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Abstract

Ambient noise tomography is a rapidly emering �eld of seismological research. This

paper presents the current status of ambient noise data processing as it has developed

over the past several years and is intended to explain and justify this development through

salient examples. The ambient noise data processing procedure divides into four principal

phases: (1) single station data preparation, (2) cross-correlation and temporal stacking, (3)

measurement of dispersion curves (performed with frequency-time analysis for both group and

phase speeds), and (4) quality control, including error analysis and selection of the acceptable

measurements. The procedures that are described herein have been designed not only to

deliver reliable measurements, but to be 
exible, applicable to a wide variety of observational

settings, and fully automated. For an automated data processing procedure, data quality

control measures are particularly important to identify and reject bad measurements and

compute quality assurance statistics for the accepted measurements. The principal metric

on which to base a judgment of quality is stability, the robustness of the measurement

to perturbations in the conditions under which it is obtained. Temporal repeatability, in

particular, is a signi�cant indicator of reliability and is elevated to a high position in our

assessment, as we equate seasonal repeatability with measurement uncertainty. Proxy curves

relating observed signal-to-noise ratios to average measurement uncertainties show promise

to provide meaningful expected mesaurement error estimates in the absence of the long time

series needed for temporal subsetting.



3

1. Introduction

Theoretical studies have shown that the cross-correlation of di�use wave�elds (e.g.,

ambient noise, scattered coda waves) can provide an estimate of the Green function between

the stations (e.g., Weaver and Lobkis, 2001a, 2001b, 2004; Derode et al., 2003; Snieder,

2004; Wapenaar, 2004; Larose et al., 2005). Seismic observations based on cross-correlations

between pairs of stations have con�rmed the theory for surface waves using both coda waves

(Campillo and Paul, 2003; Paul et al., 2005) and long ambient noise sequences (Shapiro and

Campillo, 2004; Sabra et al., 2005a) and for crustal body waves using ambient noise (Roux et

al., 2005). Oceanic applications are also feasible (Lin et al., 2006a). An example of a year-long

cross-correlation between a pair of Global Seismic Network (GSN) stations in the US �ltered

into several sub-bands is shown in Figure 1.

The �rst attempts to use ambient noise for surface wave tomography, called ambient noise

surface wave tomography, were applied to stations in Southern California (Shapiro et al., 2005;

Sabra et al., 2005b). These studies resulted in a group speed maps at short periods (7.5 - 15

sec) that displayed a striking correlation with the principal geological units in California with

low-speed anomalies corresponding to the major sedimentary basins and high-speed anomalies

corresponding to the igneous cores of the main mountain ranges.

Ambient noise tomography is now expanding rapidly. Recent applications have arisen

across all of California and the Paci�c Northwest (Moschetti et al., 2005), in South Korea

(Cho et al., 2006), in Tibet (Yao et al., 2006), in Europe (Yang et al., 2006), across New

Zealand (Lin et al., 2006b), as well as elsewhere in the world. Most of the studies, to date, like

the earlier work of Shapiro et al. (2005), have been performed in the microseism band below

20 sec period. Broad-band applications extending to considerably longer periods are now

emerging (e.g., Bensen et al., 2005; Yao et al., 2006; Yang et al., 2006) and the method is also

being applied to increasingly large areas such as Europe (Yang et al., 2006). In spite of these

developments, the data processing procedures that underlie ambient noise tomography remain

poorly documented, even as they have become increasingly re�ned. The purpose of this paper

is to summarize the state of data processing as it has developed since the �rst papers on the



4

use of ambient noise to obtain surface wave dispersion measurements (Shapiro and Campillo,

2004).

In its current state, ambient noise data processing procedure divides into four principal

phases that are applied roughly in order: (1) single station data preparation, (2) cross-

correlation and temporal stacking, (3) measurement of dispersion curves, and (4) quality

control, including error analysis and selection of the acceptable measurements. These steps

are presented schematically in Figure 2. After data processing is complete, tomography for

group or phase speed maps (e.g., Yang et al., 2006) and inversion for a Vs model (e.g., Cho et

al., 2006; Lin et al., 2006b) may follow, but discussion of these steps is beyond the scope of the

present paper. The procedures in this paper are exclusively applied to Rayleigh waves, but

Love wave studies have also begun to emerge (e.g., Cho et al., 2006).

In judging between candidate components of the data processing procedure, we have

assigned signi�cant weight to 
exibility and the applicability to a wide variety of observational

situations. The procedures described here, therefore, are designed to be applied over a broad

range of periods, inter-station distances, and geographical scales. Examples are shown in this

paper from regional to continental scales, from very short to long periods, and are drawn from

Europe, North America, and New Zealand. Applications are, however, taken exclusively from

continental or ocean island stations. Most are, in fact, taken from GSN stations within the US.

As discussed by Lin et al. (2006a), broad-band cross-correlations of ambient noise obtained at

ocean bottom or sub-bottom seismometers (OBS) are contaminated at long periods (above

�25 sec) by tilting under 
uid 
ow and sea
oor deformation under gravity waves. Crawford

et al. (2006) argues that these e�ects can be mitigated on the vertical component using

horizontal component data and a co-located di�erential sea
oor pressure gauge. The success

of this process will be needed for broad-band ambient noise measurements to be obtained from

OBS data. We are unaware of research that has tested this idea in the context of ambient

noise measurements, however.

Our principal purpose, therefore, is to summarize the status of the ambient noise data

processing procedure that we have developed over the past several years. The paper is intended

to explain, justify, and present salient examples of this development. It is also intended to act
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as a primer to help provide guidance and act as a basis for future e�orts in surface wave studies

based on ambient seismic noise. Each of the four following sections presents a discussion

of one phase of the data processing procedure, which ranges from processing data from a

single station (section 2), cross-correlating and stacking data from station-pairs (section 3),

measuring surface wave dispersion (section 4), and data quality control, particularly estimating

uncertainties and selecting reliable measurements (section 5).

2. Single station data preparation

The �rst phase of data processing consists of preparing waveform data from each station

individually. The purpose of this phase is to accentuate broad-band ambient noise by

attempting to remove earthquake signals and instrumental irregularities that tend to obscure

ambient noise. Obscuration by earthquakes is most severe above about 20 sec period, so this

step of the data processing is most important at periods longer than the microseism band (�5

to �17 sec period). In addition, because the spectral amplitude of ambient noise peaks in the

microseismic band, methods have to be devised to extract the longer period ambient noise from

seismic records. Figure 2 shows the steps that compose Phase 1 of data processing: removal

of the instrument response, de-meaning, de-trending, and band-pass �ltering the seismogram,

time-domain normalization, and spectral whitening. This procedure is typically applied to a

single day of data. Day data with less than 80% \on-time" are currently rejected, but this may

be modi�ed at the user's discretion. Some of the steps, such as the temporal normalization

and spectral whitening, impose non-linear modi�cations to the waveforms, so the order of

operations is signi�cant. Because this phase of data processing is applied to single stations,

rather than to station-pairs, it is much less time consuming and computationally intensive than

subsequent cross-correlation, stacking, and measurement phases that are discussed in later

sections of the paper. Our current applications involve from several dozen (e.g., 41 stations

across New Zealand) to several hundred (e.g., 110 stations across Europe, �250 stations across

North America) stations.
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2.1 Temporal normalization

The most important step in single-station data preparation is what we call \time-domain"

or \temporal normalization". Time-domain normalization is a procedure for reducing the

e�ect on the cross-correlations of earthquakes, instrumental irregularities, and non-stationary

noise sources near to stations. Earthquakes are among the most signi�cant impediments to

automated data processing. They occur irregularly and, although the approximate times and

locations of large earthquakes can be found in earthquake catalogs, small earthquakes over

much of the globe are missing from global catalogs. In addition, the time of arrival of surface

wave phases at short periods is not well known. Thus, removal of earthquake signals must be

data-adaptive, rather than prescribed from a catalog.

