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Abstract

We discuss extending global surface wave diffraction tomography to accommodate major-arc dispersion measurements. The
introduction of major-arc surface wave dispersion measurements improves path density and resolution in regions poorly covered
by minor-arc measurements alone, as occurs in much of the Southern Hemisphere. The addition of major-arc measurements to
the inversion for dispersion maps does not appreciably degrade the fit to the minor-arc measurements but significantly improves
the fit to the major-arc measurements. For these reasons, we conclude that the addition of major-arc measurements is worthwhile
in the interim until the broad-band network of ocean bottom or Antarctic stations is improved in the future.
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1. Introduction

This paper extends current tomographic methods
to invert measurements of surface wave dispersion for
maps of the two-dimensional distribution of phase or
group speeds regionally or over the globe.Barmin
et al. (2001)previously described a method of sur-
face wave tomography based on geometrical ray-theory
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with largely ad hoc smoothing constraints. This me
has been used in several studies of earth stru
(e.g., Levshin et al., 2001; Ritzwoller et al., 200
Shapiro and Ritzwoller, 2002). Ray-theory is a hig
frequency approximation, however, which is not
tified in the presence of heterogeneities whose len
scale is comparable to the wavelength of the wave
Woodhouse, 1974; Wang and Dahlen, 1995). For the
ray approximation to be valid, the first Fresnel z
must be smaller than the scale-length of the he
geneity, which places limitations on the lateral res
tion of seismic models based on ray-theory. The B
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or Rytov approximation for surface wave scattering
(e.g., Woodhouse and Girnius, 1982; Yomogida and
Aki, 1987; Snieder and Romanowicz, 1988; Bostock
and Kennett, 1992; Friederich et al., 1993; Friederich,
1999; Meier et al., 1997; Spetzler et al., 2001, 2002;
Yoshizawa and Kennett, 2002; Snieder, 2002) mod-
els the finite width of the surface wave sensitivity
zone. Ritzwoller et al. (2002)discussed the use of
this approximation in the context of global surface
wave tomography, calling the resulting method global
diffraction tomography. This method was the basis
for a global three-dimensional (3-D) shear velocity
model of the crust and upper mantle (e.g.,Levin et
al., 2002; Ritzwoller et al., 2003a,b, 2004) based ex-
clusively on minor-arc group and phase measurements.
Some regions of the Earth, especially in the Southern
Hemisphere, cannot be effectively covered by minor-
arc paths due to the sparseness of seismic stations.
The use of major-arc data for both the fundamen-
tal mode and overtone data(van Heijst and Wood-
house, 1999)would significantly improve the spa-
tial and azimuthal coverage particularly for studies of
azimuthal anisotropy.Spetzler et al. (2002)discuss
diffraction tomography for major-arc measurements,
but minor and major-arc observations have been pre-
viously used in tomographic studies only under the
assumption of ray-theory (e.g.,Trampert and Wood-
house, 2003).

In this paper, we followSpetzler et al. (2002)to
extend diffraction tomography by redefining the zone
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2. Sensitivity kernels for minor- and major-arc
paths

Under the Born/Rytov approximation, the pertur-
bation to a surface wave travel time for sourcei and
receiverj is written as an integral over the Earth’s sur-
face,S:

δt
ij

(n,q)(ν) =
∫
S

K
ij

(n,q)(r , ν)v−1
q (r , ν)m(r , ν) dS, (1)

where

m = δvq(r , ν)

vq(r , ν)
, (2)

(n, q) is an ordered pair withq designating the wave
type (Rayleigh or Love) andn specifying whether the
measurement is for a minor- (n = 1) or a major-arc
(n = 2) path,ν is the wave frequency,δvq(r , ν) is the
perturbation to phase speed at locationr relative to the
reference modelvq(r , ν), andKij

(n,q) is the sensitivity
kernel defined for the particular source-receiver con-
figuration.

The shape of the sensitivity kernel depends both on
frequency and epicentral distance. FollowingSpetzler
et al. (2001, 2002), if epicentral distance∆ < π (a
minor-arc path), thenK(n,q) = K(1,q)(∆, θ, φ, ν):

K(1,q)(∆, θ, φ, ν)∫ ν0+δν
√
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f sensitivity and accommodating both minor-
nd major-arc measurements using the Born/R
pproximation. We take the opportunity along
ay to consider several variants of the sensiti
ernels for both major and minor-arc paths. Due
ocusing effects at the antipodes of the source
he receiver, the structure of the major-arc sur
ave sensitivity kernel is more complicated than
inor-arc measurements. We apply this approach
pdate of the surface wave phase speed measure
btained byTrampert and Woodhouse (1995, 19
nd estimate the improvements in spatial resolu
s well as the reliability of the resulting tomograp
aps. We pay special attention to the South
emisphere, and particularly, to parts of the So
acific and Antarctica where coverage by minor
aths remains much worse than in most of the nort
emisphere.
s

