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Abstract.

We present a method that uses a global seismic model of the crust and upper

mantle to guide the extrapolation of existing heat ow measurements to regions where

such measurements are rare or absent. For any chosen spatial point on the globe,

the procedure generates a histogram of heat ow values determined from existing

measurements obtained from regions that are structurally similar to the target point.

The weights are based on a \structural similarity functional", which is introduced to

quantify the structural analogy between di�erent regions. We apply this procedure

world-wide using the global heat ow data base of Pollack et al. [ 1] guided by an

update of the 3-D shear velocity model of the crust and uppermost mantle of Shapiro

and Ritzwoller [ 2]. The method results in an inferred probability distribution for the

heat ux at each geographical location of interest. These distributions are strongly

non-Gaussian, but are well approximated by the log-logistic distribution which is

completely speci�ed by two parameters. The inferred distributions agree well with

observed distributions of heat ux over much of the Earth. Particular attention is

drawn to the inferred surface heat ux distributions across Antarctica, where direct

measurements are rare but information about heat ow may be needed to help

understand the dynamics of Antarctic ice sheets. Mean heat ow in West Antarctica

is expected to be nearly three times higher than in East Antarctica and much more

variable. This high heat ow may a�ect the dynamics of West Antarctic ice streams

and the stability of the West Antarctic Ice Sheet.
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1. Introduction

The dynamics of the Antarctic Ice Sheet is largely controlled by fast moving ice streams

[ 3, 4] whose e�ciency is a�ected by the lubricating e�ect of water in a weak basal layer.

The melting/freezing rate at the bottom of the ice depends on the sub-glacial geological

conditions, including sub-glacial geothermal ux [ 5, 6, 7]. Unfortunately, heat ow

information across Antarctica is exceedingly rare. A full understanding of the behavior

of the Antarctic Ice Sheet and of its role in global climate change, therefore, will require

better knowledge of the geothermal ux across Antarctica.

There are thousands of heat ow measurements that have been obtained in a variety

of tectonic regimes both within continents and oceans [ 1]. The distribution of these

observations, however, is very inhomogeneous, having been obtained dominantly in the

Northern hemisphere within North America and Europe (Figure 1). The measurement

of heat ow at the base of the Antarctic ice sheets is technically challenging and the

accumulation of direct heat ow observations across Antarctica will be slow.

Our purpose is to apply information about heat ow acquired in other regions of

the world in a meaningful way to Antarctica. There are several possible approaches to

this. One method would be to use a tectonic regionalization, to summarize known heat

ow information by tectonic type, and then apply the results to Antarctica. Rough

regionalizations have been used to produce characteristic heat ow values for continental

tectonic regimes [ 1, 8, 9, 10] and in oceans average heat ow has been computed as

a function of sea-oor age [ 11, 12]. This approach is not ideal for Antarctica because

Antarctic tectonics is not well understood. A second method that has some merit would

be to predict heat ow directly from a 3-D seismic model. The merit derives from the

fact that the vertical seismic velocity gradient in the mantle is related to the temperature

gradient which controls the mantle component of heat ow [ 13, 14, 15, 16]. Demerits

include the necessity of introducing the crustal contribution to heat ow through the

decay of radioactive elements in some way, the fact that heat ow information from

elsewhere in the world would not be explicitly utilized, and the confounding e�ects of
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composition, mantle volatiles, and anelasticity. Shapiro and Ritzwoller [ 16] argue that

for seismic models to predict the mantle component of heat ow faithfully would require

the imposition of physical constraints on the inversion which have not yet been applied

systematically.

We aim to merge these two alternative methods in a way that will accentuate their

strengths and minimize their weaknesses. Our approach is to use structural, as opposed

to tectonic, analogies between parts of Antarctica and regions elsewhere in the world

where heat ow measurements are available. The structural analogies are de�ned by

a recent 3-D seismic model of the crust and uppermost mantle and are based on two

implicit assumptions. First, we assume that seismic velocities are related to temperatures

in the mantle and, therefore, to the mantle component of heat ow. Global seismic

models have been clearly observed to be strongly correlated with mantle temperatures,

on average. Continental tectonic regions and young oceanic regions, believed to be

warm, are slow. Shields, continental platforms, and old oceanic lithosphere, believed to

cold, are fast. In addition, seismic models are reconcilable quantitatively with surface

heat ow measurements over broad regions [ 16, 17]. A caveat here is the possible

e�ect of mantle composition (speci�cally, the volatile content) on seismic velocities in

some regions. Second, we assume that crustal radioactive heat production is similar

in regions with similar crustal structures. This is a more questionable assumption

because the relation between seismic velocities and the concentration of radioactive

elements remains poorly understood. It is, however, reasonable to expect that thick

continental crust will produce more internal heat than thin oceanic crust, which implies

that crustal composition and thickness are important variables. Sedimentary thickness

is also important because of the concentration of radioactive elements in sediments.

