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Abstract 

The emergence of large-scale arrays of seismometers across several continents presents 

the opportunity to image earth structure at unprecedented resolution, but methods must be 

created to exploit the capabilities of these deployments. The capabilities and limitations 

of a method called “eikonal tomography” applied to ambient noise data are discussed 

here. In this method, surface wave wavefronts are tracked across an array and the 

gradient of the travel time field produces estimates of phase slowness and propagation 

direction. Application is to data from more than 1000 stations from EarthScope USArray 

in the central and western US and new Rayleigh wave isotropic and anisotropic phase 

velocity maps are presented together with an isotropic and azimuthally anisotropic 3D Vs 

model of the crust and uppermost mantle. As a ray theoretic method, eikonal tomography 

models bent rays but not other wavefield complexities. We present evidence, based on 

the systematics of an observed 1ψ component of anisotropy that we interpret as 

anisotropic bias caused by wavefront healing, that finite frequency phenomena can be 

ignored in ambient noise tomography at periods shorter than ~40-50 sec. At longer 

periods a higher order term in the eikonal equation based on wavefront amplitudes or 

finite frequency sensitivity kernels must be introduced if the amplitude of isotropic 

anomalies and the amplitude and fast-axis direction of azimuthal anisotropy are to be 

determined accurately. We discuss how ambient noise data processing procedures will 

have to be modified to retain the higher order term in the eikonal equation and how 

ambient noise data can be used to compute empirical finite frequency kernels. 
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1. Introduction 

The use of ambient noise to extract surface wave empirical Green’s functions (EGFs) and 

to infer Rayleigh (e.g., Shapiro and Campillo, 2004; Sabra et al., 2005; Shapiro et al., 

2005) and Love wave (Lin et al., 2008) group and phase speeds in continental areas is 

now well established. Phase and group velocity tomography to produce dispersion maps 

have been performed around the world (e.g., US: Bensen et al., 2008; Ekstrom et al., 

2009; Moschetti et al., 2007; Asia: Kang and Shin, 2006; Cho et al., 2007; Fang et al., 

2010; Li et al., 2009; Yang et al., 2010; Yao et al., 2006, 2009; Zheng et al., 2008; Zheng 

et al., 2010a; Europe: Yang et al., 2007; Villasenor et al., 2007; New Zealand and 

Australia: Arroucau et al., 2010; Lin et al., 2007; Saygin and Kennett, 2010; Ocean 

bottom and islands: Gudmundsson et al., 2007).  Ambient noise tomography is typically 

performed at periods from about 8 sec to 40 sec, but the method has been applied 

successfully at global scales above 100 sec period (Nishida et al., 2009). It has also been 

used to obtain information about anelasticity (e.g., Prieto et al., 2009) and body wave 

(Roux et al., 2005; Gerstoft et al., 2008; Landes et al., 2010; Zhan et al., 2010) and 

overtone signals have also been recovered (e.g., Nishida et al., 2008). Numerous three-

dimensional models of the crust and uppermost mantle have emerged from surface wave 

analyses for isotropic shear velocity structure (e.g., US: Bensen et al., 2009; Liang and 

Langston, 2008; Moschetti et al., 2010b; Stachnik et al., 2008; Yang et al., 2008b Asia: 

Guo et al., 2009; Nishida et al., 2008; Sun et al., 2010; Yao et al., 2008; Zheng et al., 

2010b;  Europe: Li et al., 2010; Stehly et al., 2009;  New Zealand and Australia: Behr 

et al., 2010; Ocean bottom and islands: Brenguier et al., 2007; Harmon et al., 2007; 

Africa: Yang et al., 2008a), radial anisotropy (Moschetti et al., 2010a), and azimuthal 

anisotropy (e.g., Lin et al., 2010; Yao et al., 2010). 

The rapid pace of these developments has been aided by the fact that once a surface wave 

EGF has been estimated by cross-correlating long time series of ambient noise recorded 

at a pair of stations, traditional methods of surface wave measurement, tomography, and 

inversion designed for application to earthquake records can be brought to bear on the 

result. These methods, however, largely have been developed to apply to observations 

obtained at single seismological stations. In this paper we discuss a new method to utilize 
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ambient noise within the context of a large-scale array such as the EarthScope USArray 

Transportable Array (Figure 1), temporary deployments of large numbers of 

seismometers such as PASSCAL and USArray Flexible Array experiments, and 

international analogs of the US efforts (e.g., the Virtual European Broadband Seismic 

Network, the rapidly growing seismic infrastructure in China sometimes referred to as 

ChinArray, and so on). Such extensive seismic arrays increasingly are becoming the 

preferred means to image high resolution earth structures, and new methods are needed to 

exploit their capabilities. 