We have considered �ve di�erent methods to identify and remove earthquakes and other

contaminants automatically from seismic waveform data. An illustrative example is shown in

Figure 3. The �rst and most aggressive method is called \one-bit" normalization (Figure 3b),

which retains only the sign of the raw signal by replacing all positive amplitudes with a 1 and

all negative amplitudes with a -1. This method has been shown to increase signal-to-noise

ratio (SNR) when employed in acoustic experiments in the laboratory (Larose, et al. 2004)

and has been used in a number of early seismic studies of coda waves and ambient noise

(Campillo and Paul, 2003, Shapiro and Campillo 2004, Shapiro et al., 2005; Yao et al. 2006).

The second method, employed for example by Sabra et al. (2005a), involves the application

of a clipping threshold equal to the root-mean-square (rms) amplitude of the signal for the

given day. An example is shown in Figure 3c. The third method, illustrated by Figure 3d,

involves automated event detection and removal in which 30 minutes of the waveform are

set to zero if the amplitude of the waveform is above a critical threshold. This threshold is

arbitrary and its choice is made di�cult by varying amplitudes at di�erent stations. Fourth,

there is running-absolute-mean normalization, which is the method of time normalization that

we promote here. This method computes the running average of the absolute value of the

waveform in a normalization window of �xed length and weights the waveform at the center of

the window by the inverse of this average. That is, given a discrete time-series dj , we compute
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the normalization weight for time point n as:

wn =
1

2N + 1

n+NX
j=n�N

jdjj (1)

so that the normalized datum becomes ~dn = dn=wn. The width of the normalization window

(2N + 1) determines how much amplitude information is retained. A one-sample window

(N = 0) is equivalent to one-bit normalization, while a very long window will approach a

re-scaled original signal as N ! 1. After testing various time window widths, we �nd that

about half the maximum period of the pass-band �lter works well and that this length can

be varied considerably and still produce similar results. An example result of the application

of this method is shown in Figure 3e. This method is not without its faults, however. For

example, it does not surgically remove narrow data glitches, as it will inevitably down-weight

a broad time-interval around the glitch. One-bit normalization does not su�er from this

shortcoming. Finally, there is a method that we call iterative \water-level" normalization in

which any amplitude above a speci�ed multiple of the daily rms-amplitude is down-weighted.

The method is run repeatedly until the entire waveform is below the water-level, which is six

times the daily rms level in the example shown in Figure 3f. This method of time-domain

normalization is the most time-intensive of the candidates considered here.

Figure 4 presents examples of year-long cross-correlations, band-pass �ltered between

20 sec and 100 sec period, using each of these methods of time-domain normalization.

The raw data (Fig. 4a), the clipped waveform method (Fig. 4c), and the automated event

detection method (Fig. 4d) produce noisy cross-correlations in this period band. The

one-bit normalization (Fig. 4b), the running-absolute-mean normalization (Fig. 4e), and the

water-level normalization (Fig. 4f) methods produce relatively high signal-to-noise ratio

(SNR) waveforms displaying signals that arrive at nearly the same time. In this example, the

one-bit and the running-absolute-mean normalizations are nearly identical. A systematic test

has been performed using 15 GSN stations in North America using spectral SNR, de�ned

in section 3, at 20 sec period to compare the methods at �ve periods. The resulting SNR

values are similar for one-bit normalization and the running-absolute-mean normalization.

The water-level normalization method also allows meaningful results to be recovered.
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The running-absolute-mean method provides a small enhancement to SNR values above

one-bit normalization at all periods and a more signi�cant improvement over the water-level

normalization.

The principal reason we prefer running-absolute-mean normalization over the water-level

or one-bit normalization methods is its greater 
exibility and adaptability to the data.

For example, in areas with high regional seismicity it is desirable to tune the time-domain

normalization to the frequency content of the seismicity. Figure 5 shows that if the temporal

weights of the running-absolute-mean normalization are computed on the raw waveform data,

small earthquakes can get through the procedure because they exist in the raw waveform

near the background noise level. Earthquakes are revealed by a low-pass �lter both in the

raw waveform (Fig. 5b) and the temporally normalized waveform (Fig. 5d). Alternately,

the temporal weights of the running-absolute-mean normalization can be computed on the

waveform �ltered in the earthquake band (Fig. 5b). In this case, if dj is the raw seismogram

and d̂j is the seismogram band-pass �ltered in the earthquake band, we de�ne new temporal

weights calibrated to the regional seismicity

ŵn =
1

2N + 1

n+NX
j=n�N

jd̂jj: (2)

These weights are then applied to the raw data as before ( ~dn = dn=ŵn). This procedure

severely down-weights time-series during earthquakes (Fig. 5e), which more e�ectively removes

them from low-pass �ltered seismograms (Fig. 5f). Contamination by earthquakes of the

cross-correlations, therefore, should be ameliorated.

Earthquake signals that pass through the temporal normalization tend to appear on

cross-correlations as spurious precursory arrivals, such as the high amplitude arrivals appearing

between 0 - 100 sec in the 12-month cross-correlation shown in Figure 6a. De�ning the

temporal normalization weights in the earthquake band, however, reduces the amplitude of

the precursors, as Figure 6b illustrates. This process will be most important in regions with

signi�cant regional seismicity. The example shown in Figure 6 is from New Zealand where,

because of high levels of seismicity in the Fiji and Tonga-Kermadec regions, the process is

recommended strongly (Lin et al., 2006b).
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2.2 Spectral normalization or whitening

Ambient noise is not 
at in the frequency domain (i.e., is not spectrally white), but is

peaked near the primary (around 15 sec) and secondary (around 7.5 sec) microseisms and

rises at very long periods above 50 sec to form a signal now referred to as Earth \hum"

(e.g., Rhie and Romanowicz, 2004). Figure 7a presents an example of an amplitude spectrum

for a day long time series obtained after temporal normalization. Primary and secondary

microseisms as well as Earth hum signatures can be seen clearly on this record which was

band-pass �ltered between 7 sec and 150 sec period. In addition to these signals, there is a

smaller peak near 26 sec that is caused by a persistent narrow-band noise source in the Gulf of

Guinea (Shapiro et al., 2006). Without the temporal normalization, which reduces the e�ect

of earthquakes, the 26 sec resonance typically is not seen. Ambient niose is minimum in the

period range from about 30-70 sec. Inversely weighting the complex spectrum by a smoothed

version of the amplitude spectrum produces the normalized or whitened spectrum shown in

Figure 6b. Spectral normalization acts to broaden the band of the ambient noise signal in

cross-correlations and also combats degradation caused by persistent monochromatic sources

such as the Gulf of Guinea source.

First, regarding the problem of an isolated, persistent nearly monochromatic noise source,

the grey box in Figure 7a highlights the noise peak at 26 sec period as observed at the station

HRV on a northern summer day. As documented by Holcomb (1998), this signal is seasonal,

being much stronger in the northern summer than in the winter. Figure 8a shows a 12-month

cross-correlation between GSN stations ANMO and CCM in which spectral normalization has

not been applied. The 26 sec resonance appears with a broad envelope in the time domain

and corrupts the cross-correlation at positive correlation lag. Shapiro et al. (2006) used the

apparent arrival time of the 26 sec signal observed at stations in North America, Europe,

Africa, and Asia to locate the source in the Gulf of Guinea. The amplitude spectrum of this

cross-correlation displays the prominent peak at �26 sec period (�0.038 Hz) as seen in Figure

8b. In contrast, Figures 8c and 8d show the cross-correlation and its amplitude spectrum

where spectral normalization has been applied. The a�ect of the 26 sec resonance is greatly
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reduced. Shapiro et at. (2006) recommend eradicating this problem by applying a narrow

band reject �lter centered around 26 sec period. Figures 8e and 8f show the e�ect of this �lter.