However, it is di�cult to use this variable at global scales because of the non-uniform

quality of the global sedimentary models. Overall, we believe that structural analogies

have a more substantial physical basis than traditional analogies based on tectonic age

observed at the surface. The structural analogy is specially advantageous for Antarctica
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where the surface geology is poorly known across large areas covered by the icesheets.

As described later in this paper, we formalize the structural analogy in terms of a

"structural similarity functional" and develop a procedure to extrapolate existing heat

ow data accumulated over the entire globe and to infer heat ow distributions for

regions in which direct heat ow measurements are rare or entirely absent.

Heat ow observations vary considerably at length scales comparable to the lateral

resolution of a global seismic model [ 1, 18]. The method of extrapolating heat ow

measurements that we describe here accounts for this variability by producing inferred

distributions of surface heat ux, rather than a single value at each nodal point on the

globe. The procedure, therefore, does not provide a deterministic prediction, but rather

at each geographical location presents a probability distribution for the likely heat ow

values.

2. The seismic model and structural similarity

Seismic models based on surface waves are most suitable to establish structural

similarities between di�erent parts of the Earth because they provide relatively

homogeneous coverage over the whole Earth and relatively good resolution in the crust

and in the uppermost mantle which are the depths most directly related to surface heat

ux. We use an update of the 3-D shear velocity model of Shapiro and Ritzwoller [

2]. The data used to construct this model consist of a large set of dispersion curves

for broad-band Rayleigh and Love wave group [ 19, 20] and phase [ 21, 22] velocities.

Period-speci�c dispersion maps were constructed with \di�raction tomography", which

is based on a physical model of the surface wave lateral sensitivity kernels [ 23]. These

dispersion maps are subjected to a non-linear Monte-Carlo inversion that produces an

ensemble of acceptable shear-velocity models at all points on a 2�� 2� geographical grid

world-wide [ 2].

Three features of this model make it particularly appropriate as a basis to infer

structural similarity world-wide. First, the large number of short-period group-velocity
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measurements used in the construction of this model improves the vertical resolution

of the model signi�cantly compared to traditional surface-wave models based on

phase-velocity measurements alone. Second, this model is based on a particularly large

data set of surface-wave paths across Antarctica [ 20]. Third, because the model is based

on a Monte-Carlo inversion, it has uncertainties, which we will need in the following.

We quantify the concept of structural similarity between two surface locations

x1 and x2 by introducing the \structural similarity functional", S(x1; x2). Although

its de�nition is ad-hoc, the functional must satisfy certain conditions. For example,

two points should be deemed perfectly similar when the shear velocity pro�les

directly beneath these points are identical and the points must be dissimilar when the

corresponding pro�les di�er signi�cantly. Here, we de�ne the similarity functional as

composed of two terms:

S(x1; x2) = (1� wMoho)S
�(x1; x2) + wMohoS

moho(x1; x2): (1)

The coe�cient wMoho regulates the relative contribution between similarity in velocity

structure and in crustal thickness. Similarity in shear velocity is quanti�ed by S�(x1; x2),

the weighted di�erence between the shear velocity pro�les �1(z) and �2(z) at locations

x1 and x2:

S�(x1; x2) =

R z2
z1
w(z)

�
j�2(z)��1(z)j

u(z)

�
dzR z2

z1
w(z)dz

; (2)

where z is depth, the limits of the integral are 0 km and 300 km, u(z) is the global

average uncertainty of the seismic model estimated with the Monte-Carlo inversion,

and w(z) is a depth-dependent weight function. Figure 2a shows the depth-dependent

weight function and Figure 2b shows the estimated average uncertainty in the shear

velocity model. As a result of these choices, the term S�(x1; x2) is dominated by the

mantle part of the model. The second term Smoho(x1; x2) is introduced to account for

di�erences in crustal thickness between points x1 and x2, Z
moho
1 and Zmoho

2 :

Smoho(x1; x2) =
jZmoho

1 � Zmoho
2 j

�moho
: (3)
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We use wMoho in the range between 0.25 and 0.5 and �moho = 10 km, which e�ectively

discriminates between oceanic and continental crust. Finally, note that the similarity

functional depends strongly on crustal thickness, but upper-crustal velocities are

signi�cantly down-weighted (Figure 2a). This weighting of crustal parameters follows

from the vertical resolution of the global model. Crustal thickness is relatively well

constrained, but model resolution deteriorates in the upper crust.