The ambient noise array methods that are discussed here still are based on the 

computation of EGFs between every pair of stations in the array and the measurement of 

inter-station phase travel times as a function of period (e.g., Bensen et al., 2007). Time 

domain (e.g., Bensen et al., 2007) and spatial autocorrelation (e.g., Ekstrom et al., 2009) 

methods yield similar travel time estimates (Tsai and Moschetti, 2010). However, for 

each target station, the set of EGFs to all other stations is used to compute the travel time 

field of the surface wavefield across a map encompassing the array. In this case, the 

eikonal equation (e.g., Shearer, 2009) can be used to estimate the wave slowness and 

apparent direction for every location on the map. At each location and frequency, 

measurements from different target stations can be combined to estimate the azimuthal 

dependence of the wave speed, which allows an estimate of isotropic and azimuthally 

anisotropic  structures and rigorous uncertainties. We refer to this procedure as “eikonal 

tomography” (Lin et al., 2009) because of its basis in the eikonal equation. Eikonal 

tomography is described in section 2, as are results of its application to data from the 

EarthScope USarray across the western US. Examples of 3D Vs model results across the 

western US determined from ambient noise are contained in section 3. 

There are several advantages of eikonal tomography compared with traditional 

tomographic methods (e.g., Barmin et al., 2001). Eikonal tomography accounts for ray 

bending but is not iterative, naturally generates uncertainties at each location in the 

tomographic maps, provides a direct (potentially visual) means to evaluate the azimuthal 

dependence of wave speeds, applies no ad hoc regularization because no inversion is 

performed, and is computationally very fast. There are approximations, however. The 
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method is based on 2D wave propagation stemming from its background in the 2D wave 

equation, goes on to discard a term from the equation that accounts for wavefront healing 

and other finite frequency effects, and the method is essentially ray theoretic.   We 

present evidence in section 4 that discarding this term to derive the eikonal equation is 

justified at the periods where ambient noise tomography is typically performed (< 40 

sec). We go on to show in section 5 that ambient noise measured across a large-scale 

array can be used to derive empirical finite frequency kernels that, in principle, can be 

applied tomographically. The theoretical background for many of the results presented 

here is described in greater detail by Lin et al. (2009), Lin and Ritzwoller (2010a,b), and 

Lin et al. (2010). 

2. Eikonal Tomography  

Shearer (2009) shows that from the 2D scalar wave equation, the modulus of the gradient 

of the wave travel time  is 

                                                                                                          (1) 

where  is position dependent wave amplitude,  is wave frequency, and c is wave 

phase speed. At high frequencies, thus in the ray theoretic limit, the second term on the 

right side of equation (1) can be ignored, the local direction of ray propagation can be 

identified with the direction of the gradient term, and the eikonal equation can be written 

in vector form as 

                                                                                                                          (2) 

where  is the unit vector in the direction of ray propagation. Lin et al. (2009) and others 

(e.g., Langston and Liang, 2008) show how equation (2) can be used tomographically. 

Justification for and the consequences of dropping the second term on the right in 

equation (1) are discussed in section 4. 
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The eikonal tomography method is based on computing the gradient of the observed 

travel time surfaces, , across a seismic array and is similar in many respects to other 

methods that track wavefronts (e.g. Langston and Liang, 2008; Pollitz, 2008). In so 

doing, estimates of the local wave slowness (1/c) and the direction of ray propagation 

emerge immediately from equation (2). An example for the 24 sec Rayleigh wave phase 

travel time surface across the western US centered on target station (USArray, 

Transportable Array) Q16A is shown in Figure 2.  The local apparent phase speed (or 

“dynamic phase speed” after Wielandt, 1993) and ray direction inferred from the gradient 

of this travel time map is presented in Figure 3. Similar maps of phase speed and 

direction are derived from every other station in the array, which allows for the 

construction at each point across the map of plots of wave speed versus azimuth of 

propagation. The mean and the standard deviation of the mean of all phase speed 

measurements are used to estimate local isotropic phase speed c0 and its uncertainty. To 

estimate azimuthal anisotropy for each location, all measurements from the nine nearby 

grid nodes with 0.6° separation (3×3 grid with target point at the centre) are combined to 

estimate the azimuthal variation of the phase speeds. This is shown for two locations in 

Figure 4 in which measured speeds are averaged in each 20° azimuthal bin and plotted as 

1σ (standard deviation) error bars. These error bars derive from the scatter in the 

measurements across nine adjacent grid nodes and provide a rigorous estimate of the 

random component of uncertainty in the phase speed as a function of azimuthal angle ψ. 