= cosθ

2∆δν ν0−δν

W(ν)
νR0 sin∆

H(θ, φ)vq(θ, φ, ν0)

× sin

[
πνR0 θ2 sin∆

H(θ, φ)vq(θ, φ, ν0)
+ π

4

]
dν, (3)

here H(∆,φ) = sinφ sin (∆ − φ) and R0 is the
arth’s radius. For simplicity of presentation, we o

he source and receiver indices and use a coord
ystem centered on the great-circle linking the so
nd receiver (θ, φ) and the assumption that the gre
ircle lies along the equator. In this way,φ is measure
long the great-circle (0< φ < ∆), andθ is measure

n the transverse direction, along meridians from
quator (−π/2 < θ < π/2). In practice, a measur

ravel time perturbation depends on a finite freque
and, around the central frequency of the measurem
0 ± δν, which is included in Eq.(3).W(ν) is the weigh
iven to a particular frequency within the conside
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Fig. 1. Minor-arc sensitivity kernels for the 50 s Rayleigh wave phase speed between a source and receiver at coordinates (θ, φ) of (0, 0) and (0,
120), i.e., an epicentral distance∆ = 120◦: (a) the kernel defined by Eq.(3) is shown, including the frequency integral, truncated after sensitivity
zone F7; referred to as forward theory F7. (b) The same as (a), but the frequency integral has not been performed. (c) The sensitivity kernel
truncated at the central lobe of the sensitivity kernel, F1, referred to as forward theory F1. (d) Box-car-shaped kernel truncated at the central
lobe of the sensitivity kernel (e.g.,Ritzwoller et al., 2002), referred to as forward theoryF1.

frequency range. We apply a cosine-taper within the
frequency band of measurement:

W(ν) = 0.5

[
1 + cos

(
π(ν − ν0)

δν

)]
. (4)

The choice ofδν andW(ν) is made both to mimic
the frequency band of measurement and to provide a
smooth truncation ofKq transverse to the great-circle
linking source and receiver (i.e., as a function ofθ).
Reasonable variations of these quantities do not change
the results of tomography appreciably. All kernels here
are computed relative to the 1-D spherically averaged
model PREM (Dziewonski and Anderson, 1981).

The shape of the minor-arc kernel given by Eq.(3) is
shown inFig. 1a, truncated after the seventh sensitivity
zone (which we define below). Without the frequency
integral, the kernel is somewhat more complicated, as
Fig. 1billustrates. The spatial complexity of the kernel

has motivated several different simplifications. Some
researchers have truncated the kernel at the central lobe
of the sensitivity kernel, as seen inFig. 1c.Ritzwoller et
al. (2002)approximated the kernel further as a box-car
function within the central lobe, as seen inFig. 1d. The
motivation for the truncation at the central lobe relates
to the oscillatory nature of the sensitivity kernel. Upon
area integration, the oscillations in the kernel will tend
to destructively interfere.

Fig. 2illustrates the oscillatory nature of the kernels
transverse to the great-circle linking the source and re-
ceiver and clarifies what is meant by thenth sensitivity
zone, Fn. Thenth sensitivity zone is the region of the
sensitivity kernel between the zero-crossings beginning
at the great-circle linking source and receiver. We label
the first through seventh sensitivity zones as F1 through
F7 inFig. 2, such that F1 is the central lobe of the ker-
nel. The frequency integral in Eq.(3) acts to reduce the
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Fig. 2. Amplitude of the sensitivity kernels shown inFig. 1transverse
to the great-circle linking the source and receiver. The solid grey line
corresponds toFig. 1a, the dashed black line toFig. 1b, the solid
black line toFig. 1c, and the dashed grey line toFig. 1d. The zones
of sensitivity are defined between the zero crossings of the sensitivity
kernel, denoted as F1 for the central lobe of the kernel through F7
for the seventh zone, as shown.

amplitude of the sensitivity kernel for the second and
higher zones. The amplitude of the sensitivity kernel
beyond the seventh zone becomes negligible when the
frequency integral is applied. If the kernel retains con-
tributions through thenth sensitivity zone, we refer to
the forward operator as the Fn theory. For example, in
the F1-theory travel times are computed using only the
central lobe of the sensitivity kernel as shown inFig. 1c
and the F7-theory corresponds toFig. 1a. We refer to
the box-car kernel confined to the central lobe, shown in
Fig. 1c, as theF1-theory. This nomenclature also holds
for major-arc measurements. We discuss later how the
choice of the forward theory affects resolution and the
results of tomography.