The cross-correlation is largely unchanged. In many cases, therefore, the more gentle approach

of spectral whitening is su�cient to eliminate the 26 sec problem from the cross- correlations.

The band-reject �lter also creates problems for automated dispersion measurement in a later

stage of processing, so spectral whitening is preferable if it su�ces to ameliorate the e�ect of

the 26 sec microseism.

Second, spectral normalization seeks to reduce broad imbalances in single-station spectra

to aid in the production of a broad-band dispersion measurement. Figures 9a and 9b show

a one-month broad-band cross-correlation between stations CCM (Cathedral Cave, MO,

USA) and SSPA (Standing Stone, PA, USA) for spectrally whitened and un-whitened data

taken during the northern spring (when the 26 sec resonance is weak). Figures 9c and 9d

display the amplitude spectra of the un-whitened and whitened cross-correlations, respectively.

Without the whitening, Figure 9c shows that the resulting cross-correlation is dominated

by signals in the microseism band, predominantly from 15 to 17 sec and from 6 to 9 sec

period. Not surprisingly, spectral whitening produces a broader-band signal. In many

cases, the cross-correlation amplitude spectrum is shaped with the longer periods having

higher amplitudes than the shorter periods, as in Figure 9d. This is apparently because the

longer period ambient noise, although naturally lower in amplitude than microseismic noise,

propagates more coherently over long distances. Additional whitening of the cross-correlation

prior to dispersion measurement is an added option.

3. Cross-correlation, stacking, and signal emergence

After the preparation of the daily time-series described in section 2, the next step in

the data processing scheme (Phase 2) is cross-correlation and stacking. Although some

inter-station distances may be either too short or too long to obtain reliable measurements,

we perform cross-correlations between all possible station pairs and perform data selection

later. This yields a total of n(n � 1)=2 possible station pairs, where n is the number of
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stations. Obtaining tens of thousands of cross-correlations is common when ambient noise

data processing is performed over large spatial scales such as Europe (e.g., Yang et al., 2006)

or North America (e.g., Bensen et al., 2005).

Cross-correlation is performed daily in the frequency domain. After the daily cross-

correlations are returned to the time-domain they are added to one another, or \stacked", to

correspond to longer time series. Alternately, stacking can be done in the frequency domain

which would save the inverse transform. We prefer the organization that emerges from having

daily raw time-series and daily stacks that are then stacked further into weekly, monthly,

yearly, etc. time-series. In any event, the linearity of the cross-correlation procedure guarantees

that this method will produce the same result as cross-correlation applied to the longer time

series. The resulting cross-correlations are two-sided time functions with both positive and

negative time coordinates; i.e., both positive and negative correlation lags. We typically store

the correlations from -5000 to 5000 sec, but the length of the time series needed will depend

on the group speeds of the waves and the longest inter-station distance.

The positive lag part of the cross-correlation is sometimes called the \causal" signal and

the negative lag part the \acausal" signal. These waveforms represent waves traveling in

opposite directions between the stations. Several examples of cross-correlations have been

shown earlier in the paper. Figures 1, 4, 8, and 9 display some two-sided cross-correlations

for di�erent time-series lengths. Figure 1 clearly shows the broad-band content of ambient

noise. If sources of ambient noise are distributed homogeneously in azimuth, the causal

and acausal signals would be identical. However, considerable asymmetry in amplitude and

spectral content is typically observed, which indicates di�erences in both the source process

and distance to the source in the directions radially away from the stations. We often compress

the two-sided signal into a one-sided signal by averaging the causal and acausal parts. We call

this the \symmetric" signal or component. An example was shown in Figure 6.

Stacking over increasingly long time-series, on average, improves signal-to-noise ratio. An

example is shown in Figure 10, which displays cross-correlations of di�erent length time-series

observed at the stations ANMO and DWPF (Disney Wilderness Preserved, FL, USA). The

causal and acausal signals are seen to emerge as the time-series length increases in both of the
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period bands that are displayed in Figures 10a and 10b.

Measurements of the frequency dependence of the SNR are useful to quantify observations

of the emergence of the signals with increasing time-series length. We also use it as part of

data selection in Phase 4 of the data processing procedure. Figure 11 illustrates one way in

which the frequency dependence of SNR may be measured. From the 3-D model of Shapiro

and Ritzwoller (2002), we predict the maximum and minimum group arrival times (tmin; tmax)

expected for the path between the station-pair over the period band of interest (�min; �max).

We perform a series of narrow band-pass �lters centered on a discrete grid of frequencies and

measure the peak in the time domain in a signal window (tmin � �max; tmax + 2�max) shown

with solid vertical lines in Figure 11. We also measure the root-mean-square (rms) noise level

in a 500 sec noise window (vertical dashed lines) that trails the end of the signal window by

500 sec. This rms level is shown with dotted lines in Figure 11 in the noise window. The

resulting ratio of peak signal in the signal window to rms noise in the trailing noise window

on the grid of center frequencies is the \spectral" SNR measurement. Center frequencies and

SNR are identi�ed in each panel of Figure 11. Note that although we call this a spectral SNR

measurement, it is, in fact, a measurement of SNR in the time-domain. It is \spectral" only in

the sense that the measurements are a function of frequency.

This spectral SNR, which takes the ratio of signal to trailing noise, mostly is a measure

of the signal level, as the trailing noise does not strongly depend on signal-generated noise.

Alternately, one could de�ne the ratio of signal to leading noise, which is strongly dependent on

signal-generated noise, as discussed earlier. Although we do not use signal-to-precursory-noise

here, it has the advantage of quantifying precursory noise which interferes with dispersion

measurements more than trailing noise. Further research is needed to determine if it is a

better predictor of the quality of dispersion measurements than the spectral SNR that we use.

A spectral SNR curve for the 12-month cross-correlation between stations ANMO and

DWPF, shown in Figure 10a and 10b, is presented as the dashed line in Figure 10c. It is

contrasted with the average SNR over all GSN station pairs within the US. For this example,

spectral SNR, on average, peaks in the primary microseism band around 15 sec period,

minimizes near 40 sec period, and then is fairly 
at to much longer periods, although it rises
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slightly. The details of the curve, however, will vary geographically, with path length, and

season. Figure 10d shows how spectral SNR increases with time-series length. The shapes of

the SNR spectra also change subtly with time-series length.

In general, therefore, as time-series length increases so does SNR, so the longer the

time-series the better. The details of how the signal emerges from noise depends on frequency,

and also on the location and inter-station spacing. Figure 12 presents an example of how SNR

depends on time-series length computed for the 15 GSN stations in the US. The emergence

of the signal can be �t well with a power law, and Figure 12 shows the �t power law rather

than the raw data: SNR = At1=n, where A and n are period dependent. For the periods

shown in Figure 12, n varies from about 2.55 at 10 sec period to 2.88 at 25 sec. It attains

a maximum of about 3.4 at 50 sec and then diminishes again so that at 100 sec period n is

about equal to 2.66. Inspection of Figure 7, which is a typical daily amplitude spectrum for

temporally normalized data, reveals that n maximizes at intermediate periods between about

25 and 50 sec where ambient noise is generally weakest. In this period band, the emergence

of the signal is slowest. At shorter and longer periods, in the microseismic and \Earth-hum"

bands, n ranges from about 2.5 to 2.9, and the signal emerges at a faster rate than at the

intermediate periods. As discussed in section 6 below, the curves in Figure 12 are useful in

designing experiments based on ambient noise tomography. Further work, however, is needed

to understand the frequency dependence of the power law behavior of the emergence of the

signal from ambient noise, as well as its geographic variability.