Based on theoretical expectations for a weakly anisotropic medium (Smith and Dahlen, 

1973) and the observation of 180° periodicity in the azimuthally dependent phase speed 

measurements (e.g. Figure 4), we fit, as a function of position and frequency, the 

following functional form to the observed variation of wave speed with azimuth 

c(ψ ) = c0
' + Acos[2(ψ −ϕ )]                 (3)                          

where c0' is the isotropic wave speed and A and φ are the amplitude and fast direction of 

the 2ψ anisotropy where the angle ψ is measured positive clockwise from north. Thus, at 

each point on the map (at each frequency) the quantities c0', A, and φ are estimated 

together with their uncertainties. Note that c0' and c0  may differ slightly due to the nine 

point averaging where c0' provides a lower uncertainty but also lower resolution estimate.  
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When measurements of phase slowness and propagation direction are taken 

simultaneously from all of the stations across USArray, much more stable results emerge 

than those that appear in Figure 3a. For example, the 24 sec Rayleigh wave isotropic 

phase speed map (c0) is shown in Figure 5a and the amplitudes (A) and fast directions (φ) 

of the 2ψ component of anisotropy are shown in Figure 5b.  Figure 5a and Figure 3a 

should be contrasted. No explicit smoothing or damping has been applied in constructing 

Figure 5b. The greater smoothness of Figure 5b compared with Figure 3a results from 

averaging all the measurements at each point (from different central stations) over 

azimuth. Spatial variations of the azimuthal anisotropy are also smooth and amplitudes 

typically rise only to several percent. Examples of uncertainties in the variables (c0, A, 

and φ) are shown in map form for the 24 sec Rayleigh wave in Figure 6. All of these 

matters are described in greater detail by Lin et al. (2009). 

3. Inversion for Isotropic and Azimuthally Anisotropic 3D Vs Models 

Isotropic and azimuthally anisotropy dispersion maps and uncertainties, such as those 

shown in Figures 5 and 6, provide data to infer a 3D model of shear wave speeds within 

the earth.  The vertical resolution and depth extent of the model will depend on the 

frequency band of the measurements. Ambient noise tomography typically produces 

maps down to periods of 6-8 sec, which means that structures in the shallow crust (top 5-

10 km) can be resolved.  Ambient noise tomography, however, rarely extends to periods 

above 30-40 sec at regional scales. The variation of the azimuthally dependent phase 

speed measurements increases dramatically at the longer periods. Thus, ambient noise 

alone constrains structures only to depths of 50-80 km. Deeper structures must be 

constrained with dispersion information from earthquakes as shown, for example, by 

Yang et al. (2008b), Moschetti et al. (2010a,b), and Lin et al. (2010).  

 Examples of Rayleigh wave phase speed maps from ambient noise at periods of 10 sec 

and 30 sec are shown in Figure 7. Some of the features revealed by these maps have been 

observed before and were discussed previously by Lin et al. (2008), Moschetti et al. 

(2010a,b), and Lin et al. (2010). But the maps in Figure 7 extend east of the Rocky 

Mountains, which now revieals new information about the transition from the tectonically 
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deformed western US to the stable mid-continent region. Comparison with similar maps 

constructed using teleseismic earthquakes, such as those shown in Figure 7c,f, has played 

an important role in justifying belief in the reliability of these maps, both for isotropic 

(e.g., Yang et al., 2008c) and azimuthally anisotropic variables. The 30 sec period 

isotropic Rayleigh wave speeds in Figures 7b (ambient noise) and 7c (earthquakes) differ 

on average by less than 0.1%, where the earthquake derived map is slightly faster, but the 

difference diminishes systematically as the number of earthquakes increases. The rms 

difference between these two isotropic maps is about 1%. The rms difference between the 

fast directions of azimuthal anisotropy determined from ambient noise and earthquakes 

for the 30 sec map is about 25° and the standard deviation of differences in the amplitude 

of anisotropy is about 0.6%. 