With similarity de�ned by equation (1), if S(x1; x2) < 1 the depth-averaged

di�erence between the two shear velocity pro�les will be smaller than the average

uncertainty in the model, so the points x1 and x2 will be considered to be similar.

When S(x1; x2) > 1, the di�erence between the pro�les will be deemed signi�cant and

the two points will not be considered to be similar. Figures 2c and 2d display maps of

the similarity functional for two points in Antarctica. The one in East Antarctica (84S,

90E) is similar to old cratonic regions (e.g., Canadian craton, East-European platform,

Siberian craton, West-African craton) consistent with tectonic reconstructions showing

East Antarctica to be a fragment of the old supercontinents Rodinia and Gondwana [

24, 25]. West Antarctic tectonics is dominated by the West Antarctic Rift System where

active volcanism and seismicity have been discovered [ 26, 5, 27, 28, 29]. Therefore, it

is not surprising that the similarity functional identi�es the point in West Antarctica

(78S, 110W) to be similar to continental regions with relatively young extensional

tectonics (e.g., Western North America, Iceland, Red Sea, Eastern Turkey, Western

Mediterranean).

3. Variability of Heat Flow Observations

The lateral resolution of the global shear velocity model of Shapiro and Ritzwoller [ 2]

across Antarctica is between 600 and 1000 km. Therefore, extrapolation of heat ow

measurements based on this model will provide heat-ow estimates averaged across

areas of this scale. The variability of heat ow measurements over areas of this size is

very large. For example, Figure 3 shows histograms of heat ow measurements in four
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di�erent tectonic settings: an old continental platform, a young tectonic continent, an

old ocean, and very young ocean near a mid-oceanic ridge. At each location, we selected

all heat ow measurements from the global database [ 1] within a 300 km radius circle

and computed the histograms shown in Figure 3. The resulting distributions are very

broad, especially in regions with a high average heat ow. Similarly broad heat-ow

distributions for di�erent geological units have been found by Pollack et al. [ 1] with the

variability increasing with the average heat ow (Figure 4).

A variety of physical mechanisms contribute to the strong lateral variability of the

geothermal ux; e.g., variations in the mantle geotherm, heterogeneous distribution of

radioactive heat sources in the Earth's crust, hydrothermal circulation in the shallow

crust. Hydrothermal circulation is expected to be more intense in tectonically active

regions and may contribute to the increase in the standard deviation of heat ow

measurements with an increase in the average heat ow, as shown in Figure 4. Although

investigating the physical mechanisms that produce the large variability of the heat ow

observations is beyond the scope of this paper, it is important for the methods that

extrapolate heat ow information to account for this variability. The method, therefore,

should not provide a deterministic estimate of surface heat ux, but rather should

generate a probability distribution for the expected heat ow at each location averaged

over a region of speci�ed size.

4. Inferred Distribution of Surface Heat Flux

We use the global surface heat ow compilation of Pollack et al. [ 1] as the primary

heat ow data set. Figure 1 identi�es the measurement locations and Figures 3 and 4

demonstrate the variability of the measurements at several locations.

In the following, we will refer to measured heat ow values as Q, to be distinguished

from inferred heat ow or heat ow as a functional variable for which we will use q.