If ∆ > π (a major-arc path),K(n,q) = K(2,q)
(∆, θ, φ, ν). The sensitivity kernel decomposes into
three component kernels corresponding to discrete seg-
ments of the path: (1) between the source and the an-
tipode of the receiver, (2) between the antipode of re-
ceiver and the antipode of the source, and (3) between
the antipode of the source and the receiver(Spetzler et
al., 2002). Examples of the extent of the first and sev-
enth sensitivity zones for a set of periods are shown
in Fig. 3a and b. The kernel for each segment is
weighted proportionally to the length of the segment as
follows:

K(2,q)(θ, φ, ν) = 1

∆

[
(∆ − π)K(1,q)((∆ − π), θ, φ, ν)

+ (2π − ∆)K(1,q)((2π − ∆), θ, φ

Fig. 3. Spatial extent and shape of the major-arc sensitivity kernel
for Rayleigh wave phase speeds plotted for several periods at an
epicentral distance of 240◦: (a) the extent of the central lobe of the
sensitivity kernel, F1, is shown for the 20, 50, 100, and 150 s Rayleigh
waves. The source location (S), the receiver location (R), the source
antipode (SA), and the receiver antipode (RA) are indicated. The
sensitivity zone widens as period increases. (b) Similar to (a), but this
is the extent of the seventh sensitivity zone, F7, plotted for the same
periods as in (a). (c) Major-arc sensitivity kernel plotted similarly
to the minor-arc kernels shown inFig. 1 for the 50 s Rayleigh wave
phase speed.

−∆ + π, ν)(∆ − π)

+K(1,q)((∆ − π), θ, φ − π, ν)
]

(5)

An example of a major-arc sensitivity kernel is pre-
sented inFig. 3c, plotted similarly to the minor-arc
kernels inFig. 1.

Eq. (3) for the minor-arc kernel,K1q, is not valid
near the source (φ ∼ 0) or receiver (∆ − φ ∼ 0), where
H ∼ 0. There are corresponding singularities in the
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Fig. 4. Spatial extent of the sensitivity kernels plotted for the 50 s Rayleigh wave phase speed at several epicentral distances: (a) 60◦, (b) 120◦,
(c) 210◦, and (d) 320◦. The dashed lines show the extent of the central lobe of the sensitivity kernel, and the solid lines show the extent of the
seventh sensitivity zone. The locations of the source (S), receiver (R), source antipode (SR), and receiver antipode (RA) are shown in (c).

major-arc kernel at four points, near the source and
receiver and their antipodes. To avoid the singularities,
we approximate the sensitivity kernels within a circle
centered on each singularity with radiusλ(ν0)/4, where
λ = vq(ν0)/ν0 is the wavelength. Within this region,
the sensitivity kernel is simply replaced by its profile
in θ at a distance ofλ(ν0)/4 from the singularity. Fi-
nally, the kernel is normalized by the condition:∫
S

Kq(r , T ) dS = �R0. (6)

The kernels shown inFigs. 1–3have been constructed
in this way.

The major-arc sensitivity kernels change systemat-
ically with both period and epicentral distance. The
widening of the kernel with period is seen inFig. 3. The
effect of distance is illustrated inFig. 4. AsFig. 5shows
because of the pinching of the sensitivity kernel near the
antipodes of the source and the receiver, the maximum
width of the sensitivity kernel does not increase contin-
uously with distance for major-arc measurements. The
sensitivity kernel does widen monotonically for minor-
arc measurements, achieving a maximum for receivers
near the antipode of the source (i.e.,∆ ∼ 180◦). At
epicentral distances between 210◦ and 330◦, however,
the maximum width of the major-arc sensitivity kernel
is identical to the minor-arc kernel from 90◦ to 150◦.
There are a number of good reasons to prefer minor-arc

travel time measurements to major-arc measurements
(e.g., higher signal-to-noise, reduced effect of anelastic
attenuation, smaller scattering area, narrower sensitiv-
ity zones for epicentral distances less than 90◦), but it
is worth remembering that the width of the sensitivity
zone for major-arc measurements relative to minor-arc
measurements at distances greater than 90◦ is not one
of them.

The extension of the sensitivity kernels to major-arc
measurements allows us to combine minor- and major-
arc data for a joint tomographic inversion of phase
speed measurements.