At 10 sec period, several sedimentary basins clearly appear east of the Rocky Mountains: 

the Permian basin in west Texas, the Anadarko basin east of the Texas Panhandle, the 

Denver basin in eastern Colorado, the Powder River basin in Eastern Wyoming, and the 

Williston basin in western North Dakota. Although it is on average faster than the 

western US, the maps display significant variability in the Great Plains even at 30 sec 

period. Most of this variability at 30 sec period is due to variations in crustal structure 

and thickness, which heretofore has been poorly understood. Love wave maps also have 

been constructed (e.g., Lin et al., 2008; Moschetti et al., 2010a), but are not shown here.  

Both linearized (e.g., Yang et al. 2008a,b) and Monte-Carlo (e.g., Shapiro and Ritzwoller, 

2002; Moschetti et al., 2010a,b; Lin et al., 2010) methods to invert local Rayleigh and 

Love wave dispersion curves for a 3D Vs model are now well established. Example local 

dispersion curves for a point in northern Nevada are presented in Figure 8. These include 

the anisotropic dispersion curves (Fig. 8b, 8c) discussed by Lin et al. (2010). In these 

curves, below 25 sec period ambient noise measurements are used alone, between 25 sec 

and 45 sec period ambient noise and earthquake measurements are averaged, and above 

45 sec period earthquake measurements are used alone. At this location and many others 

across the western US, measurements of Rayleigh wave anisotropic amplitude and fast 

direction differ between short and long periods. This indicates that anisotropy differs 

between the crust and uppermost mantle, but these curves can be fit by a model in which 
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crustal and uppermost mantle anisotropy are simple but distinct. Examples of crustal and 

uppermost mantle isotropic Vs wave speeds and azimuthal anisotropy are shown in 

Figure 9, which is discussed in detail by Lin et al. (2010). Uncertainty estimates in these 

model parameters derive from the Monte-Carlo inversion. 

4. The Effect of Approximations 

The derivation of the eikonal equation, equation (2), involves discarding the Laplacian 

term . This may be justified by considering it to be a ray theoretic (high 

frequency) approximation, but may also be valid if the amplitude field would be 

sufficiently smooth; for example, if the length scale of the tomography is sufficiently 

large or isotropic structures are sufficiently smooth in the region. Thus, for global scale 

applications, rejection of this term may be justified. But, in ambient noise tomography, 

spatial length-scales are typically regional or local, not global. (This is also increasingly 

true in earthquake studies; e.g., Yang and Forsyth, 2006; Pollitz, 2008; Yang et al., 

2008b). For this reason, in ambient noise tomography the validity of the rejection of the 

Laplacian term will dependent on the local smoothness of the medium and also will be 

frequency dependent. 

To determine the relative size of the Laplacian term compared with the first (gradient) 

term on the right in equation (1), it would be best to compute it from amplitude 

observations just as the gradient term is computed from travel time observations. This is 

not so simple, however. In processing ambient noise (e.g., Bensen et al., 2007), 

amplitudes are typically normalized in the time domain by a running mean or one-bit 

normalization and spectra are commonly whitened. Thus, strictly speaking, amplitude 

information is lost. In addition, the amplitude of the ambient noise wavefield is neither 

isotropic nor stationary, but depends on excitation that varies with azimuth and season. 

Although, in principle, processing artifacts can be overcome or circumvented, doing so is 

beyond the scope of this paper.  

The rejection of the Laplacian term, however, has an effect on apparent phase (or travel 

time) information that can be discerned in the observed azimuthal distribution of apparent 

phase speeds. Lin and Ritzwoller (2010b) discuss this in detail and show that discarding 
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this term introduces an apparent 1ψ bias in the azimuthal distribution of phase speeds in 

regions with strong lateral structural gradients. Their discussion is for earthquake waves, 

but the physical significance of the Laplacian term is the same for ambient noise 

wavefields. Thus, observation of a 1ψ term in the azimuthal distribution of phase speeds 

is evidence that the Laplacian term may be important for the fidelity of both the isotropic 

and anisotropic components of local phase velocity. Conversely, lack of observation of a 

1ψ component is evidence that the Laplacian term and, thus, isotropic bias of inferred 

anisotropy is small and the use of the eikonal equation is justified. 