4. Dispersion measurement

After the daily cross-correlations have been computed and stacked, the resulting waveform

is an estimated Green function. Using the estimated Green function, the group and phase

speeds as a function of period can be measured. This is Phase 3 of the data processing

procedure. As with Phases 1 and 2, because the number of inter-station pairs can be very

large, the dispersion measurement process needs to be automated. Several approaches are

possible for the group velocity measurements. A new method devised by Guy Masters (involves
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only minimal interaction by an analyst. A principal innovation of the method is making

measurements on clusters of waveforms that have similar properties, such as having emanated

from the same event, propagated along the same path or at similar epicentral distances. This

method may work well for the application to ambient noise cross-correlations, and deserves

future analysis. The method that we promote is based on traditional frequency-time analysis

(FTAN) (e.g., Dziewonski et al., 1969; Levshin et al., 1972; 1992;Herrin and Goforth, 1977;

Russell et al., 1988 Ritzwoller and Levshin, 1998; Levshin and Ritzwoller, 2001), which obtains

measurements on single waveforms and involves signi�cant analyst interaction. However,

the computational structure of FTAN allows automation and this is what we describe here.

Although FTAN has been applied dominantly to measure group speeds, phase speed curves

are also measured naturally in the process.

The discussion is facilitated by introducing a little notation. We roughly follow the

notation and terminology of Bracewell (1978) (pages 268-272), but if d(t) is the waveform

of interest its Fourier transform is de�ned with a positive exponent as
R1
�1 d(t) exp(i!t)dt.

Dispersion measurements are obtained by considering the \analytic signal" de�ned as

A(t) = d(t) + iH(t) = jA(t)j exp(i�(t)); (3)

where H(t) is the Hilbert transform of d(t). The analytic signal is constructed for a set of

narrow band-pass �ltered waveforms with center frequencies !0. We suppress the !0 notation

and assume consideration of the narrow-band �ltered waveform hereafter. The modulus of the

analytic signal, jA(t)j, is a smooth envelope function and �(t) is a smooth phase function. The

smoothness of the analytic signal is a principal reason for its use. Group speed is measured

using jA(t)j and phase speed using �(t). In considering the envelope and frequency at a

particular instant in time t, we follow Bracewell and use jA(t)j for the envelope function and

introduce a re�ned frequency, called the \instantaneous frequency", equal to the time rate of

change of the phase of the analytic signal at time t. We, therefore, replace the center frequency

of the narrow-band �lter, !0, with the instantaneous frequency, !: !0 ! ! = jd�(t)=dtj.

This correction is most signi�cant when the spectrum of the input waveform is not 
at, in

which case, due to spectral leakage, the central frequencies of the narrow-band �lters will not
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accurately represent the frequency content of the output of the �lters.

The FTAN procedure divides into eight steps. We discuss each step and then indicate

how the analyst-driven and the automated FTAN processes di�er. This will be done in the

context of group velocity measurements in section 4.1 and then we will follow with a discussion

of how FTAN measures phase speed curves in section 4.2. Figure 13 graphically illustrates the

process. In this �gure, all results are for the automated FTAN process.

4.1 Group speed measurements

Figure 13a shows a broadband signal obtained from a one-year cross-correlation between

stations ANMO and COR in the US. In Step 1 of FTAN, a frequency (period) - time (group

speed) or FTAN image is produced by displaying the logarithm of the square of the envelope

of the analytic signal, log jA(t)j2, for a set of di�erent �lter center frequencies. Figure 13b

shows the FTAN image of the waveform in Figure 13a. The envelope functions log jA(t)j2 are

arrayed vertically on a grid of di�erent values of !0 to produce a matrix that can be displayed

as a 2-D image. There is a similar phase matrix not displayed here. Typically, group speed

replaces time and period replaces �lter center frequency. In Step 2, the dispersion ridge is

tracked as a function of period to obtain a raw group speed curve. Figure 13b shows this curve

and the prediction from the 3-D model of Shapiro and Ritzwoller (2002). This raw group

speed measurement may be su�cient for many applications.

Steps 3-8 of FTAN involve phase-matched �ltering to clean the waveform of potential

contamination and generate an alternative group speed curve. This measurement may be

preferable in some applications. In Step 3, an anti-dispersion or phase-matched �lter is

de�ned on a chosen period-band. Levshin and Ritzwoller (2001) discuss the phase-matched

�ltering method in detail. In Step 4, this anti-dispersion �lter is applied to the waveform in

the period band chosen to produce the undispersed signal. Figure 13c shows the undispersed

or \collapsed" signal. In Step 5, contaminating noise is identi�ed and removed from the

undispersed signal. Typically, for earthquakes this noise is signal-generated, being composed

of multi-pathed signals, seismic coda, body waves, and so forth. An example cut is shown

with the red line in Figure 13c. In Step 6, the cleaned collapsed waveform is redispersed. It
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is shown as the red line in Figure 13a. In Step 7, the FTAN image of the cleaned waveform

is computed using the same process applied to the raw waveform in Step 1. Figure 13d shows

the FTAN image of the cleaned waveform. To improve frequency resolution, the Gaussian

�lters that are applied during phase-matched �ltering are broader than those that are applied

to the raw waveform. For this reason, the time-width of the FTAN image is broader in Figure

13d than in Figure 13b, but this does not re
ect a lower intrinsic temporal resolution because

interfering signals have been removed. Finally, in Step 8, the dispersion ridge is tracked as

a function of period on the cleaned FTAN image to obtain the cleaned group speed curve.

Figure 13d shows this curve and the predicted curve from the 3-D model.

The traditional analyst-driven FTAN procedure has been applied to earthquake data

by analysts for more than 200,000 individual paths globally (e.g., Shapiro and Ritzwoller,

2002). The analyst, however, only enters the process in Steps 3 and 5. In Step 3, the analyst

de�nes the phase-matched �lter and the frequency band of interest, which usually depends on

the band-width of the signal that is observed. The analyst either can use the group speed

curve that is automatically produced on the raw FTAN image in Step 2 or can de�ne a

curve interactively. The latter approach is usually chosen as FTAN images of earthquake

data commonly display spectral holes which vitiate the automated group speed measurement.

The automated group speed measurements are also often tricked by scattered or multipathed

arrivals and, therefore, do not track the dispersion branch of interest accurately. Multipathing

and scattering is a problem mostly for large epicentral distances. In Step 5, the analyst

interacts with the collapsed signal to remove noise. It is, therefore, only Steps 3 and 5 that

require automation beyond the existing method.

To automate Step 3, the group speed measurements that result in Step 2 must be used

to de�ne the phase-matched �lter. Therefore, these measurements must be robust to spectral

holes and scattered or multipathed arrivals. Fortunately, high SNR FTAN images that result

from cross-correlations of ambient noise tend to be much simpler than those from earthquakes,

and spectral holes are rare. Inter-station spacing for ambient noise measurements is also

typically less than epicentral distances, so multipathing is not as severe of a problem. The

automated procedure, therefore, only di�ers from the raw group velocity procedure applied
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during interactive FTAN in that in Step 2 added measures are taken to ensure the continuity

of the dispersion curve by rejecting spurious glitches or jumps in group times. Formal criteria

are set to reject curves with distinctly irregular behavior or to interpolate through small

glitches by selecting realistic local instead of absolute maxima. When gaps or jumps are too

large in amplitude or persistent in period, the dispersion curve is rejected. Spectral whitening

(section 2.2) helps to minimize jumps in the measured curve as well as the incompleteness

of measurements at the long period end of the spectrum. The raw group speed curve that

emerges from Step 2 is one of two alternative curves that emerge from the automated process.

To automate Step 5, the undispersed signal is selected from the surrounding noise

automatically. Figure 13c illustrates this procedure graphically using the waveform from

Figure 13a. In an ideal case, the anti-dispersed signal will collapse into a single narrow spike.

