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Abstract 

The growth of the Earthscope/USArray Transportable Array (TA) has prompted the development 

of new methods in surface wave tomography that track phase fronts across the array and map the 

travel time field for each earthquake or for each station from ambient noise.  Directionally-

dependent phase velocities are determined locally by measuring the gradient of the observed 

travel time field without the performance of a formal inversion. This method is based on the 

eikonal equation and is, therefore, referred to as “eikonal tomography”. Eikonal tomography is a 

bent-ray theoretic method, but does not account for finite frequency effects such as wave 

interference, wavefront healing, or backward scattering. This shortcoming potentially may lead 

to both systematic bias and random error in the phase velocity measurements, which would be 

particularly important at the longer periods studied with earthquakes. It is shown here that 

eikonal tomography can be improved by using amplitude measurements to construct a 

geographically localized correction via the Helmholtz equation. This procedure should be 

thought of as a finite-frequency correction that does not require the construction of finite-

frequency kernels and is referred to as “Helmholtz tomography”. We demonstrate  the method 

with Rayleigh wave measurements following earthquakes between periods of 30 and 100 sec in 

the western US using data from the TA. With Helmholtz tomography at long periods (>50 sec): 

(1) resolution of small-scale isotropic structures, which correspond to known geological features, 

is improved, (2) uncertainties in the isotropic phase velocity maps are reduced, (3) the 

directionally dependent phase velocity measurements are less scattered, (4) spurious 1-psi 

azimuthal anisotropy near significant isotropic structural contrasts is reduced, and (5) estimates 

of 2-psi anisotropy are better correlated across periods.  
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1. Introduction 

Lin et al. (2009, 2011) presented a new surface wave tomography method that was applied to 

earthquake data and ambient noise cross-correlations recorded by the EarthScope/USArray 

Transportable Array across the western US (Fig. 1). For each earthquake or station in the context 

of ambient noise, the method first empirically tracks the propagation of a phase front across the 

array to determine the phase travel time map and then computes the gradient across each map to 

estimate the phase velocity at each location. The theoretical justification for this method is based 

on the eikonal equation (eq. (1)) and the method is, therefore, referred to as eikonal tomography. 

With multiple earthquakes or multiple stations for ambient noise, the repeated measurements at a 

single location are summarized statistically to estimate both the isotropic and azimuthally 

anisotropic components of phase velocity with attendant uncertainties.  Similar approaches have 

been taken by Pollitz (2008) and Liang & Langston (2009) for earthquake data. In contrast with 

traditional tomographic methods (e.g. Trampert & Woodhouse 1996; Ekstrom et al. 1997; 

Barmin et al. 2001), the inverse operator of eikonal tomography is simply the spatial gradient 

applied to the phase travel time map, which is a purely local operator that does not depend on 

constructing the forward operator. No formal inversion is performed in this method, therefore, 

which adds to the method’s simplicity and the speed of its application. The localized nature of 

the “inversion” also allows for direct point-by-point inspection of the results, which may be 

expressed as plots of azimuthally dependent phase velocities as Lin et al. (2009, 2011) illustrate.  

The purpose of the current paper is to discuss the limitations of eikonal tomography and to 

present the means to move beyond it. The basis for eikonal tomography is the eikonal equation: 

ˆ k i(r)

′ c i(r)
≅ ∇τ

i
(r)                           (1) 

which can be derived from the solution to the 2D Helmholtz wave equation (e.g., Wielandt 

1993), by ignoring the effect of the term in the Laplacian of the amplitude field: 

1

c i(r)2
= ∇τ i(r)

2
−

∇2
Ai(r)

Ai(r)ω 2
                         (2) 

where i is the earthquake index, ˆ k  is the direction of wave propagation, τ is the phase travel time, 

A is the wave amplitude, r is position, and ω is the angular frequency. The phase velocites c′ and 

c are explicitly contrasted here. We refer to c′ as the “apparent” (sometimes referred to as the 

“dynamic”) phase velocity and c as the “corrected” phase velocity (sometimes referred to as 

“structural” phase velocity). The eikonal equation (eq. (1)) is only approximately accurate and 

the apparent and corrected phase velocities will be approximately equal (c′≅c) when the 

amplitude varies sufficiently smoothly or the frequency is high enough so that the second term 

on the right of eq. (2) will be much smaller than the first term. We refer to the term in eq. (2) 

involving the Laplacian of the amplitude (without the negative sign) as the amplitude correction 
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term for the Eikonal equation. This term defines the difference between the apparent and 

corrected phase velocities. In the following, we will refer to results based on eqs. (1) and (2) as 

the apparent and corrected phase velocity maps, respectively, which should be distinguished 

from the intrinsic phase velocity for the real earth. 

Eikonal tomography (based on eq. (1)) is a geometrical ray theoretic method. Several theoretical 

and numerical studies (e.g., Wielandt 1993, Friederich et al. 2000, Bodin & Maupin 2008) have 

shown that when the wavelength is comparable to or larger than the dimension of a structural 

anomaly, ignoring the amplitude correction term in eq. (2) can cause underestimation of the 

anomaly amplitude and the introduction of isotropic bias into inferred azimuthal anisotropy. 

While Lin et al. (2009) presented eikonal tomography through applications to ambient noise 

cross-correlation measurements (Bensen et al. 2007; Lin et al. 2008), the method was extended 

to earthquake data by Lin et al. (2011) to constrain azimuthal anisotropy up to ~50 sec period. 

Lin & Ritzwoller (2011) demonstrated isotropic bias in azimuthal anisotropy measurements 

above ~50 sec period and showed that the observed bias increases with period and can be 

explained as off-ray sensitivity or a finite frequency effect. In particular, they identified the 

existence of a strong non-physical 1-psi component of the azimuthal anisotropy measurements 

(360 degree periodicity), which results from back-scattering in the neighborhood of stations. 

Similar bias is also observed for ambient noise applications at long periods (Ritzwoller et al. 

2011). 