Lin and Ritzwoller (2010b) discuss the physical cause of the 1ψ term, which we 

summarize briefly here. A wavefront that impinges upon a low velocity anomaly, for 

example, is indented during its propagation through the anomaly. After emerging from 

the anomaly, the wavefront heals according to Huygens’ principle, a phenomenon that 

has been discussed previously by numerous researchers for regional scale surface wave 

tomography with earthquakes (e.g., Wielandt, 1993; Friederich and Wielandt, 1995; 

Yang and Forsyth, 2006; Bodin and Maupin, 2008; Pollitz, 2008). During healing, the 

apparent speed of the wave in the neighborhood of the indentation is raised relative to the 

physical speed of the medium of transport. This apparent increase in speed occurs where 

the wave emerges from the anomaly and the fast direction is in the direction of 

emergence. It does not appear where waves enter the anomaly. Thus, near the edge of a 

structural contrast, waves traveling in the opposite direction would have a different 

apparent phase speed and the azimuthal distribution of the apparent phase speed will be 

dominated by the 1ψ component. The details of the effect will depend on the shape of the 

anomaly, so smaller bias terms may also exist for the 0ψ, 2ψ, 3ψ, etc. components of 

local phase speed.  To diagnose the presence of a 1ψ term, we modify equation (4) to 

include the term A1− psi cos[ψ −α ] , where α is the fast direction and A1− psi is the 

amplitude of the 1ψ component. 

Figure 10 presents examples of the apparent distribution of phase speed as a function of 

azimuth for periods of 10 sec, 30 sec, and 60 sec at a point in northern Utah based on 

eikonal tomography with ambient noise measurements. At 10 sec and 30 sec period, only 

the 2ψ component is strong. However, at 60 sec period, in addition to larger error bars 
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due to the stronger scatter caused by lower signal-to-noise ratio at longer periods for 

ambient noise, the 1ψ component is dominant and is much stronger than the 2ψ 

component at any period. While lower signal-to-noise ratios at longer periods can prevent 

the extraction of meaningful 2ψ azimuthal anisotropy information, the existence of strong 

1ψ signals is evidence for systematic bias in estimates of both isotropic and anisotropic 

variables. The size of the observed 1ψ component across the center of our study region, 

where we have measurements from all azimuths and isotropic structures are particularly 

complex, is shown in Figure 11 at several periods.  The amplitude of this component is 

small at 10 sec and 30 sec period even though isotropic anomalies are strong. At 60 sec 

period, however, the 1ψ component has a large amplitude surrounding many of the 

prominent isotropic velocity anomalies (Fig. 11c,f). Around low velocity anomalies, such 

as the Snake River Plain anomaly seen in the 60 sec map in Figure 11c, the fast directions 

of the 1ψ component point radially outward from the isotropic anomaly.  Around high 

velocity anomalies, such as that in Wyoming (Fig. 11c), the fast directions of the 1ψ 

component point radially inward toward the isotropic anomaly. This provides the 

diagnosis that the 1ψ signal arises from wavefront healing. 

The observation of a gradual increase of the 1ψ component of Rayleigh wave phase 

velocities at periods above about 40 sec is evidence for systematic bias in estimates of 

isotropic and anisotropic structures. Thus, above 50 sec period, ignoring the Laplacian 

term in eikonal tomography is invalid in regions with strong lateral gradients in the 

isotropic wave speeds. Below 40 sec period, which is the focus of most ambient noise 

studies, the 1ψ term is largely negligible, even where structural gradients are 

exceptionally strong. The introduction of measurements obtained from earthquakes (e.g., 

Lin et al., 2010) helps to reduce uncertainties in the directionally dependent phase speed 

measurements and improves the azimuthal coverage particularly near the periphery of the 

map. It does not mitigate the wavefront healing effect at period above 50 sec, however 

(Lin and Ritzwoller, 2010b). It is possible and considerably easier to retain the Laplacian 

term in equation (1) for earthquake measurements, because of the loss of amplitude 

information in obtaining ambient noise measurements. Thus, in the context of regional 

scale structures such as those resolved in the western US, above 50 sec period the 
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Laplacian term in equation (1) should be retained to ensure the accuracy of the amplitude 

of isotropic structures and to minimize bias in the 2ψ component of azimuthal anisotropy. 