The collapsed waveform, given by the red line in Figure 13c, is then cut from the surrounding

time-series and re-dispersed to give the clean waveform shown with the red line in Figure

13a. In this example the collapsed waveform is more complicated than a single spike. The

principal advantage of this phase-matched �ltering method arises when there exists strong

neighboring noise that can be removed from the undispersed signal. In the case of ambient

noise cross-correlations, spurious precursory arrivals exist in many cases, particularly at long

periods. A good example can be seen in Figure 6a, and the example in Figure 13a also contains

precursory arrivals. Such arrivals tend to interfere with the primary signals and can make the

resulting group velocity curves undulatory. Phase-matched �ltering helps to reduce the e�ect

of precursory arrivals and smooths the measured group speed curve in general. In the example

in Figure 13, however, there is little di�erence between the group speed curves that emerge

from the raw and phase-match �ltered FTAN images.

A problem occurs with phase-matched �ltering, however, when the waveform of interest

is narrow-band. In this case, the undispersed signal will possess prominent side-lobes that

will need to be included in the cleaned collapsed signal cut from surrounding noise. If these

side-lobes extend broadly enough in time, the cutting procedure may not e�ectly eliminate

contaminating noise. Alternately, if the side-lobes are not included in the selected waveform,

the redispersed signal will be biased and the dispersion curve will often be undulatory at the
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long period end of the measurement. For these reasons, phase-matched �ltering (i.e., FTAN

Steps 3-8) is only recommended for application to broad-band signals.

4.2 Phase speed measurements

By analyzing the envelope function, jA(t)j, the group speed curve, U(!), is measured.

Phase speed cannot be derived directly from group speed, but the group speed can be

computed from phase speed. To see this, let U = @!=@k and c = !=k be group and phase

speed, respectively, su = U�1 and sc = c�1 be group and phase slowness, respectively, and k be

wavenumber. Then su = @k=@! = @(!sc)=@!, which gives the following �rst-order di�erential

equation relating the group and phase slownesses at frequency !:

@sc
@!

+ !�1sc = !�1su: (4)

If the phase speed curve c(!) is known, the group speed curve U(!) can be found directly from

this equation. If the group speed curve is known, this di�erential equation must be solved to

�nd c(!), which involves an integration constant that is generally unknown. The solution is

sc(!) = !�1
�Z !

!n
su(!)d! + !ns

n
c

�
; (5)

where the constant of integration has been written in terms of a boundary condition that the

phase speed curve is known at some frequency !n: sc(!n) = snc . This is a condition that will

generally not apply. Nevertheless, knowledge of the group speed can help to �nd the phase

speed, as we now show.

Measurement of the phase speed curve requires information in addition to the envelope

function on which the group speed has been measured. This information derives from the

phase �(t) of the analytic signal which is composed of a propagation term, an initial source

phase, and a phase ambiguity term that will be discussed further below. At instantaneous

frequency !, this can be written:

�(t) = k�� !t� �s � �a; (6)

where t is the travel time, � is distance (inter-station or epicentral), k is wavenumber, �s is

source phase, and �a is the phase ambiguity term. To proceed, we evaluate the observed phase
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at the observed group arrival time, tu = �=U , and let k = !sc to �nd the expression for phase

slowness:

sc = su + (!�)�1 (�(tu) + �s + �a) : (7)

The group speed curves, therefore, enter this process by de�ning the point in time at which

the observed phase is evaluated.

Equation (7) prescribes the phase slowness (and hence the phase speed) curve. Its use,

however, depends on knowledge of the initial source phase and the extra phase ambiguity term.

In earthquake seismology, �s is typically computed from Centroid Moment Tensor (CMT)

solutions. One of the traditional advantages of studies of group speed over phase speed is that

source phase plays a secondary role in group speed (Levshin et al, 1999), particularly at short

periods. Group speeds, therefore, can be measured at short periods unambiguously using small

earthquakes without prior knowledge of the CMT solution. For cross-correlations of ambient

noise, however, the situation is considerably easier, as the source phase should be zero: �s = 0.

For both earthquake and ambient noise studies, the phase ambiguity term contains a

part derived from the 2� ambiguity inherent to any phase spectrum: �a = 2�N , where

N = 0;�1;�2; : : :. Typically, this ambiguity can be resolved by using a global 3-D model

(e.g., Shapiro and Ritzwoller, 2002) or phase velocity maps (e.g., Trampert and Woodhouse,

1995; Ekstrom et al., 1997) to predict phase speed at long periods. The value of N then is

chosen to give the closest relation between these predictions and observation. If observations

extend to long periods (e.g., greater than 40 sec, preferably longer), a global model or observed

phase velocity maps may predict phase speed well enough to get N right in most cases. As

discussed in section 5, we recommend making dispersion measurements only up to a period

(in sec) equal to �/12, where � is in km. To obtain a 40 sec measurement, therefore, requires

an inter-station spacing of about 500 km. If resolution of the phase ambiguity requires 100 sec

observations, then an inter-station spacing of at least 1200 km is recommended. For ambient

noise cross-correlations, if observations are limited to short periods or short inter-station

distances, the phase ambiguity may not resolve in a straightforward way.

For ambient noise cross-correlations, the phase ambiguity appears to be exacerbated by
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another factor. Equation (213 of Snieder (2004) shows that the phase of the cross-correlation

possesses a term proportional to �=4 that arises from the stationary phase integration

(e�ectively over sources) in the direction transverse to the two stations. The sign of the term

depends on the component of the seismometer, positive for the vertical component and negative

for the radial component for a Rayleigh wave. The assumption, however, is that sources are

homogeneously distributed with azimuth. An inhomogeneous distribution would produce a

di�erent phase shift. If all sources occur only along the two stations, for example, this term

would be zero. More theoretical work is needed on this problem, but it is reasonable to assume

that for a realistic distribution of sources of ambient noise this term could vary considerably,

running between 0 and �=4 for a vertical component. Thus, for vertical component ambient

noise cross-correlations the phase ambiguity term is �a = 2�N + ��=4, where � 2 [0; 1] is a

real unknown quantity that depends on the azimuthal distribution of ambient noise sources.

Because this distribution may vary strongly with frequency, � is probably also frequency

dependent.

In summary, phase-slowness derived from a vertical component ambient noise cross-

correlation can be written

sc = su + (!�)�1 (�(tu) + 2�N + ��=4) : (8)

where N = 0;�1;�2; : : : and � 2 [0; 1]. More theoretical work and simulations are needed to

quantify the uncertainty in � and its dependence on frequency and geographical location. We

recommend that phase speed measurements be made for long inter-station distances, greater

than 500 - 1000 km. Shorter path dispersion measurements probably need to be con�ned

to group speeds, but more work is needed to establish this de�nitively. Figure 14 shows

the observed group and phase speed curves measured on the waveform shown in Figure 13a

compared with the curves predicted by the 3-D model of Shapiro and Ritzwoller (2002). We

set � = 0 in this example.
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5. Quality control

Because the number of inter-station paths grows as the square of the number of stations,

the data processing procedure that is applied to ambient noise cross-correlations must be

designed to require minimal human interaction. Erroneous dispersion measurements are

more likely to arise than if analysts were providing guidance at strategic intervals along the

process. Data quality control measures, therefore, must be devised to identify and reject bad

measurements and compute quality assurance statistics for the accepted measurements.

First, we have found that a reliable dispersion measurement at period � requires an

inter-station spacing (� in km) of at least 3 wavelengths (�): � > 3� = 3c� or � < �=3c.

Because phase speed c � 4 km/sec, for measurements obtained at an inter-station spacing of

�, there is a maximum cut-o� period of about �max = �=12. We have clearly observed the

degradation of dispersion measurements at periods greater than about �max, at least for group

speeds. This imposes a severe constraint on measurements obtained from small regional arrays

such as PASSCAL experiments. A broad-band network 500 km in extent, for example, can

only produce measurements up to about 40 sec period, and that only for the stations across

the entire array which is only a small subset of the inter-station paths. Intermediate and long

period measurements most likely will be obtained from the array to surrounding stations,

which indicates the importance of permanent (back-bone) stations in the context of regional

deployments. At present, we have less experience with phase speed measurements obtained on

cross-correlations of ambient noise, so it is possible that the period cut-o� may be able to be

relaxed for phase speeds.