The inference of the distribution of surface heat ux is an extrapolation procedure

guided by the notion of two-point structural similarity. Structural similarity is quanti�ed
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by the similarity functional in the following way. For each target location x0 where

we wish to infer a heat ow distribution, the similarity functional S(x0; x) de�nes the

regions with similar seismic structure (as shown in Figures 2c and 2d). The inferred heat

ux distribution is computed from the heat ow measurements within those regions of

similarity. This is formally performed by introducing a similarity-based weight function:

W (S) = exp

 
�
S2

2�2
S

!
(4)

where �S is a free parameter de�ning the degree of smoothing. The weight W [S(x0; xn)],

de�ned by equation (4), is the e�ective number of heat ow measurements deriving from

locations xn that are deemed applicable to location x0. The total e�ective number of

measurements to be applied at location x0 is:

Ne(x0) =
X
n

W [S(x0; xn)] ; (5)

where n is an index over all heat ow measurements Qn. As shown in Figure 5, there

are a few areas where the e�ective number of measurements is small because of unusual

crustal or mantle structure; e.g., the Altiplano and Tibet because of anomalously thick

crust.

Using the measurements from regions that are structurally similar to location x0,

the following equation estimates the heat-ow histogram that we assign to x0:

H(x0; q � dq) =
X
n

W [S(x0; xn)]B [Qn; q � dq] ; (6)

where Qn is the measured heat ow at location xn, the function B [Qn; q � dq] = 1 if

Qn lies between q � dq and q + dq and is 0 otherwise, and we set dq = 2.5 mW/m2.

The value of the histogram in the interval q � dq at location x0, therefore, is a weighted

sum of all measurements in structurally similar regions, where the weights are given by

equation (4).

We interpret this histogram as a probability distribution or probability density

function. Examples of inferred distributions at four locations, compared with the local

heat ow data, are shown in Figure 6. In general we see considerable agreement between
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the inferred (extrapolated) distributions and the local data, particularly at continental

locations.

The inferred heat ow distributions are also found to be fairly robust with respect

to the choice of parameters de�ning the similarity functional. For example, varying

the coe�cients �S and wMoho by a factor of two a�ects the inferred distribution in

continental areas very little, as Figure 7a demonstrates. The a�ect is somewhat larger

in old oceanic regions and is most signi�cant near mid-oceanic ridges (Figure 6c) where

the variance of the heat-ow measurements is especially high presumably because of

the considerable spatial variability of hydrothermal circulation [ 1, 18]. Despite this

variability, the inferred heat ow distributions capture the principal properties of the

expected distribution of local heat ux even in oceanic regions; e.g, the breadth of

the distribution and heavy tail toward high values near oceanic ridges. Overall, the

proposed method provides reasonable inferences of heat-ow histograms for a wide

variety of tectonic settings.

Another test of the method is the ability to reproduce the nearly linear functional

relationship between the local mean of heat ux measurements �Q(x0) and their standard

deviation �Q(x0), seen, for example, in Figure 4. The mean and standard deviation

can be computed from the inferred distributions, or equivalently from the weighed sum

over all heat ow measurements world-wide obtained at locations xn, where the weights

derive from equation (4):

�q(x0) =

P
nW [S(x0; xn)]Q(xn)P

nW [S(x0; xn)]
; (7)

�q(x0) =

(P
nW [S(x0; xn)] [Q(xn)�Q(x0)]

2P
nW [S(x0; xn)]

)1=2

; (8)

where Q(xn) are the observed heat ow values.

Global maps of the mean and standard deviation of inferred surface heat ux

estimated using equations (7) and (8) are shown in Figure 8. Here and later, we set

wMoho = 0:5 and �S = 0:2. This choice of parameters is ad-hoc, but has been selected to

discriminate between oceanic and continental regions while providing reasonable lateral



11

resolution and keeping the e�ective number of measurements, Ne, relatively high at

most locations.

Heat ux is inferred to be low for old continental regions and maximizes on the

mid-oceanic ridges and in regions that have undergone recent tectonic deformation.

The inferred standard deviations follow the same pattern as the mean heat ow; i.e.,

they minimize in old continental regions and maximize along mid-oceanic ridges and in

tectonic continental areas, such as West Antarctica. Figure 9 shows that the inferred

standard deviation is nearly a linear function of the inferred mean heat ux, similar to

the relation from Pollack et al. [ 1].