Fig. 5. Half the maximum width of the sensitivity kernel for the 50 s
Rayleigh phase speed, plotted as a function of epicentral distance
(except near 180◦ and 360◦). The dashed line denotes the edge of the
central lobe of the sensitivity kernel, F1, and the solid line the edge
of the seventh zone, F7.



210 A.L. Levshin / Physics of the Earth and Planetary Interiors 149 (2005) 205–223

3. Tomographic method, path density,
resolution

3.1. Inversion method

The joint inversion of minor-arc and major-arc
measurements to estimate a two-dimensional map
of surface wave speeds follows the tomographic
method ofBarmin et al. (2001), which is based on
ray-theory with ad hoc smoothing and model-norm
constraints to regularize the inversion on a discrete
grid at regional or global scales.Ritzwoller et al.
(2002)discussed the extension of the method to incor-
porate extended sensitivity kernels through the first
sensitivity zone and the method generalizes naturally
for sensitivity kernels past the first zone. IfG is the
forward operator that computes travel time from a
map using Eq.(1), the discretized form of the forward
problem is

δt = d = Gm. (7)

The penalty function is a linear combination of
weighted data misfit (χ2), model roughness, and the
amplitude of the perturbation relative to a reference
map, which when discretized is as follows:

(Gm − d)TC−1(Gm − d) + mTQm, (8)

where d is the data vector, whose components are
the observed travel time residuals relative to the
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Fig. 6. Root mean square of the difference in synthetic travel times
between various forward theories of travel time computation for the
100 s Rayleigh wave phase speed map computed from the 3-D model
of Shapiro and Ritzwoller (2002). The station and event locations
used are those from the final, cleaned data set used for tomography.
“Ray” denotes ray theoretic travel times and the notation F7, F1, and
F1 refers to the sensitivity kernels illustrated inFig. 1a, c, and d,
respectively.

ward problem, the kernel is constructed on a 1◦ × 1◦
grid.

As discussed in the following sections, details of
the results for path density, resolution, and the tomo-
graphic maps will depend on the nature and truncation
level of the sensitivity kernels (e.g., F1, F7, etc.), as
different kernels will produce different travel times.
The magnitude of the difference in travel times as a
function of epicentral distance can be seen inFig. 6,
which is based on the station and event pairs from the
cleaned data set discussed in Section4. The difference
in travel times computed with the central lobe forward
theories F1 (Fig. 1c) andF1 (Fig. 1d) is negligible. In-
terestingly, travel times computed with forward theory
F7 (Fig. 1a) are more similar to ray theoretic travel
times than they are to travel times computed with the-
ory F1. In addition, the agreement between travel times
computed with theory F1 and ray theory, on average,
is not as good as comparison between theory F7 and
ray theory. The addition of sensitivity zones past the
first, therefore, moves the computed travel times back
towards those computed with ray theory. This is due
to destructive interference between the side-lobes and
the principal lobe of the sensitivity kernel with forward
theory F7. This will be discussed further as the paper
progresses.
eference map andC is the data covariance matrix
atrix of data weights.Barmin et al. (2001)discuss

he form of m for both isotropic and azimuthal
nisotropic inversions. The matrixQ represents th
ffect of a Gaussian spatial smoothing operator
tandard deviationσ (in km) as well as an operat
hat penalizes the norm of the model in regions of p
ath coverage. The choice of the trade-off (or regu

zation) parameters inQ and the smoothing widthσ is
d hoc. We typically apply spatial smoothing wid

rom 150 to 300 km. Even though extended spa
ensitivity kernels naturally regularize the invers
dditional regularization is still needed.

Here, the inverse problem is discretized ont
lobal 2◦ × 2◦ grid (i.e., 222 km× 222 km). In prac

ice, the sensitivity kernel is constructed along the e
or, as described above, and is translated and ro
nto each source-receiver configuration. For the
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3.2. Pseudo-path density and resolution

Aspects of the improvement expected in the tomo-
graphic maps by introducing major-arc measurements
can be summarized by path density and resolution. For
“Gaussian tomography” (i.e., ray theory with ad hoc
smoothing),Barmin et al. (2001)defined path den-
sity ρ(r ) as the number of paths intersecting a square
cell centered at pointr with a fixed area of 2◦ × 2◦
(∼50,000 km2). For diffraction tomography based on
spatially extended sensitivity kernels, this definition is
not appropriate because each path is not a linear object.
For this reason, we introduce the notion of pseudo-path
density,ρD(r , T ), by means of the formula:

ρD(r , T ) =
∑
n

K̃n
q , (9)

whereK̃n
q is the smoothed envelope of the sensitivity

kernel from Eq.(1) evaluated at positionr for mea-
surementn, renormalized by Eq.(6). Summation is
made over alln measurements for whichr is inside
the sensitivity kernel. With this definition, pseudo-path
density is similar to ray-theoretic path density in re-
gions of many crossing paths, but the two measures
of path density differ is regions of relatively poor path
coverage.

