,6), (3,6), (4,5) elements of the elastic tensor 

outside of the nine elements occupied under transverse isotropy. The other 8 elements of the 

elastic tensor ((1,4), (1,5), (2,4), (2,5), (3,4), (3,5), (4,6), (5,6)) are in the null space of 

surface wave phase speed measurements.  

Montagner and Nataf present explicit formulas for the partial derivatives in Equations (A5) 

– (A7) in terms of normal mode eigenfunctions. Instead of using these expressions we recast 

the problem by computing the partial derivatives numerically which are computed relative 

to the reference model. The partial derivatives in the expression for the azimuthal term, 

 are equal to the partial derivatives of the azimuthally-independent terms (

) with respect to the corresponding transversely isotropic parameters (A, C, F, L, N). This 

feature facilitates the forward computation because the azimuthal dependence of surface 

δcR
ETI (T ) = δ Â ∂cR

∂A 0

+δ Ĉ ∂cR
∂C 0

+
⎧
⎨
⎩0

∞

∫  δ L̂ ∂cR
∂L 0

+δ F̂ ∂cR
∂F 0

⎫
⎬
⎭
dz                          (A5)

δcL
ETI (T ) = δ N̂ ∂cL

∂N 0

+δ L̂ ∂cL
∂L 0

⎧
⎨
⎩

⎫
⎬
⎭0

∞

∫  dz                                                             (A6)

δcR
AA(T ,ψ ) = Bc cos2ψ + Bs sin2ψ( ) ∂cR

∂A 0

+
⎧
⎨
⎩0

∞

∫

                         Gc cos2ψ +Gs sin2ψ( ) ∂cR
∂L 0

+ Hc cos2ψ + Hs sin2ψ( ) ∂cR
∂F 0

⎫
⎬
⎭
dz          (A7)

δCαβ
AA

Bc = (δC11 −δC22 ) / 2, Bs = δC16 +δC26, Gc = (δC55 −δC44 ) / 2, Gs = δC45,

Hc = (δC13 −δC23) / 2, Hs = δC36.

δcR
AA(T ,ψ ), c0

R ,c0
L
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wave speeds can be computed using only the partial derivatives with respect to the five 

elastic parameters of a transversely isotropic medium, which can be achieved using the 

MINEOS code (Masters et al., 2007). Figure A1 presents the sensitivity of Rayleigh and 

Love wave phase speeds at 20sec period to perturbations in L, N, C, A, and F as a function 

of depth. Love waves are sensitive almost exclusively to N, being weakly sensitivity to L, 

and completely insensitive to C, A, or F. In contrast, Rayleigh waves are sensitive to all of 

the parameters except N.  

We represent the depth variation of the moduli by defining each on a discrete set of nodes 

distributed with depth and linearly interpolating the moduli between each node (Fig. A2). 

With this approach, we compute the partial derivatives using MINEOS by linear finite 

differences and convert the integrals to sums in Equations (A5) – (A7). The method is more 

accurate for Rayleigh than for Love waves and at longer rather than at shorter periods. For 

example, a constant 10% relative perturbation in the modulus N ( , which 

is 5% in Vsh) across the entire crust produces an error in the computed Love wave phase 

speed of less than 0.1% except at periods less than 10 sec where it is only slightly larger. 

For Rayleigh waves, a similar constant 10% perturbation in L ( , 5% in 

Vsv) results in an error less than 0.05% at all periods in this study. These errors are more 

than an order of magnitude smaller than final uncertainties in estimated model variables 

and, therefore, can be considered negligible.  

(N̂ − N0 ) / N0 = 0.1

(L̂ − L0 ) / L0 = 0.1
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FIGURE CAPTIONS 

Figure A1. Example sensitivity kernels for Rayleigh and Love wave phase speeds at 20 sec 

period to perturbations in L, N, C, A, and F as a function of depth. 

Figure A2. Illustration of the model discretization. At each grid point, the velocity profile is 

represented by a vertical set of nodes. Each model parameter is perturbed at each node to 

compute the depth sensitivity of surface wave data. 
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