Accurately estimating long period (>50 sec) phase velocity maps is desired to be able to resolve 

upper mantle structure. Unlike ambient noise measurements where the amplitude information is 

degraded or obscured during temporal and frequency normalization (e.g. Bensen et al. 2007; Lin 

et al. 2007), the amplitude of earthquake signals can be measured directly along with phase 

travel times. This provides the possibility to compute the amplitude term in the Helmholtz 

equation (e.g., Pollitz & Snoke 2010). Whether earthquake amplitudes provide a meaningful and 

accurate correction to Eikonal tomography is the motivation for this study. 

Amplitude measurements have been used in both global (e.g., Dalton & Ekstrom 2006) and 

regional (e.g. Yang & Forsyth 2006; Yang et al. 2008; Pollitz 2008) tomography to constrain 

surface wave phase velocity structures. In the regional methods, to achieve the high resolution 

desired, phase and amplitude measurements across an array are used jointly to invert for the 

properties of the incoming waves along with the structural variation. To stabilize the inversion, 

the incoming waves are often assumed to be the superposition of a few basis functions such as 

plane waves. Analytical finite frequency kernels (e.g. Zhou et al. 2004) are used in the inversion 

to account for the waveform complexity due to internal structural heterogeneities. Recently, 

Pollitz & Snoke (2010) demonstrated a new approach that determines phase velocity structures 

and wave properties locally through a sub-array configuration. When the sub-array is contained 

within a small region, a homogenous phase velocity structure can then be assumed and hence 

finite frequency kernels are not required. In essence, this local inversion approach is very similar 

to the idea of eikonal tomography (Lin et al. 2009) and the Helmholtz tomography described in 
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this study although no assumption about the form of the incoming wave is made here. Due to the 

similarity of theory and approach involved, we expect our results to be largely consistent with 

the results presented by Pollitz & Snoke (2010). The focus here, however, is to study the effect 

of the amplitude correction on the phase velocity measurements and to evaluate the importance 

of the finite frequency effect on both isotropic and azimuthally anisotropic results. 

In this study, we apply both phase front tracking and amplitude measurement to Rayleigh wave 

tomography between 30 and 100 sec period across the USArray in the western US (Fig. 1) based 

on earthquake data (Fig. 2a). For each earthquake, the resulting phase travel time and amplitude 

maps are used to estimate the apparent (c′) and corrected (c) phase velocity maps based on eqs. 

(1) and (2), respectively. We show that amplitude measurements are strongly correlated with 

phase bias and can be used to account for finite frequency effects. We present several clear lines 

of evidence that Helmholtz tomography outperforms eikonal tomography, particularly at long 

periods (> 50s). This evidence includes (1) better resolved small-scale isotropic anomalies, 

which correspond to known geological features, (2) smaller uncertainties in the isotropic phase 

speed maps, (3) less scattered directionally dependent phase velocity measurements, (4) reduced 

amplitude of the spurious 1-psi component of azimuthal anisotropy, and (5) better correlation 

between the observed 2-psi (180 degree periodicity) azimuthal anisotropy between different 

periods.  

2. Methods 

To demonstrate the Helmholtz tomography method we use all USArray stations (Figure 1) and 

more than 700 earthquakes (Figure 2a) with Ms > 5.0 that occurred between January 1
st
, 2006 

and April 11
th

, 2010. For each earthquake and wave period, we apply automated frequency-time 

analysis (FTAN; e.g. Levshin & Ritzwoller 2001; Lin et al. 2007) to measure both the phase 

travel time and the wave amplitude for Rayleigh wave signals emitted from these earthquakes 

across the array. We discard all measurements with signal-to-noise ratio (SNR; Lin et al. 2008) 

less than 10. Due to the degradation of data quality and SNR at long periods, the number of 

earthquakes used in this study decreases with period (Figure 2b). 

2.1 Phase front tracking and amplitude measurement 

Before estimating the phase velocity based on eqs. (1) and (2) with the spatial gradient and 

Laplacian operators, we first construct the phase travel time and amplitude maps for each 

earthquake. For phase travel time measurements from the same earthquake, we correct the 

relative 2π ambiguity for all measurements before further analysis. The correction is made 

sequentially in an order determined from the distance between each station to the center of the 

array (from short to long distances). To resolve the 2π ambiguity at a target station, the average 

phase speed (phase travel time divided by the great circle distance) for the nearest corrected 

station is used as the reference to predict the phase travel time at the target station. The observed 

phase travel time at the target station is allowed to change within the interval of one wave period 
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until the misfit to the predicted travel time is minimized. We remove all measurements with a 

misfit larger than 6 seconds. Only earthquakes with valid measurements from at least 50 stations 

across the array are used for further analysis. 

We follow the method described by Lin et al. (2009) to construct both the phase travel time (τ) 

and amplitude (A) maps based on a minimum curvature surface fitting technique (Smith & 

Wessel 1990). All available phase travel time and amplitude measurements are interpolated onto 

a 0.2° × 0.2° grid based on the surface fitting method. As additional quality control, stations at 

where the absolute phase travel time curvature is larger than 0.005 s
2
/km

2
 or amplitude curvature 

is larger than Aω2
/c0

2
 are discarded before constructing the final travel time and amplitude maps. 

The reference velocity c0 is set to 4 km/s in the amplitude selection criterion. Figure 3 shows 

examples of the resulting 60 sec Rayleigh wave phase travel time and amplitude maps based on 

two earthquakes identified by green circles in Fig. 2a.  

As demonstrated in Figure 3, the observed phase and amplitude fields are significantly different, 

which underscores the challenge of using amplitude information in a tomographic inversion. 

While the phase travel time varies smoothly and monotonically in the direction of wave 

propagation, both large and small-scale variations are observed in the amplitude maps both in the 

direction of wave propagation and transverse to it. For example, a prominent low amplitude 

stripe is observed in Figure 3b, which is probably caused by wave-wave interference produced 

by structural variations outside the array. Note, however, that kinks in the phase travel time 

contours for this event (Fig. 3a) probably result from the same structural cause as the amplitude 

stripes (Fig. 3b). Some amplitude maps are much smoother than others (e.g., Fig. 3d), which 

probably reflects wave propagation conditions outside the array. 