The estimator based on Eq.(7) describing an
isotropic map of velocity perturbations is

m̂ = G†C−1δt =
(
G†C−1G

)
m = Rm (10)

w

G

a

R

I p
d eso-

lution matrix is consequently very large and the infor-
mation it contains is somewhat difficult to utilize. We
summarize the information in each resolution map by
estimating a scalar quantity, which we call the spatial
resolution at each point of the grid. The spatial resolu-
tion is determined here in a slightly different manner
than inBarmin et al. (2001). To estimate resolution,
we fit a cone near the target node to each resolution
map. This cone approximates the response of the to-
mographic procedure to aδ-like perturbation at the
target node. The radius of the base of the cone was
taken byBarmin et al. (2001)as the value of the spatial
resolution. In many cases, however, the shape of the
response more closely resembles a 2-D spatial Gaus-
sian function, and the cone-based estimate is biased to
large values. To reduce this bias, we introduce a new
estimate of the spatial resolution summarized by theγ-
parameter, the standard deviation of the 2-D symmetric
spatial Gaussian function that best-fits the resolution
map in the neighborhood of the target node:

Aexp

(
−|r |2

2γ2

)
. (13)

Here,A is the amplitude of the fit-Gaussian at the target
node. As a practical matter, to construct the optimal
Gaussian function, we take the absolute value of the
resolution map and discard as random noise all points
of the map with amplitude less than aboutA/10. Fitting
is done within one resolution length defined by the fit-
c

4

4

peed
m

T
N ges of

P N
p

1
1

hereG† is the inverse operator

† = (GTC−1G + Q)−1GT, (11)

nd the resolution matrixR is

= (GTC−1G + Q)−1GTC−1G. (12)

n this application, each row ofR is a resolution ma
efining the resolution at one spatial node. The r

able 1
umber of measurements before and after each of the two sta

eriod (s) Wave type Number of
input paths

rms, Ph. Vel.
Res. (m/s)

50 R1 54168 22
50 R2 21347 27

00 R1 54168 26
00 R2 21347 30
one method.

. Data

.1. Input data and data handling

An expanded set of surface wave phase s
easurements, originally described byTrampert and

the data selection procedure

umber of selected
aths (1st stage)

Number of selected
paths (2nd stage)

rms, Ph. Vel.
Errors (m/s)

48192 27310 19
17476 12654 15

49888 26852 21
17477 13631 12
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Fig. 7. Shaded plots of the density of relative travel time residuals [(observed− predicted)/observed] for the entire R1 and R2 phase velocity data
set presented vs. epicentral distance: (top) 50 s, (bottom) 100 s period. Predicted travel times are computed using the 3-D model of Shapiro and
Ritzwoller (2002) with sensitivity kernel truncated after the seventh sensitivity zone, F7. Darker shades indicate larger numbers of residuals. The
white lines show the running mean, and the black lines show±2.5σ. Density is defined as the number of measurements inside each 2◦ × 0.1%
cell.

Woodhouse (1995), was used in the tomographic inver-
sion. We limited ourselves to two periods, 50 and 100 s,
and analyzed only Rayleigh wave data at these periods.
In what follows, we will refer to the minor-arc Rayleigh
wave observations as R1 and the major-arc observa-
tions as R2. The number of paths for the raw data set
(R1, R2) is given inTable 1(column 3). We identify

outliers with a two-stage process. In the first stage, we
computed synthetic travel times using Eq.(1) with for-
ward theory F7 (Fig. 1a) using the 3-D model ofShapiro
and Ritzwoller (2002)for all paths contained in the raw
data.Fig. 7 shows the rms relative travel time residu-
als [(observed− predicted)/observed] for the raw data
as a function of distance. The mean values and±2.5×
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rms in the window sliding along epicentral distance are
presented as well. The gaps in the data at epicentral dis-
tances from 160◦ to 200◦ and 340◦ to 360◦ reflect inter-
ference between minor-arc and major-arc wave trains
near the epicenter and its antipode. The corresponding
values of rms for phase speed residuals averaged over
epicentral distance are given in theTable 1(column 4).
Only measurements with a relative residual between
±2.5× rms are selected for further analysis. The num-
bers of selected paths are presented inTable 1(column
5).