5. Empirical Sensitivity Kernels 

The wavefront healing that produces the spurious 1ψ signal in the azimuthal distribution 

of phase velocity is a finite frequency effect, meaning that it is a non-ray theoretic 

phenomenon that results from a wave’s sensitivity to structures away from the ray path. 

As discussed in section 4, it can bias the estimated amplitude of isotropic structures as 

well as estimates of both the direction and amplitude of the 2ψ component of azimuthal 

anisotropy. One way to reduce this bias within eikonal tomography would be to retain the 

Laplacian term on the right side of equation (1). This is the approach taken by Lin and 

Ritzwoller (2010b) for earthquake waves, but it is complicated by the need to retain 

amplitude information in ambient noise data processing. Another approach would be to 

use finite frequency kernels in the tomographic inversion. Although the application of 

finite frequency kernels within eikonal tomography is not entirely clear, it is 

straightforward within the context of traditional tomographic algorithms (e.g., Barmin et 

al., 2001; Ritzwoller et al. 2002) that may be applied to ambient noise dispersion 

measurements. Although it has been the subject of considerable debate whether analytical 

kernels derived from 1D earth models are better than ad-hoc kernels or even ray theory 

(e.g., Yoshizawa and Kennett, 2002; van der Hilst and de Hoop, 2005; Montelli et al., 

2006), theoretical and computational advances such as the adjoint method (e.g., Tromp et 

al., 2005) are now producing increasingly accurate sensitivity kernels from 2D and 3D 

models. The use of these numerical kernels in tomographic inversions has begun to 

appear (e.g., Peter et al., 2007, 2009; Tape et al., 2009). Nevertheless, the method 

remains computationally daunting, particularly for short period waves and when applied 

at very large scales, such as across the EarthScope USArray (Fig. 1) or other continental 

scale arrays. 

Lin and Ritzwoller (2010a) present a new approach to the construction of finite frequency 

sensitivity kernels. They show that by mapping the phase travel time observed across a 

large seismic array (e.g., Fig. 2) and utilizing the virtual source property of ambient noise 
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cross-correlation measurements, the adjoint method can be applied to construct empirical 

sensitivity kernels within the array without numerical simulations. Because all phase 

travel times are measured via surface waves propagating on the earth, the empirical 

kernels represent the sensitivity of surface waves in which the real earth acts as the 

reference model. Example empirical finite frequency phase velocity kernels for the 20 sec 

and 40 sec period Rayleigh waves are shown in Figure 12 and contrasted with analytical 

1D kernels. 

Significant discrepancies exist between the empirical kernels and analytical kernels 

derived with a 1D earth model in regions with large lateral wave speed variations. Lin 

and Ritzwoller (2010a) show that more accurate travel time predictions (to second-order 

in model perturbations) can be achieved in such regions by averaging the analytical and 

empirical kernels than using the analytical kernel alone (first-order in model 

perturbations). In principle, with the use of the empirical sensitivity kernels in a 

tomographic inversion, single-scattering (finite frequency effects such as wavefront 

healing) and multiple-scattering effects (off-great-circle propagation) can be accounted 

for simultaneously in a computationally efficient framework. 

6. Conclusions 

The development and growth of dense, large-scale seismic continental arrays, such as 

deployments that are now in place in China, Europe, and the US (e.g., EarthScope 

USarray), present unprecedented opportunities to map the substructure of continents at 

resolutions that seemed impossible before their deployment within the last half decade. 

To capitalize on the investments that these and similar arrays represent, new methods of 

seismic tomography need to be developed to wring from the arrays more information, 

more reliable information, and qualitative and quantitative assessments of the accuracy of 

the information. We present here a discussion of one such method, called eikonal 

tomography, which is designed to exploit information contained in surface waves that 

compose ambient noise. We argue that the eikonal tomography method extracts 

information from ambient noise at high resolution about isotropic wave speeds as well as 

azimuthal anisotropy at periods from less than 10 sec to about 40 sec. The information at 

the short period end of this band often provides unique constraints on crustal structure as 
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surface waves below 20 sec period are difficult to observe in many locations with 

earthquake sources and teleseismic body wave do not determine crustal structures well. 