2.2 Event-specific apparent and corrected phase velocities 

With the phase travel time and amplitude maps, we compute the gradient of the phase travel time 

field and the Laplacian of the amplitude field to estimate the apparent and corrected phase 

velocity based on eqs. (1) and (2), respectively. While the gradient varies smoothly for a map 

computed with minimum curvature surface fitting, the Laplacian is not necessarily well behaved. 

To ameliorate this technical difficulty and provide a smooth estimate of the Laplacian, we first 

calculate the first spatial derivative in the longitudinal and latitudinal directions at all station 

locations where amplitude measurements are available. We then re-apply the surface fitting 

method to determine the first spatial derivative maps in the longitudinal and latitudinal directions 

for the whole region of the active array. The second spatial derivatives are then calculated, but 

they now provide a smoothly varying estimate of the Laplacian. It must be acknowledged that 

the methods we apply here to fit the travel time and amplitude surfaces and to calculate the 

Laplacian of the amplitude field are not unique and are probably not optimal. In particular, the 

Laplacian of the amplitude field is probably underestimated for small-scale amplitude variations 

(relative to station spacing) based on minimum curvature surface fitting (see section 5.3).   
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To demonstrate the ability of the amplitude measurements to reduce the apparent bias in the 

travel time (or phase) measurements, Figure 4 presents examples of an apparent phase velocity 

map defined from eq. (1), the amplitude correction map (∇2
A / ω 2

A ) defined by eq. (2), and the 

corrected phase velocity map also defined by eq. (2). These results are all calculated from the 

phase travel time and amplitude maps shown in Fig. 3. Clear correlations are observed between 

the apparent velocity anomalies and the amplitude correction surface for the 2009 Kuril Islands 

earthquake (Fig. 4a-b). Both maps show a prominent stripe that presents as an apparent low 

velocity trough in Figure 4a and a high amplitude ridge in the Laplacian surface in Figure 4b. 

This correlation is evidence that the amplitude correction term can be used to suppress spurious 

apparent phase velocity signals. In fact, the striped interference pattern is no longer observed in 

the corrected phase velocity map (Fig. 4c) and various prominent structural anomalies can now 

be seen including the slow anomalies of the Yellowstone/Snake River Plain hot spot track and 

the southern Rocky Mountains and the fast anomaly in southwestern Wyoming. The apparent 

phase velocity and the amplitude correction maps for the 2007 Easter Island earthquake (Fig. 4d-

e), on the other hand, display a weaker correlation which suggests that wave interference is not 

as severe and the observed apparent phase velocity better reflects regional-scale structures. This 

is consistent with the difference in magnitude between the amplitude correction term shown in 

Figures 4b and 4e. Nevertheless, the fast anomalies of the subducted Juan de Fuca Plate and the 

Isabella anomaly near the Sierras in southern California are better resolved in the corrected phase 

velocity map (Fig. 4f). 

3. Isotropic Phase Velocity Maps 

We follow the methods described by Lin et al. (2009) to statistically summarize measurements 

based on a large number of earthquakes for each spatial location. Figure 5 shows example 

distributions of apparent and corrected phase velocity measurements for the 60 sec Rayleigh 

wave compute at two locations (stars in Fig. 1). The distributions of the corrected phase 

velocities in general are more concentrated (Fig. 5c-d) than the apparent phase velocities (Fig. 

5a-b) likely reflecting the reduction of random phase bias with the amplitude correction. We 

calculate both the mean and the standard deviation of the mean of all measurements at each 

location to estimate the isotropic phase velocity and its uncertainty at each location.  

The final apparent and corrected isotropic phase velocity maps in the western US for the 60 sec 

Rayleigh wave and their uncertainties are shown in Figure 6a-b and Figure 7. On average, the 

corrected phase velocity map displays larger velocity contrasts for small-scale anomalies. These 

anomalies are correlated with known geological features (Fig. 6c) such as the fast anomalies of 

the Isabella anomaly in southern California and the Colorado Plateau and the slow anomalies of 

the Clear Lake volcanic field in northern California, the Long Valley Caldera, the Newberry 

Caldera, and the Yellowstone/Snake River Plain hot spot track, many of which are also observed 

in body wave tomography (e.g. Schmandt & Humphreys 2010).  The observation that the 

apparent phase velocity map underestimates the amplitude of small-scale anomalies is consistent 
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with previous theoretical and numerical studies (e.g. Wielandt 1993, Friederich et al. 2000, 

Bodin & Maupin 2008). 

The difference between the corrected and apparent isotropic velocities is presented in Figure 6c. 

This difference represents the discrepancy arising from the fundamental theories applied, the 

eikonal equation versus the Helmholtz equation. This difference is not accounted for in the 

uncertainty estimates shown in Figure 7, which mostly reflects random fluctuations rather than 

systematic bias. The corrected isotropic phase velocities based on Helmholtz tomography, in 

general, have smaller uncertainties than those from eikonal tomography due to the reduction of 

variations in the measurements (Fig. 7). In both cases, uncertainties grow toward the east 

because the time of operation of the eastern stations is shorter than for western stations. Fewer 

earthquakes were analyzed in the eastern than the western part of the region of study.  

The isotropic phase velocity maps at two other periods, 40 and 80 sec, are shown in Figure 8. 

The maps at 80 sec period (Fig. 8d-f) demonstrate clearly the advantage of using Helmholtz 

tomography to resolve smaller-scale anomalies at long periods. Similar to the result at 60 sec 

period (Fig. 6), small-scale anomalies are more pronounced and in better agreement with body 

wave tomography results (e.g. Schmandt & Humphreys 2010). At 40 sec period, on the other 

hand, the differences between eikonal and Helmholtz tomography are mostly small with the 

exception of the Isabella anomaly, which is slightly more pronounced in the corrected map.  

By applying the amplitude correction term, Helmholtz tomography accounts for both wave 

interference and wavefront healing effects which probably produce the reduction of random and 

systematic errors, respectively. Figure 9 summarizes the average uncertainties of the isotropic 

phase velocity maps based on the two tomography methods and the standard deviation (Std) of 

the systematic differences between the two isotropic maps across the western US at each period. 