In the second stage of data selection, we apply a
consistency test to the measurements that pass the
first stage of selection. This test has been described
by Ritzwoller and Levshin (1998), and is referred to
as a cluster or summary–ray analysis. The procedure
compares measured travel times along paths with
end-points that lie within the same 110 km× 110 km
cell. We delete duplicates and reject inconsistent
measurements. After this test, the number of selected
paths is reduced substantially as can be seen inTable 1
(column 6). This procedure also allows us to estimate
the inherent errors in the measurements. The average
rms value for the whole set of close paths with
consistent travel times is given in column 7 ofTable 1.
The relative rms-misfit for the R2 phase velocities are
slightly lower than for R1 due to the greater lengths of
the wave paths, although the absolute travel time misfit
grows with epicentral distance, asFig. 8shows, except

ions

) and

at distances between about 125◦ and 225◦ where
there is significant growth of rms. This may indicate
difficulty in measuring phase speeds accurately due to
interference between R1 and R2 waves or interference
with Love waves. The general increase of the travel
time residuals with distance may be partly due to the
systematic decrease of the signal-to-noise ratio. One
way to reduce the effect of noise is to introduce data
weighting inversely proportional to some power of
distance in the inversion procedure. We prefer here not
to apply this weighting as there is the evident danger
of losing the R2 signal.

4.2. Pseudo-path density and resolution

The Pacific Ocean and Antarctic regions are rela-
tively poorly covered by minor-arc observations due to
a coarse network of observing stations in these regions.
Adding major-arc observations is particularly impor-
tant for these regions. The left side ofFig. 9 shows
several views of the pseudo-path density for the 50 s
Rayleigh wave with only minor-arc data. The right side
of the same figure demonstrates the path density for
major-arc data. The two distributions are complemen-
tary, particularly across the Pacific. Addition of major-
arc measurements is expected to have the biggest effect
in the South Pacific, Antarctica, Africa, and the Indian
Ocean. Path densities for 100 s surface waves have a
similar pattern.

Fig. 10presents several views of the spatial resolu-
t asts
t bi-
n face
w ents
s cific
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5

the
c for
R own
i sed
ion obtained with minor-arc data alone and contr
he result with the resolution obtained with a com
ation of minor-arc and major-arc data for 50 s sur
aves. The addition of the major-arc measurem
ignificantly improves the resolution across the Pa
nd Antarctica. In regions such as Eurasia and N
merica that are well covered by minor-arc meas
ents, little change in resolution results from the
tion of major-arc measurements. A similar patter
btained for the 100 s surface waves.

. Results of tomographic inversion

The results of the tomographic inversion of
ombined minor-arc and major-arc data [R1 + R2]
ayleigh waves at periods of 50 and 100 s are sh

n Figs. 11 and 12. For comparison, the results ba
Fig. 8. The rms of the travel time residuals with respect to predict
from the 3-D model ofShapiro and Ritzwoller (2002)for the cleaned
data set plotted as a function of epicentral distance for 50 s (—
100 s (- - -) Rayleigh waves.
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Fig. 9. Pseudo-path density of 50 s Rayleigh waves: (left) minor-arc data alone, (right) major-arc data alone. Pseudo-path density approximates
the number of the rays in each 2◦ × 2◦ cell (∼ 50,000 km2). Results are based on the F7 sensitivity kernels (Fig. 1a).
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Fig. 10. Spatial resolution of 50s Rayleigh wave tomography: (left) minor-arc data alone, (right) minor-arc and major-arc data together. Results
are based on the F7 sensitivity kernels (Fig. 1a).
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Fig. 11. Tomographic maps for 50 s Rayleigh wave phase speeds: (left) minor-arc data alone, (right) minor-arc and major-arc data combined.
Results are based on the F7 sensitivity kernels (Fig. 1a).
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Fig. 12. Same asFig. 11, but for the 100 s Rayleigh wave phase speeds.
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Fig. 13. Absolute value of the difference between the phase speed maps constructed with both minor-arc and major-arc data and those constructed
with minor-arc data alone: (left) 50 s Rayleigh wave phase speeds, (right) 100 s Rayleigh wave phase speeds. Results are based on the F7 sensitivity
kernels (Fig. 1a).
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Table 2
Comparison between tomographic maps for the north and south po-
lar caps obtained with minor-arc (R1) and major-arc plus minor-arc
(R1 + R2) data sets

Region Period (s) Correlation
coefficient

rms of difference
(m/s)