Second, we need the means to determine the reliability of dispersion measurements

that satisfy the period cut-o� criterion. One way to estimate reliability is comparison with

ground truth. The best case would be when an earthquake has occurred beneath one of

the stations. Figures 15 and 16 present an example comparison, using an earthquake that

occurred near station PFO (Pinyon Flat, CA, USA). (Date = Oct 31, 2001, mb = 5:2, lat =

33.508, lon = -116.514, depth = 15.2 km). The six paths that are selected are shown in Figure

15 and comparison between the cross-correlation and the earthquake signals is presented in
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Figure 16 in two disjoint frequency bands. The amplitude spectra of both the earthquake

and cross-correlation waveforms have been whitened similarly in each period band to aid

comparison. In general, the arrival times of the fundamental Rayleigh waves (the largest

amplitude arrivals in each panel) are similar, particularly in light of the source phase shift

that a�ects the earthquake and the �=4 ambiguity that may a�ect the cross-correlation. To

compensate for the earthquake radiation pattern, we 
ip the sign of the earthquake records for

stations CMB (Columbia, CA, USA) and LLLB (Lillooet, BC, Canada) which are to the north

of station PFO. Also, because the earthquake is south-west of station PFO, the epicentral

distances to the stations are greater than the distance between PFO and the other stations.

To compensate for this and for the earthquake source phase shift, we introduce a time shift to

each earthquake record. The time shift is indicated on each panel. In each case it is positive,

meaning that the earthquake signal arrives later than the cross-correlation signal, as expected.

Examples such as this lend con�dence to the ability to interpret cross-correlations of ambient

noise in terms of earth structure, similar to the way earthquake signals are interpreted.

Coincidences between earthquake and station locations are, however, too rare to be of speci�c

use for data selection or uncertainty estimation.

The principal metric on which to base a judgment of the quality of the measurements is

stability, the robustness of the measurement to perturbations in the conditions under which

it is obtained. The stability of spatially clustered and temporally repeated measurements is

particularly useful to identify erroneous measurements and to quantify uncertainties.

Clustering measurements obtained at a particular station from a set of earthquakes

located near to one another is commonly used to assess uncertainties in earthquake dispersion

measurements (e.g., Ritzwoller and Levshin, 1998). A similar cluster analysis can be applied

to ambient noise data. For example, Figure 17 presents a spatial cluster analysis that

exploits the high station density in southern California. Numerous measurements between

southern California and distant stations can be obtained with similar paths. Cross-correlations

between the southern California stations and the GSN station ANMO provide one estimate of

uncertainty. In this example that there is substantial di�erence in velocity compared to the

CU-Boulder global model (Shapiro and Ritzwoller, 2002) at periods below about 35 sec for
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group speeds and 30 sec for phase speeds. Measurements between southern California and

more distant stations typically are closer to the model prediction. Spatial cluster analyses

such as this one are only possible under certain restrictive conditions. A tight cluster of

stations is needed that subtends a small angle to a relatively distant station (located many

inter-station spacings away from the cluster). These conditions typically will not hold for most

measurements, although the growth in regional arrays like the Transportable Array component

of USArray/EarthScope will help to make this method increasingly applicable. At present,

however, cluster analysis provides only an assessment of average uncertainty for long path

measurements or a data rejection criterion for a subset of the measurements.

A more useful method to estimate reliability is to assess temporal repeatability. The

physical basis for this method is that sources of ambient noise change seasonally and provide

di�erent conditions for the measurements. Given the changing conditions, therefore, the

repeatability of the measurement is a signi�cant indicator of reliability. This standard is

elevated to a high position in our assessment, as we equate seasonal repeatability with

measurement uncertainty. It is one of the salutary features of ambient noise dispersion

measurements generally that uncertainties can be measured, unlike earthquake derived

measurements.

Figure 18 presents an example of seasonal variability for the GSN station-pair CCM and

DWPF. Four disjoint 3-month cross-correlations are shown in Figure 18a comprising winter,

spring, summer, and fall months. The long period part of the cross-correlations displays a

strong seasonal variability. Group velocity curves from individual 3-month stacks are plotted

in Figure 18b. Using a year of data, in principle there are twelve 3-month stacks; i.e.,

Jan-Feb-Mar, Feb-Mar-Apr, : : :, Dec-Jan-Feb. Only curves from the 3-month stacks in which

spectral SNR > 10 at all periods are shown. Ten of the twelve stacks satis�ed this criterion.

Overplotted with the red line is the group speed curve measured for the 12-month stack. It

appears in the middle of the shorter measurements and is smoother than most of the 3-month

stacks. This indicates that the use of variability among the 3-month stacks to estimate the

uncertainty in the dispersion measurement for the 12-month time-series is conservative. The

predicted curve from the 3-D model of Shapiro and Ritzwoller (2006) is also overplotted in
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green.

In our previous applications of the data processing procedure described herein (Yang et

al., 2006; Lin et al., 2006b), dispersion measurements are obtained on 12-months of data. To

estimate uncertainties in these measurements, dispersion is also measured on all sequential

3-month stacks if signal-to-noise (SNR) exceeds some threshold. The standard-deviation is

computed if a su�cient number of the 3-month stacks exceeds the SNR criterion. In the high

ambient noise environment of New Zealand, Lin et al. (2006b) required seven of the 3-month

stacks to have SNR > 10. Yang et al. (2006), working with the lower ambient noise conditions

that prevail across most of Europe, were forced to loosen the criterion (four 3-month stacks

with SNR > 7). Both studies rejected any measurement for which an uncertainty measurement

could not be determined. Yang et al. (2006), in particular, rejected many measurements

because uncertainty could not be determined even with the loosened criteria. They argued,

therefore, that at least across much of Europe, two years of data would be preferable to one in

order to estimate uncertainties and reject far fewer measurements. Presumably this would be

true on most other continents around the world.

If a seismic array is emplaced for a short duration or operates for a short period of time,

however, acquisition of two years of data may be out of the question and temporal subsetting

to estimate uncertainties may not be feasible. Temporal overlap between neighboring

deployments of stations also may not be long enough to estimate uncertainties based on

temporal variability. In this case, SNR measurements provide can provide a useful proxy

for uncertainties. An example is shown in Figure 19. In these �gures, the average standard

deviation measured from temporal variability of cross-correlations of ambient noise observed

over one-year is plotted as a function of spectral SNR. The cross-correlations are obtained on

more than 200 stations across the US and southern Canada from the year 2004. Results at 10

sec period (green circles) and 20 sec period (red triangles) are shown, and are segregated into

two inter-station distance ranges, 1000 - 2000 km and distances greater than 2000 km. At both

periods there is a clear linear relation between standard deviation and spectral SNR for 10 <

SNR < 40. For SNR < 10, the standard deviation increases rapidly and non-linearly. These

curves illustrate that SNR can be used as a proxy for measurement error if SNR > 10.. In
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addition, because, as Figure 12 shows, SNR is also related to the number of weeks in the stack,

the number of weeks stacked is related to the expected measurement uncertainty. For example,

inspection of Figure 12 shows that at 10 sec period, a SNR of 10 is expected after 4-weeks of

observation. Figure 19a reveals that a SNR of 10 relates to a measurement error of about 55

m/sec. Thus, four-weeks of observation (in North America) is expected to give a measurement

error of about 55 m/sec. Increasing the observing length to 20 weeks at 10 sec period is

expected to increase the SNR to about 20 and the measurement error is expected to reduce

to about 45 m/sec. Observing still longer to 60 weeks is expected, on average, to increase

SNR to about 30 and reduce error to about 35 m/sec. Thus, although it is tempting to stack

inde�nitely, the power-law dependence of SNR on time-series length generates diminishing

returns in reducing measurement errors after SNR is high enough to provide a reasonable

dispersion measurement. Continued observation past this point may best be used to measure

temporal variability directly, which is preferable over the use of proxy curves.