The isotropic phase velocity structures produced by Helmholtz tomography have smaller 

uncertainties compared to the result from eikonal tomography (Fig. 9a) due to the reduction of 

measurement variation. The overall increase of uncertainty with period for both tomography 

methods (Fig. 9a) probably results from the decrease in the number of earthquakes used at longer 

periods (Fig 2b). The standard deviation of the systematic differences increases with period and 

are roughly three times larger at 100 sec period (~33 m/s) than at 30 sec period (~11 m/s ) (Fig. 

9b). The systematic differences between Helmholtz and eikonal tomography, hence, are clearly 

due to the finite frequency effects. Helmholtz tomography, which accounts for finite frequency 

effect, clearly outperforms eikonal tomography in resolving isotropic structures and should be 

used at least at periods longer than ~50 sec for array configurations similar to the TA. 
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4. Anisotropy Maps  

For both eikonal and Helmholtz tomography, the gradient of the phase travel time (eq. (1)) 

provides the approximate local direction of wave propagation for each earthquake. For each 

location, we follow the method described by Lin et al. (2009) to estimate the phase velocity and 

its uncertainty within each 20° azimuthal bin based on the mean and the standard deviation of the 

mean of the measurements taken from all the earthquakes within each bin. A 9-point (3×3 grid 

with 0.6° separation) averaging scheme is used to reduce small-scale variability in the 

measurements.  

Figure 10 presents examples of the directionally dependent apparent and corrected phase velocity 

measurements at two locations (stars in Fig. 1) for the 60 sec Rayleigh wave. Based on 

observations such as those in Figure 10, we find that the principal components of the azimuthal 

variation of the phase velocity measurements have 180° and 360° periodicities. Therefore, 

instead of the 180° periodicity in the expected functional form for a weakly anisotropic medium 

(Smith & Dahlen 1973), we assume that the phase velocity exhibits both a 180° and a 360° 

periodicity: 

c(ψ) = c iso 1+
A1psi

2
cos ψ −ϕ1psi( )+

A2 psi

2
cos 2 ψ −ϕ2 psi( )[ ] 

 
 

 
 
 
  ,     (3) 

where ciso is the isotropic component of wave speed, ψ is the azimuthal angle measured positive 

clockwise from north, A1psi and A2psi are the peak-to-peak relative amplitude of 1-psi and 2-psi 

anisotropy, and φ1psi and φ2psi define the orientation of the anisotropic fast axes for the 1-psi and 

2-psi components, respectively. Based on results from eikonal tomography, Lin & Ritzwoller 

(2011) argued that the 1-psi anisotropy signal, which is nonphysical because it violates the 

reciprocity principle, probably reflects an inaccuracy in eikonal tomography. In particular, they 

argued that the 1-psi signal resulted from unmodeled near-station backward scattering. Backward 

scattering is a finite frequency effect in which the observed apparent phase velocity at a location 

is sensitive to structures downstream of the recording station in the direction of wave 

propagation. Near a sharp structural contrast, this results in an apparent 1-psi anisotropy signal in 

which the fast direction points toward the faster structure. A much more detailed discussion can 

be found in Lin & Ritzwoller (2011).  

In general, the observed directionally dependent phase velocities become less scattered and 

better fitted by Helmholtz tomography than by eikonal tomography (Fig. 10). This is because of 

a reduction of directionally dependent bias, which can be caused by consistent wave interference 

patterns induced by structures outside of the array (e.g. Fig 4a-c). Note that this directionally 

dependent bias will act as a random scatter for the isotropic velocity measurement. Figure 11a-b 

summarizes the chi-square misfits of the best fitting curves based on eq. (3) for 60 sec Rayleigh 

wave measurements at each location based on the two tomography methods. Figure 11c 

summarizes the average chi-square misfits across the entire western US at each period. The 
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corrected phase velocities are better fitted by eq. (3) than the apparent phase velocities in every 

case, suggesting that the directionally dependent bias is significantly reduced with Helmholtz 

tomography. This is a feature needed to resolve azimuthal anisotropy robustly. 

The estimated 1-psi and 2-psi azimuthal anisotropy patterns (particularly the 1-psi term) also can 

be significantly different based on the two tomography methods (e.g. Fig. 10). Because the 1-psi 

signal reflects isotropic bias (Lin and Ritzwoller, 2011), we seek a tomography method that 

reduces the 1-psi signal. In contrast, the 2-psi signal is more difficult to interpret as it reflects 

both physical anisotropy and perhaps also bias. Because of this difference in interpretation of the 

1-psi and 2-psi signals, we discuss each in turn. 

4.1 1-psi anisotropy as indicative of theoretical errors 

A summary of the 1-psi component of azimuthal anisotropy for both the apparent and corrected 

phase velocity measurements across the western US for the 60 sec Rayleigh wave is presented in 

Figure 12. By comparing with the isotropic velocity structures shown in Figure 6b, the observed 

1-psi anisotropy (Fig. 12a-b) can be seen to be clearly correlated with sharp isotropic structural 

boundaries with fast directions pointing toward the faster isotropic structure. This confirms that 

the 1-psi signal is a form of isotropic bias in the azimuthal anisotropy measurements (Bodin & 

Maupin 2008; Lin & Ritzwoller 2011). The strength of the spurious 1-psi signal is significantly 

reduced in the corrected velocity map (Fig. 12b), however.  

To demonstrate the frequency dependence of the 1-psi anisotropy signals, Figure 13 summarizes 

the 1-psi component of azimuthal anisotropy for the 40 and 80 sec Rayleigh waves. Figure 13e 

presents the averaged 1-psi amplitude over the entire western US at each period. Overall, the 1-

psi anisotropy is clearly more pronounced at long periods, consistent with this spurious signal 

being a finite frequency effect. Note that the average 1-psi amplitude decreases only slowly 

toward the short period for both apparent and corrected measurements in Figure 13e, suggesting 

that the background random measurement errors probably also contribute somewhat to the 

observed 1-psi signals. 