45◦–90◦N 50 0.969 20
45◦–90◦N 100 0.966 20

45◦–90◦S 50 0.938 28
45◦–90◦S 100 0.893 29

on the minor-arc data alone are also presented. The
absolute value of the difference between these maps
is shown inFig. 12. As expected, the changes are
small in the northern hemisphere where path coverage
with minor-arc data is relatively good. Both the ampli-
tudes and the length-scales of the differences are small.
There is no large scale systematic pattern of difference.
Larger amplitude and more systematic differences are
observed across much of the Southern Hemisphere. To
quantify this north–south discrepancy further, we com-
pare the maps in the two polar caps: 45◦–90◦N and 45◦–
90◦S. The northern polar cap is relatively well covered
by R1 paths, but much of the southern cap is poorly cov-
ered.Table 2shows the correlation between the maps
constructed with major-arc and minor-arc data (R1 +
R2) with those constructed with minor-arc data alone
(R1) at periods of 50 and 100 s in these two regions.
For the northern polar cap, the correlation between the
maps produced with the two data sets is much better
than in the southern cap and the rms of the absolute
difference between the two maps is about two-thirds of
the difference in the southern polar cap.

Table 3
Misfit between predicted and observed travel times and phase speed

Period (s) Map Type of
data

Number
of paths

50 R1+R2 R1+R2 39964
50 R1+R2 R1 27310
50 R1+R2 R2 12654

1
1
1
1
1

iro and

We have shown, therefore, that the introduction of
major-arc measurements improves data coverage and
resolution across much of the Southern Hemisphere
and also substantially affects the tomographic maps
themselves. There is little effect in regions that are well
covered by minor-arc data. But are the maps that re-
sult from the simultaneous inversion of major-arc and
minor-arc data improved relative to maps derived from
the minor-arc data alone? By improvement, we mean
more accurate and with more detailed information on
the phase speed distribution across the globe. Specifi-
cally, because the major-arc measurements are noisier
than the minor-arc measurements, does their inclusion
merely increase the noise in the estimated maps?

One way to address this question is to examine the
difference between the fit to the minor-arc data both
from maps obtained from the minor-arc data alone and
from maps based on both major-arc and minor-arc mea-
surements. If major-arc data can be introduced without
appreciably degrading the fit to the minor-arc measure-
ments, then there is good reason to include the major-
arc data. If the fit to the minor-arc measurements is
degraded strongly, then one may wish not to take on
the risk of introducing the more noisy major-arc mea-
surements.

Table 3contains information about misfit between
observed and predicted travel times and phase speeds
for different combinations of Rayleigh wave maps and
data sets across the whole Earth. The 50 s Rayleigh
wave phase speed map produced from the combination
o tly
d data,
f ure-
50 R1 R1 27310
50 R1 R2 12654

00 R1+R2 R1+R2 40483
00 R1+R2 R1 26852
00 R1+R2 R2 13631
00 R1 R1 26852
00 R1 R2 13631

a Variance reduction is relative to predicted velocities fromShap
s for data from the whole Earth

rms (travel
time) (s)

Variance
reduction (%)a

rms (phase
velocity) (m/s)

14.5 42.4 16.3
10.3 13.8 18.3
20.9 51.0 10.8
9.5 28.0 16.6

27.6 18.2 14.0

12.5 32.4 17.4
9.4 10.9 20.3

17.0 40.9 9.3
8.8 22.8 19.0

23.3 −10.6 12.9

Ritzwoller (2002).

f minor-arc and major-arc data (R1 + R2) only sligh
ecreases the fit to observations of the minor-arc

rom 9.5 to 10.3 s. The fit to the major-arc meas
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Fig. 14. Absolute value of the difference between the 50 s phase
speed maps constructed with both minor-arc and major-arc data using
the theory F1 (Fig. 1c) and the theory F7 (Fig. 1a). The rms of the
difference is about 18 m/s (<0.5%).

ments with the R1 + R2 map, however, is considerably
better than the fit to these measurements with the map
constructed with minor-arc data alone (R1): 20.9 s ver-
sus 27.6 s. A similar result holds at 100 s period. This
indicates that the addition of major-arc data does not
significantly degrade the map in regions where minor-
arc data exist. Elimination of these data, however, en-
sures that the major-arc measurements will not be well
fit by data based on minor-arc measurements alone.