The discussion in the previous paragraph is relevant to the design of seismic experiments

that wish to use ambient noise cross-correlation. It is, however, intended to be more illustrative

than de�nitive, and more work needs to be done to understand the distributions of the

quantities in order to produce better proxy curves and guide their use.

Third, we seek measurements that cohere as a whole; that is, that agree with other

accepted measurements. This condition can be tested tomographically. Measurements that

can be �t with a smooth tomographic map are said to agree with one another. Yang et al.

(2006) presents a detailed discussion of the application of this criterion across Europe. He

�nds that, on average, dispersion measurements that derive from ambient noise tomography

can be �t better than those that derive from earthquake data. Moreover, the distribution of

mis�t is tight. While erroneous measurements do pass the previous selection criteria, they are

small in number. An example comparison between the mis�t histograms of ambient noise and

earthquake derived group speed measurements across Europe is shown in Figure 20.
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6. Summary and conclusions

The data processing procedure for extracting estimated Rayleigh wave Green functions

from ambient seismic noise has now largely stabilized and is su�ciently well evolved to

describe without fear of radical modi�cation in the near-term. The procedures that are

described herein have been designed not only to deliver reliable measurements, but to be


exible and applicable in a wide variety of observational settings. The procedure divides into

four phases: (1) single-station data preparation, (2) cross-correlation and stacking to a desired

time-series length, (3) dispersion measurement, and (4) quality control. Because the number

of cross-correlations grows as the square of the number of stations, the procedure we describe

is entirely automated.

The principal step in single-station data preparation is \temporal normalization" which

is designed to ameliorate the contamination of the ambient noise signals by earthquakes,

instrument irregularities, and non-stationary noise sources near to stations (such as passing

storms and high local sea heights). We advocate the use of \running-absolute-mean"

normalization, which is an e�ective method that allows for tuning to regional earthquake

conditions. In addition, spectral whitening is advisable prior to cross-correlation in order

to minimization contamination by the 26 sec Gulf of Guinea resonance and to broaden the

measurement band.

The use of long time-series helps to optimize signal-to-noise ratio (SNR), which is

anti-correlated with measurement error. SNR displays a power law dependence on time-series

length, with the most rapid emergence of signals from noise in the microseismic (< 20

sec period) and \Earth hum" (< 50 sec) bands. The greatest challenge for ambient noise

tomography, therefore, lies between about 30 sec and 60 sec period.

Automated dispersion measurement is performed with a modi�cation of traditional

frequency-time analysis (e.g., Levshin et al., 1992). We have described methods that measure

group velocity curves reliably with and without phase-matched �ltering. Phase-matched �lters

are helpful to extract the estimated Green function from adjacent contaminating signals,

if they exist. However, phase-matching �ltering works best on broad-band waveforms. For
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signals that are signi�cantly band-limited, it would be best to forego phase-mathched �ltering.

Reliable group velocity measurements, on average, require a SNR > 10.

Experience reveals that reliable group velocity measurements require an inter-station

spacing, � in km, of at least three wavelengths. This creates a period cut-o� �max � �=12.

At periods longer than this, the inter-station spacing will be less than three wavelengths, and

the measurements are signi�cantly more likely to be unreliable. This condition can impose

rigorous constraints on the use of ambient noise tomography with data from local or regional

arrays.

Phase velocity curves also emerge naturally from the automated frequency-time analysis

and preliminary results indicate that the curves are stable and smooth as long as SNR is above

a threshold value of about 10. Phase velocities present two problems, however, not su�ered

by the group velocity measurements. First, for small inter-station spacings where only short

period phase velocities can be measured, the 2� phase-ambiguity may be di�cult to resolve

unless station density is high enough to exploit the observed phase \move-out". Second, recent

theoretical research (e.g., Snieder, 2004) predicts the addition of another phase-ambiguity

caused by the unknown azimuthal distribution of ambient noise sources. Further theoretical

e�ort as well as simulations are needed to clarify this issue. Also, further work is needed to

determine if the period cut-o� can be relaxed for phase velocity measurements.

Within the context of an automated data processing procedure, data quality control

measures are particularly important to identify and reject bad measurements and compute

quality assurance statistics for the accepted measurements. The principal metric on which to

base a judgment of quality is stability, the robustness of the measurement to perturbations

in the conditions under which it is obtained. Temporal repeatability, in particular, is a

signi�cant indicator of reliability. The physical basis for this method is that sources of

ambient noise change seasonally and provide di�erent conditions for the measurements. This

standard is elevated to a high position in our assessment, as we equate seasonal repeatability

with measurement uncertainty. It is one of the salutary features of ambient noise dispersion

measurements generally that uncertainties can be measured, unlike earthquake derived

measurements. Although one year of data is su�cient to estimate uncertainties through
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temporal repeatability in some cases, two years of data are preferable.

Acquisition of one to two years of data may be out of the question in many instances,

so that temporal subsetting to estimate uncertainties may not be feasible. In this case, SNR

measurements can provide a meaningful proxy for uncertainties. Such proxy curves relating

measurement uncertainty to SNR (e.g., Figure 19) can be used with information about the

emergence rate of the signal (e.g., Figure 10) to help design experiments that seek to perform

ambient noise tomography. The results in Figure 19 are are not yet de�nitive, and more

work needs to be done to understand the statistical distributions of the quantities in order to

produce better proxy curves and guide their use. Nevertheless, we believe that this approach

promises to provide approximate uncertainty estimates for experiments that are too short to

exploit temporal repeatability.

The data processing procedures the have been developed for ambient noise tomography

now has a history shorter than three years and needs to continue to develop. In particular,

e�orts are needed to tune the method further for phase velocities (especially understanding

phase ambiguities related to source distribution) and Love waves. We also believe that work

on proxy curves in which SNR (or time-series length) is used to infer an expected meaurement

uncertainty is a fertile area for future research.
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Figure 1. Example of a broad-band symmetric-component cross-correlation using 12-months

of data from stations ANMO (Albuquerque, NM, USA) and HRV (Harvard, MA, USA). The

broad-band signal (7 - 150 sec pass-band) is shown at top and successively longer period pass-

bands are presented lower in the �gure.
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Figure 2. Schematic representation of the data processing scheme. Phase 1 (described in

section 2 of the paper) shows the steps involved in preparing single-station data prior to cross-

correlation. Phase 2 (section 3) outlines the cross- correlation procedure and stacking, Phase 3

(section 4) includes dispersion measurement and Phase 4 (section 5) is the error analysis and

data selection process.
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Figure 3. Waveforms displaying examples of the �ve types of time domain normalization

tested. The examples are band-pass �ltered between 20 and 100 sec period to clarify the

contamination by the earthquake signal. (a) Raw data showing �3 hours of data windowed

around a large earthquake (Ms = 7.2, Afghanistan-Tajikistan border region) recorded at station

ANMO. (b) One-bit normalized waveform, whereby the signal is set to �1 depending on the

sign of the original waveform. (c) Clipped waveform, where the clipping threshold is equal to

the root-mean-square (rms) amplitude of the signal for the given day. (d) Automated event

detection and removal. If the amplitude of the waveform is above a certain threshold, the next 30

minutes of it are set to zero. (e) Running absolute mean normalization whereby the waveform is

normalized by a running average of its absolute value. (f) \Water level normalization" whereby

any amplitude above a certain multiple of the daily rms-amplitude is down-weighted. It is run

iteratively until the entire waveform is nearly homogeneous in amplitude.
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Figure 4. Twelve-month cross-correlations between the station-pair ANMO and HRV for the

time-domain normalization methods shown in Figure 3. The pass-band is 20 - 100 seconds

period. The panels of the �gure (a-f) correspond to those in Figure 3.
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Figure 5. Example of the e�ect of tuning time-domain normalization to earthquake signals for

data from GeoNet station CRLZ in New Zealand. (a) Raw broad-band data from Oct. 14, 2005

showing two earthquakes barely emerging above background noise. (b) Data from (a) band-pass

�ltered between 15 - 50 sec period, more clearly showing the two earthquake signals (�rst: S.