Even with the finite frequency corrections made by Helmholtz tomography, some spurious 1-psi 

signals remain, particularly at 60 and 80 sec period near the edge of the southwestern Wyoming 

fast anomaly (Fig. 12b, 13d).  Thus, as it is currently effected, Helmholtz tomography remains 

insufficient to completely remove the effects of sharp isotropic structural boundaries on nearby 

azimuthally anisotropy measurements with the current station configuration. This inability to 

completely remove 1-psi anisotropy is discussed further in section 5.2. 

4.2 2-psi anisotropy  

In contrast with the 1-psi anisotropy, the difference between the apparent and corrected 2-psi 

azimuthal anisotropy is rather subtle at 60 sec period (Fig. 14a-c). Various notable differences at 

60 sec period include regions near northern Oregon, the Yellowstone hot spot, and the southern 
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Rocky Mountains where strong isotropic anomalies are present (Fig. 6b). These differences may 

represent isotropic bias in the apparent phase velocity measurements due to unmodeled finite 

frequency effects. 

Better evidence that Helmholtz tomography is correcting for isotropic bias comes from the 

period dependence of the differences between the eikonal and Helmholtz tomography methods. 

Figure 15 summarizes the results of 2-psi anisotropy for the 40 and 80 sec Rayleigh waves and 

Figure 16a summarizes the standard deviation (Std) of the fast direction differences between the 

2-psi anisotropy results of Helmholtz tomography and eikonal tomography at each period. While 

the 2-psi anisotropy observed from apparent and corrected velocity measurements with eikonal 

and Helmholtz tomography, respectively, are similar at 40 second (Fig. 15a-c), they are quite 

different at 80 sec period (Fig. 15d-f). The fact that the differences in the 2-psi fast direction 

between eikonal and Helmholtz tomography increase with period (Fig. 16a) suggests that this 

difference is mostly due to finite frequency effects. Lin & Ritzwoller (2011) argue that the 2-psi 

anisotropy bias in eikonal tomography may be caused by the broad forward scattering sensitivity 

kernels of the phase travel time measurements. This bias is particularly strong near linear 

isotropic anomalies where the 2-psi anisotropy fast direction either is aligned or perpendicular to 

the linear slow or fast anomaly, respectively. This is consistent with the assumption that the 

observed 2-psi anisotropy at 80 sec period based on eikonal tomography (Fig. 15d) is heavily 

biased where the fast directions are better aligned with linear slow anomaly structures (Fig. 8e) 

such as the north-south fast direction near northern Oregon east of Cascades and northeast-

southwest fast direction near eastern Idaho within the Snake River Plain.  

Another line of reasoning that demonstrates that Helmholtz tomography reduces bias in 2-psi 

anisotropy comes from the comparison of observed 2-psi anisotropy at different periods. In 

Figure 16b, we present the vector correlation coefficient (Lin et al. 2011; Lin & Ritzwoller 2011) 

between the 2-psi fast directions observed at 40 sec period and all other periods. Only locations 

with observed 2-psi anisotropy amplitude larger than 0.5% are included in the calculation. 

Considering that Rayleigh waves are most sensitive to uppermost mantle structures for the period 

range considered here, it is unlikely that the intrinsic 2-psi anisotropy at different periods will be 

strongly different and uncorrelated. Hence, the fact that the observed 2-psi anisotropy at long 

periods is correlated better with the result at 40 sec period based on Helmholtz tomography is  

evidence of less bias in the observations. Using the 80 sec results as an example, the observed 2-

psi apparent fast directions based on eikonal tomography (Fig. 15d) are only weakly correlated 

with the result at 40 sec (Fig. 15a) with a vector correlation coefficient equal to 0.24. In contrast, 

the vector correlation coefficient is equal to 0.46 for the Helmholtz tomography result (Fig. 

15b,e). We compare the results at all periods to 40 sec result because finite frequency bias is 

expected to be smaller at 40 sec period (Fig. 15a-b).  

Although it is difficult to determine the degree of bias in 2-psi anisotropy, our results suggest 

that finite frequency effects need to be accounted for to obtain unbiased 2-psi anisotropy 

measurements. As shown in Figure 16a, however, the 2-psi bias due to finite frequency effects is 
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probably small below about 50 sec period, but gradually becomes more important at longer 

periods (>50 sec). This justifies the use of eikonal tomography at short periods (<50 sec) to 

constrain shallow structures in the crust and uppermost mantle, particularly when the amplitude 

information is not available such as for ambient noise application (e.g. Ritzwoller et al., 2011; 

Lin et al. 2011). At long periods (>50 sec), however, the 2-psi anisotropy observed based on 

Helmholtz tomography better reflects intrinsic anisotropy. Caution should be taken, however, in 

interpreting the long period results particularly before the 1-psi anisotropy signals can be more 

completely removed. 

5. Technical Discussion 

Based on the results shown in foregoing, Helmholtz tomography more accurately accounts for 

finite frequency effects and provides better estimates of both isotropic and azimuthally 

anisotropic structures than eikonal tomography, particularly at periods above about 50 sec. In 

this section we discussed several technical issues that combine to determine and in some cases 

limit the effectiveness of Helmholtz tomography. 

5.1 Detailed comparison between finite frequency bias and the amplitude correction term  

The ability to use amplitude measurements to ameliorate finite frequency bias in the apparent 

phase velocity measurements relies on that the existence of a good correlation between the two. 

We attempt to quantify this here and investigate circumstances when the amplitude 

measurements do not remove bias completely. 

For each earthquake we compare the apparent bias in corrected slowness squared 

(α ≡ ∇τ i(r)
2

−
1

c0(r)2
) with the amplitude correction term ( β ≡ ∇2

Ai(r) /(Ai(r)ω 2)) defined by 

eq. (2). In order to minimize the scatter caused by spatial variations in phase speed, we use the 

isotropic phase velocity speed obtained with Helmholtz tomography (e.g. Fig 6b and 8b,e) to 

evaluate c0(r). Based on eq. (2), if c0(r) accurately reflects the intrinsic phase velocity structure, 

a linear relationship is expected between the apparent bias (α) and the amplitude correction term 

(β): 

α(β) = λβ            (4) 

In fact, we expect α ≈ β , but introduce a correction factor λ to account for difficulties in 

estimating either the apparent bias or the amplitude correction term. Theoretically,  λ should be 

equal to 1. 

