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Abstract

A new three-dimensional seismic model and relocated regional seismicity3

are used to illuminate the great Sumatra-Andaman Islands earthquake of De-4

cember 26, 2004. The earthquake initiated where the incoming Indian Plate5

lithosphere is warmest and the dip of the Wadati-Benioff zone is least steep6

along the subduction zone extending from the Andaman Trench to the Java7

Trench. Anomalously high temperatures are observed in the supra-slab man-8

tle wedge in the Andaman back-arc. The subducting slab is observed along9

the entire plate boundary to a depth of at least 200 km. These factors con-10

tribute to the location of the initiation of rupture, the strength of seismic11

coupling, the differential rupture speed between the northern and southern12

segments of the earthquake, and the cause of convergence in the Andaman13

segment.14
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1. Introduction

The 26 December 2004 SumatraAndaman earthquake was the third largest instrumentally15

observed seismic event , with a moment-magnitude of about M = 9.3 [e.g., Stein and Okal ,16

2005, 2007]. This earthquake produced an unprecedented amount of high-quality geophys-17

ical data whose analysis provides insight into the generation of the tsunami, the origin of18

similar earthquakes, and regional tectonics. Numerous studies [e.g., Ammon et al., 2005;19

Banerjee et al., 2005; deGroot-Hedlin, 2005; Guilbert et al., 2005; Ishii et al., 2005; Lay20

et al., 2005; Ni et al., 2005; Park et al., 2005; Tolstoy and Bohnenstiehl , 2005; Tsai et21

al., 2005; Vigny et al., 2005; Stein and Okal , 2007] have demonstrated that the Sumatra22

earthquake ruptured an area greater than 18000 km2 along a 1300 km boundary between23

the Indian Plate and the Burma Microplate (often considered to be part of the greater24

Eurasian Plate). The earthquake rupture proceeded along two distinct segments with dif-25

ferent rupture speeds [e.g., Bilham, 2005]. The southern (Sumatran) segment where the26

rupture originated is characterized by normal rupture speeds and generated most of high-27

frequency seismic radiation. The northern (Andaman-Nicobar) segment of the rupture,28

in contrast, released about two-thirds of the total seismic moment [Stein and Okal , 2005]29

and had an unusually slow rupture speed. Another peculiar observation is that, while all30

previous large (M > 9) earthquakes have occurred in regions where subduction is largely31

perpendicular to the trench, the present-day plate models and tectonic reconstructions32

indicate that the nearly oblique incidence of the Indian and Burma plates (Fig. 1A) has33

occurred west of the Andaman Sea for at least 20 million years [e.g., Lee and Lawver ,34

1995; Hall , 1996; Replumaz et al., 2004]. Finally, the Sumatra earthquake has provided a35
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wealth of new information to investigate the conditions needed for a subduction zone to36

generate a giant tsunamigenic earthquake.37

The characteristics of this earthquake can be partially understood in terms of surface38

observables that have revealed its unusual tectonic setting, including the age-variability39

of the incoming Indian Plate along its subducting edge (Fig. 1a), the existence of active40

spreading in the back-arc beneath the Andaman Sea [e.g., Ortiz and Bilham, 2003; Raju41

et al., 2004; Khan and Chakraborty , 2005], and anomalously strong strain partitioning42

[e.g., McCaffrey et al., 2000; Michel et al., 2001; Socquet et al., 2006] in which the oblique43

Sumatra-Andaman subduction is accommodated by strike-slip motion released along the44

transform Sumatra and Andaman faults that run nearly parallel to the trench. Better45

understanding of the earthquake and its consequences, e.g., post-seismic regional stress re-46

organisation [e.g., McCloskey et al., 2005; Nalbant et al., 2005] and relaxation, will come in47

part from improved models of the thermal and mechanical structure and depth variability48

of the subducting slab and the overriding plate. To address this issue we have relocated49

and reviewed modern and historical seismicity and produced a new shear velocity model50

of the uppermost mantle constructed using broadband seismic surface waves.51

2. Data and methods

To improve knowledge of historical seismicity, we relocated all instrumentally recorded52

earthquakes in the Andaman Islands region that are well constrained by teleseismic ob-53

servations using well established methods [e.g., Engdahl et al., 1998; Engdahl and Vil-54

lasenor , 2002] , giving special attention to focal depth. These earthquakes are complete55

and have been reviewed to magnitude 6.5 for the historical period (pre-1964) and 5.556
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for the modern period with a relative location accuracy of about 15 km. Reviewing en-57

tails examining the internal consistency of the arrival time data, particularly the depth58

phases. Observed seismicity portrays the spatial distribution of interslab and intraslab59