Fiji, mb = 5.4; second: S. of Kermadec, mb = 5.1). (c) Data after temporal normalization using

the running-absolute-mean method in which the weights are de�ned on the raw (un�ltered)

data in (a). (d) Data from (c) band-pass �ltered between 15 - 50 sec period, showing that the

earthquake signals have not been removed by temporal normalization de�ned on the raw data.

(e) Data after temporal normalization using the running-absolute-mean method in which the

weights are de�ned on the band-pass �ltered data in (b). (f) Data from (e) band-pass �ltered

between 15 - 50 sec period, showing that the earthquake signals have been removed by temporal

normalization de�ned on the band-pass �ltered data.
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Figure 6. Example of the e�ect of tuning time-domain normalization to earthquake signals

on cross-correlations computed between GeoNet stations CRLZ and HIZ in New Zealand. (a)

Year-long cross-correlation in which the temporal normalization is de�ned on the raw data. (b)

Year-long cross-correlation in which the temporal normalization is de�ned on data band-pass

�ltered between 15 and 50 sec period. Spurious precursory arrivals are substantially reduced in

(b) relative to (a). Waveforms are band-pass �ltered between 5 and 50 sec period.
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Figure 7. (a) Raw and (b) spectrally whitened amplitude spectra for 1 sample per second

vertical component data at station HRV for July 5, 2004. The shaded box indicates the location

of the 26 second period signal originating from the Gulf of Guinea. The taper seen at both

ends of the spectra is largely attributable to a 7 - 150 second band-pass �lter.
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Figure 8. A�ect of the 26 sec microseism on cross-correlations, and attempts to remove it.

(a) Twelve-month cross-correlation between data from stations ANMO and CCM (Cathedral

Cave, MO, USA). The broad, nearly monochromatic 26 signal at positive lag dominates the

waveform. (b) Amplitude spectrum of the cross-correlation in (a) showing the spectral peak

at about 26 sec period. (c) Cross-correlation between data from the same two stations that

have been spectrally whitened prior to cross-correlation. (d) Amplitude spectrum of the cross-

correlation in (c) showing that the 26 sec spectral peak is largely missing. (e) Cross-correlation

between the data that have been spectrally whitened prior to cross-correlation with a notch

�lter applied around 26 sec period. (f) Amplitude spectrum of the cross-correlation in (e).

Application of the notch �lter changes the cross-correlation only minimally.
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Figure 9. Comparison of cross-correlations with and without spectral whitening. Cross-

correlation are for the month April, 2004 for data from stations CCM and SSPA (Standing

Stone, PA, USA) band-pass �ltered from 7 to 150 seconds period. (a) Cross-correlation without

spectral whitening. (b) Cross-correlation with spectral whitening. (c) Amplitude spectrum

of the unwhitened waveform in (a). The primary and secondary microseisms dominate the

spectrum. (d) Amplitude spectrum of the prewhitened waveform in (b).
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Figure 10. Example of the emergence of the Rayleigh waves for increasingly long time-series.

(a) Cross-correlations at the speci�ed time-series lengths for the station pair ANMO and DWPF

(Disney Wilderness Preserve, FL, USA) band-passed between 5 to 40 sec period. (b) Same as

(a), but for a pass-band between 40 sec to 100 sec period. (c) Spectral SNR for the 12-month

ANMO-DWPF cross-correlation shown with a dashed line, and the spectral SNR averaged over

all cross-correlations between GSN stations in the US shown with a solid line. (d) Spectral

SNR averaged over all cross-correlations between GSN stations in the US for di�erent time-

series lengths of 1, 3, 6, 12, and 24 months.
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Figure 11. Example of how spectral SNR measurements are obtained on a 12-month cross-

correlation between data from stations HRV and PFO (Pinyon Flat, CA, USA). Vertical solid

lines indicate the signal windows and vertical dashed lines the noise windows. Waveforms are

centered on the period indicated at left in each panel, and SNR is de�ned as the ratio of the

peak within the signal window and rms-noise in the noise window. The noise level is presented

as the horizontal dotted lines in the noise windows. SNR in each band is indicated at right in

each panel.
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Figure 12. Emergence of the signal with time-series length. The power law �t to the average

of the measured SNR from cross-correlations between the GSN stations within the US at each

of the �ve indicated periods is plotted versus variable time-series length (in weeks).
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Figure 13. Graphical representation of FTAN. (a) Raw (blue) and cleaned (red) waveforms

for the 12-month stacked cross-correlation between stations ANMO and COR (Corvallis, OR,

USA). (b) Raw FTAN diagram, measured group speed curve as the solid line, and prediction

from the 3-D model of Shapiro and Ritzwoller (2002) as the dashed line. (c) Undispersed or

collapsed signal (black) and cleaned signal (red dashed). (d) Cleaned FTAN diagram, measured

group speed curve, and prediction from the 3-D model of Shapiro and Ritzwoller (2002).
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Figure 14. Observed (red) group and phase speed curves obtained from the cleaned waveform

in Fig. 13a (ANMO-COR) compared with predictions (blue) from the 3-D model of Shapiro

and Ritzwoller (2002). � = 0 is used in the phase speed curve here.
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Figure 15. Location map for Figure 16 showing the ray paths between station PFO and the

six other stations.
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Figure 16. Comparison of cross-correlations and earthquake records. Blue lines are 12-month

cross-correlations between station PFO in southern California with six other stations around

North America. Red lines are earthquake waveforms recorded at the indicated stations following

an earthquake near station PFO. Two pass-bands are shown. The time coordinate on the 7-25

sec pass-band is 200 sec in duration and is 800 sec on the 33-70 sec pass-band. Station names

are indicated at right. Time shifts to the earthquake records are shown on each panel such that

a positive shift indicates that the earthquake arrival was later than the cross-correlation arrival

prior to the shift. Earthquake records for stations CMB and LLLB are sign 
ipped.
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Figure 17. Example assessment of the spatial variability of dispersion measurements using

a cluster of 10 stations in southern California. Measurements shown with solid lines are from

12-month stacks observed between station ANMO and the southern California cluster of 10

stations and the dashed lines are the predictions from the 3-D model of Shapiro and Ritzwoller

(2002). For phase speeds, � = 1.
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Figure 18. Example assessment of temporal variability of dispersion measurements. (a) Four

disjoint broad-band (5 - 150 sec) three-month stacks are shown for the station-pair CCM-

DWPF. Arrivals at positive correlation lag are for waves traveling from the northwest, from

CCM to DWPF, and negative correlation lag corresponds to waves arriving from the southeast,

from DWPF to CCM. (b) Group speed measurements obtained on the symmetric-component

from ten 3-months are presented versus period as the black curves. The measurement for the

12-month stack is indicated by the red line and the green line is the prediction from the 3-D

model of Shapiro and Ritzwoller (2002).
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Figure 19. SNR as proxy for measurement uncertainty. Average measurement error, estimated

from seasonal variability for a year of data using more than 200 stations across North America,

is plotted versus spectral SNR. Two distance ranges are shown and two periods (red triangles -

20 sec; green circles - 10 sec). Below SNR � 10, measurements become unreliable. Black lines

show the best-�t linear trends for 10 < SNR < 40.
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Figure 20. Measurement coherence. Histograms of mis�t for ambient noise group time mea-

surements (left) and earthquake group time measurements (right) at 16 sec period across Eu-

rope. Mis�t is calculated from the corresponding smooth group speed maps inverted from the

ambient noise and earthquake data, respectively. The standard deviation is indicated at the

top left in each panel.