Figure 17 presents an example of the corrected apparent bias (α), the amplitude correction term 

(β), and their relationship across the wesetern US for the 60 sec Rayleigh wave following the 

Easter Island earthquake. A good correlation between the apparent bias (α) and the amplitude 

correction term (β) is observed (correlation coefficient ρ=0.84) with the correction factor 
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(λ ≈ 1.15 ) near unity. This suggests that for this earthquake most of the finite frequency bias can 

be removed with the amplitude correction term based on the Helmholtz equation (eq. (2)).  

Going further, Figure 18a presents a histogram of the correlation coefficient (ρ) between the 

finite frequency bias (α) and the amplitude correction factor (β) and Figure 18b shows a 

histogram of the correction factor (λ) for all earthquakes at 60 sec period. The vertical axis in 

each histogram is percentage of all earthquakes. Generally, the correction factor λ is near 1 

(average of 1.03) and the correlation between the finite frequency bias and the amplitude 

correction factor ρ is better than about 0.3 with an average of 0.54. This justifies the use of the 

Helmholtz equation to suppress finite frequency effects and measurement bias. Nevertheless, 

there are outlier earthquakes that we seek to understand. 

To provide further insight, Figure 18c presents the relationship between ρ and λ for each 

earthquake. Clear correlation is observed between the correlation coefficient ρ and correction 

factor λ (Fig. 18c). In particular, the correction factor λ is considerably smaller than the 

theoretical value of unity when the correlation coefficient is small (ρ<0.3). For earthquakes in 

which the amplitude correction map is not well correlated with the apparent phase velocity map, 

the amplitude correction term is not useful to remove apparent phase velocity variations. 

Earthquakes belonging to this category usually have weak amplitude measurements (Fig. 18d). 

This degrades the ability of the observed amplitude field to correct the phase measurements. 

Unlike low correlation coefficient (ρ<0.3) earthquakes, the events with high correlation 

coefficients (ρ>0.5) and high correction factors (λ>1.5) are more mysterious.  Figure 19 shows 

an example of such an earthquake for the 60 sec Rayleigh wave. One common characteristic of 

this type of outlier is that both the apparent phase velocity map (Fig. 19c) and the amplitude 

correction term (Fig. 19d) display oscillations in the direction of wave propagation. While the 

apparent phase velocity and amplitude correction variations are highly correlated, the correction 

factor λ is significantly larger (>1.5; e.g. Fig. 19e) than the theoretical value of unity. Applying 

the amplitude correction to such an earthquake based on eq. (2), therefore, does not fully remove 

the apparent oscillatory bias in the phase velocity measurements (Fig. 19f). Because any 

superposition of fundamental Rayleigh waves should still satisfy the Helmholtz equation (eq. 2), 

we suspect that the oscillatory pattern is due to interference with another wave type such as a 

body wave or a higher mode. An understanding of the detailed cause of this phenomenon, 

however, is beyond the scope of this study.  

In practice, we can identify and discard these outlier earthquakes by setting a selection criterion 

based on the correlation coefficient ρ and correction factor λ. The number of outliers is small, 

however, and removing them does not have a noticeable effect on the final result. Besides the 

apparent outliers, Figure 18c also shows that many high correlation coefficient ρ earthquakes 

have a correction factor λ somewhat larger than unity (but smaller than 1.5). We suspect that this 
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is caused by the average underestimation of the Laplacian term, which will also be discussed 

further in Section 5.3. 

5.2 Unmodeled finite frequency effects 

In general, velocity measurements based on finite frequency surface waves are affected by wave 

interference, wavefront healing, and backward scattering. While wave interference is probably 

event-dependent and predominantly introduces random measurement errors, the effect of 

wavefront healing and backward scattering is more systematic and is likely to produce bias in 

observed variables. In general, wavefont healing acts to smear out isotropic velocity anomalies 

and introduces 2-psi anisotropic bias. Backward scattering, on the other hand, introduces non-

physical 1-psi anisotropic signals (Lin & Ritzwoller 2011).  

In earlier sections, we presented several lines of evidence that Helmholtz tomography accurately 

accounts for these finite frequency effects. This evidence included the observation of lower 

variance in the velocity measurements (reducing the effect of wave interference), better 

resolution of small scale isotropic structures and 2-psi anisotropy (reducing the effect of 

wavefront healing), and the overall reduction of 1-psi anisotropy (reducing the effect of 

backward scattering). Somewhat disappointingly, however, Helmholtz tomography falls short of 

completely removing the spurious 1-psi signals which we argue are an indicator of the severity 

of systematic bias in the inversion. The systematic bias in isotropic and 2-psi anisotropic 

measurements are entangled with intrinsic structural variations and, therefore, are harder to 

evaluate. 

Although removing the 1-psi anisotropic signals is entirely desired and may potentially lead to 

better resolved structural boundaries, it may require a more precise knowledge of near-field 

backward scattering sensitivity (sensitivity very close to the receiver). The Helmholtz equation 

(eq. (2)) used in this study, although finite frequency theory, is an instantaneous frequency 

equation. Constructing a finite frequency kernel based on the 2D Helmholtz equation can result 

in strong side lobe oscillation particularly in the backward scattering region (Zhou et al. 2004). 

Because a finite band-width filter is used in the frequency-time analysis to obtain phase and 

amplitude measurements at each period, there is an apparent inconsistency between our 

measurements and the theory employed. It is unclear, however, whether finite band-width finite 

frequency kernels constructed based on a simple reference model (e.g. Zhou et al. 2004) will be 

sufficient to provide such information considering that structurals variation can significantly alter 

the sensitivity kernesl (Lin & Ritzwoller 2010). Numerical studies (Tromp et al. 2005; Tape et al. 

2010), on the other hand, may provide direct insight into this issue and also provide a more 

straight forward means to evaluate the potential bias due to unmodeled finite frequency effects.  