(intermediate-depth) earthquakes in the region and the relationship of this seismicity to60

regional structures (Figs. 2A-C).61

Surface waves provide the most uniform coverage of the region of study and observa-62

tions of surface wave dispersion strongly constrain shear velocities which are related to63

temperatures in the uppermost mantle [e.g., Goes et al., 2000; Shapiro and Ritzwoller ,64

2004]. Using information about surface wave phase [e.g., Trampert and Woodhouse, 1995;65

Ekström et al., 1997] and group [e.g., Ritzwoller and Levshin, 1998; Ritzwoller et al., 2002]66

speed dispersion across the region at periods ranging from 15 sec to 150 sec, we estimated67

a three dimensional (3-D) tomographic model of shear-wave speed in the upper mantle on68

a 1◦ × 1◦ grid. The method involves surface-wave tomography based on finite-frequency69

sensitivity kernels [Ritzwoller et al., 2002] followed by a Monte-Carlo method [Shapiro and70

Ritzwoller , 2002, 2004] to estimate both shear velocity and temperature in the upper man-71

tle. Plotted here are images of the middle of the ensemble of acceptable models for each72

variable at each depth. The temperature parameterization [Shapiro and Ritzwoller , 2004;73

Ritzwoller et al., 2004] allows us to estimate the “apparent thermal age” of the oceanic74

lithosphere that is the age at which a conductively cooling half-space would match the75

observed lithospheric temperature structure.76
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3. Discussion

The relocated seismicity and the 3-D model of the seismic (Vs) and thermal structure77

of the upper mantle shed light on the location of the initiation of rupture in northern78

Sumatra (red star, Fig. 1A) and may also illuminate why rupture proceeds differently in79

the southern and northern segments of the fault. These issues are likely to be related to80

the age and the dip angle of the subducting oceanic plate and to the properties of the81

supra-slab mantle wedge which may influence seismic coupling along the subduction zone.82

Prior to about 40 Ma, India and Australia occupied different plates separated by a83

spreading center called the Wharton Ridge [e.g., Weis and Frey , 1996; Deplus et al., 1998;84

Hébert et al., 1999]. After ∼40 Ma, Australia rifted from Antarctica, seafloor spreading85

along the Wharton Ridge ceased, and India and Australia began to move in unison as part86

of the Australian-Indian Plate. This complex history is apparent in the variation of litho-87

spheric age along the Andaman, Sunda, and Java Trenches (Fig. 1A), with the youngest88

oceanic lithosphere (Wharton Fossil Spreading Ridge) of about 40 Ma currently being sub-89

ducted beneath northern Sumatra [Mueller et al., 1997]. Significantly older lithosphere90

is subducting at both the Andaman and Java trenches. The seismically inferred thermal91

structure of the incoming Indian Plate represents the plate’s tectonic history (Fig. 1B).92

The young apparent thermal age approximately follows the Wharton Fossil Ridge with the93

warmest lithosphere lying somewhat to its north. The offset of the apparently youngest94

(and hence warmest) lithosphere from the Wharton Ridge may be explained by the influ-95

ence of the Kerguelen plume [Weis and Frey , 1996] that caused the delayed thickening of96

the oceanic lithosphere under the Ninetyeast Ridge. The oceanic lithosphere approaching97
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northern Sumatra (Fig. 2B, profile B-B’) is also observed to be thinner than oceanic98

lithosphere approaching the Andaman and Java Trenches (Fig. 2A,C), and thinner upon99

subduction as well.100

The location of the thermally warmest and thinnest incoming lithosphere is at the101

Sunda Trench, therefore, which nearly coincides with the initiation of rupture of the Great102

Sumatra-Andaman Islands earthquake and with its southern ”fast” rupture segment. This103

is probably no coincidence, because the warmer subducting lithosphere near the Wharton104

Fossil Ridge is more buoyant and the slab dips less steeply (Fig. 2B). The coupling to the105

overlying plate, therefore, may be stronger than beneath the Andaman and Java trenches.106

Stronger coupling is also indicated by GPS data in this region [e.g., Vigny et al., 2005].107

In addition, the Benioff-Wadati zone in northern Sumatra is less steep than in adjacent108

areas to the north and south (30◦ compared with 50◦ and 40◦ to the north and south,109

respectively), consistent with the thermal state of the incoming lithosphere.110

In the northern, subducting Andaman segment, characterized by “slow” rupture prop-111

agation, much older and less buoyant oceanic lithosphere is subducted at the Andaman112

trench. The seismic velocities in the back-arc are very slow in this region. This implies113

that the upper mantle beneath the Andaman Sea is warm, consistent with its interpreta-114

tion as an extensional basin created by rifting over the past 11 Ma caused by the relative115

motion of various lithospheric blocks in response to the collision between India and Asia116