The tomographic results presented here (Figs. 11–
13) are for the F7 sensitivity kernels, which extend out
through the seventh sensitivity zone (e.g.,Fig. 1a). The
results are similar if we had used the F1 sensitivity zone
(e.g.,Fig. 1c), i.e., if we had truncated the kernel at the
central lobe of the sensitivity kernel.Fig. 14compares
the 50 s Rayleigh wave phase speed maps estimated
with the F1 and F7 sensitivity zones. The rms of the
differences globally is about 18 m/s, or less than 0.5%.
The difference between the maps estimated with the
two variants of the sensitivity kernels truncated at the
central lobe, theories F1 andF1, is even smaller with
a global rms differences of about 4 m/s or less than
0.1%. Differences between maps derived from theo-
ries F1 andF1 are smaller than differences that arise
from arbitrary changes in the damping parameters that
drive the inversion and are, therefore, negligible. Al-
though the effective difference between theories F1 and
F7 is also small, for reasons we discuss in Section6,
we prefer and advise the use of theory F7 over theo-
ries F1 orF1 unless epicentral distances are well less
t

6

arc
s path
d by
m h of
t that
m rsion
f the
fi im-
p hese
r -arc
m un-
t ctic
s

han 90◦.

. Discussion and conclusions

We have shown that the introduction of major-
urface wave dispersion measurements improves
ensity and resolution in regions poorly covered
inor-arc measurements alone as occurs in muc

he Southern Hemisphere. In addition, we showed
ajor-arc measurements can be added to the inve

or dispersion maps without appreciably degrading
t to the minor-arc measurements but significantly
roving the fit to the major-arc measurements. For t
easons, we conclude that the addition of major
easurements is worthwhile as an interim solution

il the broad-band network of ocean bottom or Antar
tations is improved in the future.
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The addition of major-arc measurements comes
with a cost, however. The measurements are noisier
than minor-arc measurements and major-arc sensitivity
kernels are broad, complicated spatial functions. Anal-
ysis of misfit implies that the reduction of signal-to-
noise in the major-arc measurements does not mitigate
against their inclusion in the inversion. Although ray
theoretic travel times may be sufficiently accurate for
epicentral distances less than 60◦–90◦, the ray theoretic
approximation degrades rapidly for longer minor-arc
distances and for major-arc measurements.

Although we advocate using sensitivity kernels be-
yond the central lobe, computational expedience may
dictate a more approximate method to compute travel
times and sensitivity. The use of all or some fraction of
the central lobe is popular (e.g.,Yoshizawa and Ken-
nett, 2002; Ritzwoller et al., 2002). The central lobe of
the sensitivity kernel is commonly identified as the first
Fresnel zone, which is an ellipse on a sphere given by
the the equation

|∆ − (∆1 + ∆2)| = λ

N
, (14)

as shown inFig. 15, whereλ is the wavelength of the
wave of interest determined from PREM here. By com-
paring the maximum width of the central lobe of the
sensitivity kernel to the width of the first Fresnel zone,
Spetzler et al. (2002)showed thatN = 8/3.Ritzwoller

the

ed
igh
g the

, ex-
here
Fig. 15. The first Fresnel-zone is an ellipse on a sphere with
source (star) and receiver (triangle) at the two foci.

Fig. 16. Difference in resolution between tomography perform
with theory F1 (Fig. 1c) and theory F7 (Fig. 1a) for the 50 s Rayle
wave phase speed map. Due to destructive interference amon
side-lobes and the central-lobe, the wider sensitivity kernel, F7
hibits a better resolution than the narrower kernel, F1, everyw
on the globe.
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et al. (2002)used this value ofN to perform global
tomography in which the sensitivity kernel was con-
fined to the central lobe and shaped like a box-car (i.e.,
theoryF1 shown inFig. 1d). Yoshizawa and Kennett
(2002)argue that the “zone of influence” about surface
wave paths over which the surface waves are coherent
in phase is considerably narrower than the first Fresnel
zone, being only about one-third of the width of the first
Fresnel zone and consistent with this, a better choice
for N in Eq.(14) isN = 18.

Aspects of the results presented here corroborate
the arguments ofYoshizawa and Kennett (2002). For
example,Fig. 6shows that except near the source an-
tipode, ray theoretic travel times agree better with F7-
theory (i.e., in which the sensitivity kernel extends
through the seventh sensitivity zone) than the agree-
ment between F1-theory with F7-theory. This is be-
cause of destructive interference among the side-lobes
and with the central lobe of the sensitivity kernel. Sim-
ilarly, the resolution of tomography produced with F7-
theory is better than that with F1-theory as shown in
Fig. 16. This is on first sight counter-intuitive, that a
spatially broader sensitivity kernel would improve res-
olution. But, again, it is because of destructive interfer-
ence between the side-lobes and the central lobe. The
result is to produce a sensitivity kernel that, in effect,
is narrower than the first Fresnel zone. If one wishes to
utilize a sensitivity kernel that includes only the central
lobe, our results suggest to narrow the central lobe as
Yoshizawa and Kennett argue.
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