 

5.3 The Laplacian of the amplitude field 
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Helmholtz tomography depends heavily on the ability to estimate accurately the gradient of the 

phase travel time field and the Laplacian of the amplitude field. The Laplacian is generally 

harder to estimate with a finite station distribution. Although the method to calculate the gradient 

and Laplacian operators with finite measurements is not unique, the fundamental limitations are 

similar. Considering the configuration of the USArray with a ~70 km average station spacing, 

computation of the gradient at each location usually involves at least the nearest 3 to 4 stations 

(mostly within ~70 km). In constrast, computation of the Laplacian involves 9 to 16 nearby 

stations (mostly within ~140 km). This restricts the resolution of the Laplacian of amplitude and 

is reflected in our method that performs minimum curvature surface fitting twice to obtain a 

smoothly varying Laplacian field. For shorter periods considered here, the Laplacian of 

amplitude is probably underestimated. Different methods to estimate the Laplacian term, for 

example by performing a contour integral by utilizing Gauss’s law, will suffer from the same 

limitation. Hence, while the Laplacian of the amplitude term in eq. (2) can be theoretically used 

to correct for the apparent phase velocity bias, in practice it does not have the same resolving 

power as measurements based on the travel time gradient alone. 

This difference in resolution between the gradient and Laplacian operators will only be important 

when the phase and amplitude variations are both dominated by small-scale features. Figure 20 

summarizes the average correlation coefficient (ρ) and the average correction factor (λ) between 

the apparent slowness squared bias (α) and the amplitude correction term (β) (discussed in 

section 3.1) for all earthquakes at each period. At short periods (<50 sec), a smaller overall 

correlation coefficient ρ (Fig. 20a) is observed, which probably reflects the shorter wavelength 

interference patterns that are harder to resolve with the Laplacian operator. This is consistent 

with the overall > 1 average best fitting correction factor λ at short periods (Fig. 20b), which 

indicates an underestimation of the Laplacian term. Note that the reduction of the correction 

factor λ at long periods, which eventually becomes lower than the theoretical value of unity, is 

probably due to the reduced accuracy of amplitude measurements at long periods. When the 

Laplacian of amplitude has a larger uncertainty, using a smaller correction factor can potentially 

lead to smaller spatial variations in velocity measurements but can also fall short of correcting 

the systematic bias.  

The presence of dense regional arrays such as the EarthScope Flexible Array can potentially 

improve the accuracy of the Laplacian operator. This may be important to resolve small-scale 

anomalies and sharpen the structural boundaries. Whether the spurious 1-psi anisotropy signals 

can be suppressed with the presence of such arrays also remains an open question. 

 

 

6. Conclusions 
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The fundamental philosophy behind both eikonal and Helmholtz tomography is to directly and 

locally estimate surface wave phase velocities by interpreting the observed wavefield through an 

underlying wave equation. In contrast to traditional tomography methods in which a forward 

operator is needed to construct the inverse operator, no forward modeling is needed and no 

inversion is performed. Rather, only spatial operators are applied to the observations. Hence, for 

eikonal and Helmholtz tomography, the accuracy of the method is not controlled by the accuracy 

of forward calculations. It is controlled mainly by the accuracy of the observed wavefield and the 

underlying wave equation. 

In this study, we show that eikonal tomography based on the eikonal equation (Lin et al. 2009), 

which accounts naturally for off great circle propagation, can be improved by also accounting for 

finite frequency effects when accurate amplitude measurements are available. By performing 

phase front tracking and amplitude measurement, we demonstrate that the Helmholtz 

tomography method clearly resolves both isotropic and azimuthally anisotropic structures better 

than the eikonal tomography method, particularly at longer periods (>50 sec).  

Although statistics (Fig. 9a, 11c, and13e) suggest that Helmholtz tomography outperforms the 

eikonal tomography method even at short periods, our results suggest that the differences are 

small at short periods (<50 sec) where finite frequency effects are less severe. This justifies the 

use of eikonal tomography for ambient noise applications (Lin et al., 2009; Lin et al., 2011), 

which often do not extend above 50 sec period. It must be noted, however, that this period 

criterion is resolution dependent and will be somewhat different for different applications. 

The fact that spurious 1-psi azimuthal anisotropy, which should be considered as a clear 

indicator of systematic bias in anisotropy, remains strong near structural boundaries at long 

periods (> 50 sec) suggest that Helmholtz tomography, as we effect it here, remains insufficient 

to model the observations fully. Two separate lines of investigation may lead to a better 

understanding of this apparent deficiency. First, it would be useful to investigate the accuracy of 

Helmholtz tomography based on numerical simulations or with regional arrays with a higher 

station density such as the EarthScope USArray Flexible Array. Second, it would also be useful 

to investigate whether the Helmholtz equation is only valid for instantaneous frequency 

measurements. Because the frequency-time analysis that we employ involves resolving both 

phase and amplitude in a finite frequency band, strictly speaking, they are not instantaneous 

frequency measurements. The severity of systematic bias in both the isotropic and 2-psi 

azimuthally anisotropic results at periods above ~50 sec will be understood better if analyses are 

performed.   
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Figure captions 

Figure 1. The USArray Transportable Array (TA) stations used in this study are identified by 

black triangles. The two stars identify locations used later in the paper. Red lines mark the 

tectonic boundaries in the western US.  

Figure 2. (a) The earthquakes used in this study. Circles mark the location of the earthquakes, 

the star is the center of our study region, and the lines between circles and the star are great-

circle paths. The two green circles and paths mark the earthquakes used in Fig. 3 and 4 and the 

blue circle and path mark the earthquake used in Fig. 19. (b) Number of events with at least 50 

stations with good measurements at each period. 

Figure 3. (a)-(b) The 60 sec Rayleigh wave observed phase travel time and amplitude maps for 

the April 7
th

, 2009 earthquake near Kuril Islands (Ms=6.8). The stations with available phase 

travel time and amplitude measurements used to construct the maps are shown as triangles. 

Contours are separated by intervals of 60 sec in (a) and 100 nm/sec in (b). The arrow in (a) 

indicates the approximate direction of wave propagation. (c)-(d) Similar to (a)-(b) but for the 

February 14
th

, 2007 earthquake near Easter Island (Ms=5.7). Contours in (d) are separated by 

intervals of 5 nm/sec. 