[e.g., Tapponnier et al., 1982; Raju et al., 2004; Khan and Chakraborty , 2005]. This com-117

bination of the less buoyant subducting plate and the weak (or rather absent) back-arc118

lithosphere may result in weaker seismic coupling within the Andaman segment than119
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within the more southerly Sunda segment. This may, therefore, contribute to the differ-120

ences in rupture speed and seismic radiation between these two segments of the Great121

Sumatra earthquake.122

Improved knowledge of seismicity and the thermal structure of the upper mantle also123

illuminates why a great earthquake occurred at a highly oblique plate boundary. Subduct-124

ing lithosphere is clearly imaged by surface waves along the entire plate boundary, from125

the Andaman Trench to the Java trench (Figs. 2A-C, 3) down to at least 200 km depth126

with well defined Wadati-Benioff zones. This confirms the results from previous regional127

and global P-wave tomographic models [e.g., Replumaz et al., 2004; Widiyantoro and Van128

der Hilst , 1996; Hafkenscheid et al., 2001] and of a more recent study by Kennett and129

Gummins [2005] showing the trace of subducted oceanic lithosphere at greater depths.130

Centroid-moment-tensor solutions show that thrust earthquakes are common along the131

Nicobar-Andaman segment of the subduction zone with nearly east-west compression [e.g.,132

Rajendran and Gupta, 1989]. Large historical (M > 8) thrust earthquakes have occurred133

[e.g., Ortiz and Bilham, 2003] along this segment and GPS data indicate non-negligible134

east-west convergence [Paul et al., 2001]. Convergence must, therefore, be occurring and135

has occurred well into the past along the entire plate boundary, even beneath the most136

oblique Nicobar-Andaman segment of the plate boundary. This is in striking contrast with137

the purely transform motion observed in other very oblique segments of subduction zones.138

An example is the Western Aleutians [Levin et al., 2005] where a slab window is observed139

beneath the trench along the highly oblique segment of the plate boundary which is devoid140
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of both subducting lithosphere and deep seismicity. We speculate that convergence may141

be enhanced by the weak Andaman lithosphere responding to slab roll-back.142
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Figure 1. (A) Reference map showing the locations of the principal geographical and geological

features discussed in the text. The red star marks the location of the initiation of rupture of

the great Sumatra-Andaman earthquake. Brown lines show active and fossil plate boundaries.

Arrows show the relative plate motion [DeMets et al., 1994]. The age of the incoming oceanic

plate [Mueller et al., 1997] is shown with colors in millions of years. The black rectangular

box indicates the region shown in Fig. 3. (B) Distribution of the apparent thermal age which

results from the seismic inversion using the thermal parameterization [Shapiro and Ritzwoller ,

2004; Ritzwoller et al., 2004]. It is defined as the lithospheric age at which apurely conductive

temperature profile would most closely resemble the observed thermal structure.

Figure 2. Results of the inversion using the seismic parameterization [Shapiro and Ritzwoller ,

2002]. (A-C) Vertical cross-sections throughthe shear velocity model. Colors indicate anomalies

in S-wave velocity relative to a regional one-dimensional profile. The locationof the trench and

the Sumatra and the Andaman Faults are shown with small arrows on top of the cross- sections.

Hypocentres of relocated earthquakes within 100 km of the profile plane are shown by circles.

Larger white circles indicate hypocenters that were both relocated and reviewed. Dashed lines

show the deduced orientation of the Wadati-Benioff zones. (D) and (E) Horizontal cross-sections

through the shear velocity model at 50 km and 100 km depths, respectively.
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Figure 3. Isosurface representation of the shear velocity model beneath part of northern

Sumatra and the Andaman Sea (identified with the black box in Fig. 1), in which the model

was laterally smoothed with a gaussian filter (σ = 100km) to highlight the dominant large-

scale features. The blue surface (+1.2%) represents the high seismic velocity oceanic lithosphere

subducting at the Sunda and the Andaman trenches. The gap in the blue surface corresponds to

the warmest oceanic lithosphere in vicinity of the Wharton Fossil Ridge and the Nintyeast Ridge.

The red surface (-1.%) reflects low seismic velocity material beneath the Andaman Sea. Vertically

exaggerated topography is shown with a colored isosurface on the top. The brown lines show the

active plate boundaries. Blue arrows show relative plate motion and yellow arrows indicate the

extension in the Andaman Basin.
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