In addition, eikonal tomography provides meaningful uncertainty estimates about all 

measured quantities.  

Perhaps the greatest challenge to face new methods designed to fully exploit the 

emerging continental arrays will be to mitigate the effects of complexities in the seismic 

wavefield on the inferred quantities. This is particularly true if relatively subtle influences 

on the wavefield, such as azimuthal anisotropy, are the intended inferred observable. In 

particular, wavepath bending or refraction, scattering and multipathing on the way to the 

array (for teleseismic earthquakes) which are often called non-planar wave effects, 

wavefield effects within the array (such as wavefront healing), and azimuthal variations 

in excitation of the wavefield all can affect the observed phase speed of the wavefield and 

introduce spurious or apparent effects unless they are accounted for explicitly in the data 

processing and inversion procedures.  

Eikonal tomography explicitly tracks wavefields and, therefore, accounts for wavepath 

bending that is particularly important near sharp structural contrasts and at short periods. 

But, it is a ray theoretic method and, therefore, does not model structural or wavefield 

effects away from the ray. However, by its very nature, the inter-station ambient noise 

wavefield, in contrast with earthquakes, is free from effects external to the array. 

Wavefield complexities such as wavefront healing potentially are important for ambient 

noise, however, and eikonal tomography, defined by equation (2) here, does not explicitly 

account for it. We present evidence that below 40 sec period imaging methods based on 

ambient noise can ignore wavefield complexities, such as wavefront healing. Above ~50 

sec period, however, they become increasingly important both for ambient niose and 

earthquake wavefields. In this case, eikonal tomography will need to be modified to 

include the second term in equation (1), which is based on the amplitude of the observed 

wavefield. This Laplacian term is deceptively simple, but it accounts for a wide array of 

wavefield effects, including wavefield complexities arising within the array (or outside 

the array for earthquake observations) as well as azimuthal variations in excitation. Its 

application, however, requires that amplitudes be well defined so that instruments must 
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be well calibrated and processing procedures cannot result in the degradation or loss of 

information about amplitudes. 

The retention of the Laplacian term in equation (1) with earthquake data is relatively 

straightforward and is discussed by Lin and Ritzwoller (2010b). Standard ambient noise 

data processing, however, typically loses amplitude information. Therefore, to apply 

eikonal tomography above ~50 sec period and retain the Laplacian term in equation (1) 

will require that these procedures be modified so that, at the very least, the effects of data 

selection and of various normalizations in the time and frequency domain are understood 

and can be effectively undone. This is an area of active research.  

Another approach to model non-ray theoretic effects is to employ empirical finite 

frequency sensitivity kernels. We discuss the construction of such kernels here and Lin 

and Ritzwoller (2010a) describes them in greater detail. 
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Figure Captions: 

 

Figure 1. There are 1021 EarthScope USArray Transportable Array and Permanent 

Array stations (black triangles) used in this study. Locations of geographical points for 

data results presented later in the paper are shown with stars, red contours denote tectonic 

regions, and the yellow rectangle outline the location of the results shown in Fig. 11. 

 

Figure 2. The 24 sec Rayleigh wave phase travel time surface computed from ambient 

noise empirical Green’s functions across the western US based on central station 

(USArray, Transportable Array) Q16A in Utah. Travel time lines are presented in 

increments of wave period. Map is truncated within two wavelengths of the station and 

where the travel times are not well determined. Station Q16A operated simultaneously 

with the 843 stations shown, but only for a short time near the western and eastern 

boundaries of the map. 

 

Figure 3. The local (a) phase speed and (b) ray direction inferred from the gradient of the 

24 sec period Rayleigh wave travel time map shown in Fig. 2 for central TA station 

Q16A.  In (b), the difference between the observed and radial directions is shown with 

the background color.  

 

Figure 4. Phase speeds as a function of azimuthal angle and averaged in each 20° bin for 

the 24 sec Rayleigh wave are plotted as 1σ (standard deviation) error bars for example 

points in (a) Nevada (242°E, 42°N) and (b) Arizona (250°E, 36°N), identified with stars 

in Fig. 1. The best-fitting 2ψ curve (eqn. (3)) is presented as the green line in each panel. 