Figure 4. (a) The apparent phase velocity map derived from Figure 3a based on eq. (1). (b) The 

amplitude correction term in eq. (2) derived from Figure 3b. (c) The corrected phase velocity 

map derived from (a) and (b) based on eq. (2). Same as (a)-(c) but for results derived from Figure 

3c-d.   

Figure 5. (a) The normalized histogram for the 60 sec Rayleigh wave apparent phase velocity 

measurements at a point in southern Washington (star in Fig. 1) based on all available 

earthquakes. (b) Same as (a) but for a point in western New Mexico (star in Fig. 1). (c)-(d) Same 

as (a)-(b) but for the corrected phase velocity measurements. The mean and standard deviation of 

the mean, which are used to estimate the final isotropic phase velocity and its uncertainty, at each 

location is shown. 

Figure 6. (a) The 60 sec Rayleigh wave apparent isotropic phase velocity map in the western US 

based on Eikonal tomography. (b) Same as (a) but for the corrected phase velocity map based on 
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Helmholtz tomography. (c) The difference between (b) and (a). CL: Clear Lake Volcanic Field; 

IA: Isabella Anomaly; LV: Long Valley Caldera; NB: Newberry Caldera; SY: Snake River 

Plain/Yellowstone hot spot track; CP: Colorado Plateau. 

Figure 7. (a) The uncertainty for the 60 sec Rayleigh wave apparent isotropic phase velocity 

map. (b) Same as (a) but for the corrected isotropic phase velocity map. 

Figure 8. (a)-(c) Same as Figure 6 but for the 40 sec Rayleigh wave. (d)-(f) Same as (a)-(c) but 

for the 80 sec Rayleigh wave. 

Figure 9. (a) Average uncertainties for the apparent and corrected isotropic phase velocity maps 

at each period. (b) The standard deviation of the differences between the apparent and corrected 

isotropic phase velocity maps at each period. 

Figure 10. (a) The 60 sec Rayleigh wave directionally dependent apparent phase velocity 

measurements at a point in southern Washington (star in Fig. 1). Each error bar presents the 

mean and the standard deviation of the mean of all measurements within each 20° bin. The solid 

green line is the best fitting curve of 1-psi plus 2-psi azimuthal anisotropy based on eq. (3). (b) 

Same as (a) but for a point in western New Mexico (star in Fig. 1). (c)-(d) Same as (a)-(b) but for 

the corrected phase velocity measurements. 

Figure 11. (a) The best fitting chi-squared value for the directionally dependent apparent phase 

velocity measurements using eq. (3). (b) Same as (a) but for the corrected phase velocity 

measurements. (c) The spatial averaged best fitting chi-squared value for apparent and corrected 

measurements at each period.  

Figure 12. (a) The amplitude of the 60 sec Rayleigh wave apparent 1-psi anisotropy based on 

eikonal tomography. The 1-psi fast directions at locations with 1-psi amplitude larger than 2% 

are presented with arrows where arrows point in the fast propagation directions. (b) Same as (a) 

but for the 1-psi anisotropy based on Helmholtz tomography. (c)-(d) normalized histogram of 1-

psi anisotropy amplitudes shown in (a) and (b), respectively. 

Figure 13. (a)-(b) Same as Figure 12a-b but for the 40 sec Rayleigh wave. (c)-(d) Same as (a)-(b) 

but for the 80 sec Rayleigh wave. (e) The spatially averaged 1-psi amplitude for apparent and 

corrected measurement at each period. 

Figure 14. (a) The apparent 2-psi anisotropy for the 60 sec Rayleigh wave based on eikonal 

tomography where the amplitude and fast direction are summarized by the orientation and the 

length of the red bars. The amplitude of 2-psi anisotropy is also shown by the background color. 

(b) Same as (a) but with the corrected 2-psi anisotropy based on Helmholtz tomography. (c) The 

normalized histogram of fast direction differences between (a) and (b) where only locations with 

2-psi anisotropy amplitudes both larger than 0.5% are compared. 
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Figure 15. (a)-(c) Same as Figure 14a-c but for 40 sec Rayleigh wave. (d)-(f) Same as (a)-(c) but 

for the 80 sec Rayleigh wave. 

Figure 16. (a)The standard deviation of 2-psi fast direction differences between apparent and 

corrected measurements across the western US at each period. Only locations with 2-psi 

anisotropy amplitudes larger than 0.5% are compared. (b) The vector correlation coefficients for 

the 2-psi fast directions observed between 40 sec and other periods based on either eikonal (red) 

or Helmholtz (green) tomography. Only locations with observed 2-psi anisotropy amplitude 

larger than 0.5 are used in the calculation. 

Figure 17. (a) The apparent slowness squared bias α derived from Figure 3d and Figure 6b. (b) 

Same as Figure 4e. (c) The relation between the apparent bias and the amplitude correction term 

based on (a) and (b) where each point represents the results at a grid point on the maps. The 

green dashed line is the best fitting straight line based on eq. (4) The value of the slope 

(correction factor λ) and the correlation coefficient (ρ) are also shown. 

Figure 18. (a)-(b) The normalized histograms of the correlation coefficient (ρ) and correction 

factor (λ) for all events for 60 sec Rayleigh wave. (c) The relationship between the correlation 

coefficient and the correction factor over all earthquakes. The solid green line represents the 

theoretical value of the correction factor based on eq. (2). (d) The relationship between the 

correlation coefficient ρ and the average of the measured amplitudes for each event. 

Figure 19. (a)-(b) The 60 sec Rayleigh wave phase and amplitude maps for the September 28
th

, 

2007 earthquake near Loyalty Islands (Ms=6.6; blue circle in Fig. 2a). Contours in (a) and (b) are 

separated by intervals of 60 sec and 5 nm/sec, respectively. (c)-(d) Same as Figure 4a-b but with 

results derived from (a) and (b). (e) Same as Figure 17c but for the Loyalty Island event. (f) 

Same as Figure 4c but derived from (c) and (d). 

Figure 20. (a) The average correlation coefficient (ρ) between the apparent slowness squared 

bias (α) and the amplitude correction term (β) for all events as a function of period. (b) The 

average correction factor (λ) for all events as a function of period 
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