Estimated values of’ co ' , A and φ are listed at upper left in each panel. The 2ψ 

component of anisotropy is clear in both panels. 
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Figure 5. (a) The 24 sec Rayleigh wave isotropic phase speed map taken from ambient 

noise by averaging all local phase speed measurements at each point on the map. (b) The 

amplitudes and fast directions of the 2ψ component of the 24 sec Rayleigh wave phase 

velocities. The amplitude of anisotropy is identified with the length of the bars, which 

point in the fast axis direction, and is color-coded in the background. At 24 sec period, 

Rayleigh wave anisotropy reflects conditions in a mixture of the crust and uppermost 

mantle. 

 

Figure 6. Uncertainties in (a) the isotropic Rayleigh wave phase speed in m/s, (b) the 2ψ 

fast axis direction in degrees, and (c) the amplitude of the 2ψ component of anisotropy 

(in m/s) for the 24 sec Rayleigh wave.  Uncertainties are estimated at each point based on 

the scatter of measurements over azimuth and by fitting equation (3) to results such as 

those shown in Fig. 4. 

 

Figure 7. (a) & (b) Isotropic maps of the 10 sec and 30 sec period Rayleigh wave phase 

speed observed via eikonal tomography applied to ambient noise by averaging all 

measurements at each location, similar to Fig. 5a. (d) & (e) Azimuthal anisotropy from 

ambient noise also at 10 sec and 30 sec period, similar to Fig. 5b. (c) &( f) Maps of the 

isotropic Rayleigh wave speed and azimuthal anisotropy at 30 sec period observed from 

teleseismic earthquakes via eikonal tomography (Lin and Ritzwoller, 2010b), presented 

for comparison with (b) and (e). 

 

Figure 8. Isotropic and azimuthally anisotropic dispersion curves in northern Nevada, 

shown with a star in Fig. 1. Only ambient noise measurements are used at periods below 

25 sec, ambient noise and earthquake measurements are averaged between 25 sec and 45 

sec period, and only earthquake measurements are used above 45 sec period. Phase 

velocity is presented in km/s, anisotropy amplitude in percent, and the fast direction of 



  24 

anisotropy in degrees east of north. Measurement uncertainties are presented with 1 

standard deviation error bars. Additional scaling as described in Lin et al. (2010) is 

applied on the uncertainties of anisotropy measurements based on the misfit to the data 

by eqn. (3). The best-fitting curves based on the isotropic and anisotropic inversions are 

presented as the green line in each panel. 

 

Figure 9. 3D model results: (a) Isotropic Vs velocity in the crust, (b) isotropic Vs 

velocity in the uppermost mantle,  (c) azimuthal anisotropy in the middle to lower crust, 

and (d) anisotropy in the uppermost mantle. Results are taken from the model of Lin et al. 

(2010). 

 

Figure 10. Rayleigh wave phase speeds determined from ambient noise as a function of 

azimuthal angle and averaged in each 20° azimuthal bin are plotted as 1σ (standard 

deviation) error bars at periods of 10 sec, 30 sec, and 60 sec for the point in northern Utah 

shown with a star in Fig. 1.  The green dashed line is the best fitting 1ψ and 2ψ curve. 

The 1ψ component is small at periods below ~40 sec, but dominates the azimuthal 

dependence of phase velocities at 60 sec period. The 1ψ component is spurious, resulting 

from the apparent phase velocity increase or decrease caused by wavefront healing. 

 

Figure 11. (a)-(c) Maps of isotropic Rayleigh wave speeds at 10 sec, 30 sec, and 60 sec 

period (presented in km/s) determined from ambient noise where the orientation of the 

1ψ component of Rayleigh phase speed is over-plotted with an arrow pointing in the fast-

direction. Arrows are plotted only if the peak-to-peak amplitude of the 1ψ component is 

at least 2%. At 60 sec, arrows point away from slow isotropic anomalies and toward fast 

anomalies. (d)-(f) Amplitude of the 1ψ component of phase speed, presented in percent. 

Strong amplitudes surround the principal isotropic anomalies at 60 sec period. 

 



  25 

Figure 12. (a) The 20 sec period Rayleigh wave empirical finite frequency kernel for the 

USArray station pair L04A-GSC. The A-B dashed line indicates the mid-distance cross 

section shown in (c). (b) Same as (a), but the analytical kernel is shown. (c) The mid-

distance cross section of the sensitivity kernels shown in (a) and (b). (d)-(f) Same as (a)-

(c), but for the 40 sec period Rayleigh wave. 
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