5. Parameterizing the Distribution of Heat Flux

Over most of the Earth, the inferred heat ux distribution can be well approximated

with a simple parameterized curve. Figure 10 shows an example where the inferred

distribution of heat-ow, H(q), is well represented with the log-logistic distribution

whose probability density function (PDF ) is completely speci�ed in terms of the local

mean (�q) and an exponent C, as follows:

PDF (q) = N
(�q=�q)C�1h

1 + (�q=�q)C
i2 (9)

where N is a normalizing coe�cient N = �C=�q, � = (�=C) csc(�=C), � =

(2�=C) csc(2�=C), and the relationship between the mean and standard deviation

is �q = �q ((� � �2)=�2)
1=2

. As C decreases, the distribution becomes increasingly

heavy-tailed, and as C increases the distribution approaches a Gaussian. We are

unclear why the log-logistic distribution approximates observed and inferred heat ow

histograms so well, whether it says something about the physics of heat ow or is simply

related to the exibility of the distribution.

East Antarctica is characterized by a heat ux distribution typical for stable

continents, with a low average heat ow, whereas in West Antarctica the distribution is

much broader with a signi�cantly larger mean. The predicted heat ow distributions
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are non-Gaussian, similar to distributions computed from the local data (Figure 3) and

to the global heat-ow histograms of Pollack et al. [ 1].

6. Discussion

We have presented a method that uses a global seismic model of the crust and

upper mantle to extrapolate existing heat ow measurements to regions where such

measurements are rare or absent. This method is based on the idea that regions that

are structurally similar are expected to have similar levels of heat ow. The structural

similarity is quanti�ed by introducing a structural similarity functional. The method

allows us to infer a probability distribution for the heat ux at each geographical

location. These distributions are strongly non-Gaussian, but are well approximated by a

simple parameterization, the log-logistic distribution which is completely speci�ed with

two parameters (equation 9). They agree well with observed distributions of heat ux

over much of the Earth.

The implementation of the proposed method is non-unique and depends on a

number of ad-hoc choices such as the heat ow data set, a particular global 3-D seismic

model, the speci�c form of the model-based similarity functional, and the form of the

corresponding similarity weight function. Those choices, however, are not completely

arbitrary. The parameters that compose the similarity functional (in particular, relative

contributions from the crust and from the mantle) were selected based on the resolution

of the seismic model [ 2]. In addition, the inferred distributions of heat ux are relatively

robust to variations in the choices of parameters that de�ne the extrapolation method,

particularly in continental areas.

An important application of the method presented here is to estimate the expected

heat ux for Antarctica, which is needed as input into models of the dynamic evolution

of the Antarctic Ice Sheet. A map of inferred mean heat-ow (Figure 8) demonstrates

substantial di�erence between East and West Antarctica, being almost three times

higher in West Antarctica. This elevated heat ux may increase the rate of melting at
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the base of the ice and provide more e�cient lubrication for fast moving ice streams.

This mechanism may contribute to the instability of the West Antarctic Ice Sheet [ 30,

31, 32].

Mean heat ux shown in Figure 8, however, does not reect small-scale patterns

caused by variations in hydrothermal circulation, volcanic activity, crustal radioactive

heat production, etc. that may prove to be very important in modeling the behavior

of Antarctic ice streams. The map of mean values also does not provide a statistically

meaningful realization of the heat-ow across Antarctica. A longer term challenge,

therefore, will be to �nd ways to utilize the full inferred distribution rather than

simply the mean of the distribution. Realistic heat ow realizations may be obtained

by generating at each geographical location random values that satisfy the particular

log-logistic distribution at that location. Such random realizations must also simulate

realistic spatial correlation of the heat ux. Developing the methods to generate such

stochastic heat ow realizations is, however, beyond the scope of the present paper.

Although concentration here has been placed on extrapolating heat ow

measurements to regions devoid of such information, the method we describe may also

be useful for interpolation and to produce a smooth global map. Global heat ow maps,

such as the mean of the inferred heat ux distribution shown in Figure 8, may also

prove useful as constraints to improve future seismic models. Shapiro and Ritzwoller [

16] discuss how the assimilation of heat ow data into seismic inversions can improve

the seismic model. A major problem is the uncertainty in the quality of a global model

of heat ow, which the methods discussed in this paper may help to address. The

construction of the inferred mean heat ux map presented here, therefore, may be seen

as part of an iterative process in which the seismic model guides the inference of global

heat ux which may in turn be fed-back to help re�ne the seismic model.

Continued improvements in seismic models and further re�nements in the heat ow

data base will yield better inferences of surface heat ux in the future. Discussions are

underway toward developing much improved seismic infrastructure on Antarctica, which
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promises great improvements in the resolution of the seismic model across the continent.

Application of the estimated heat ux as a basal boundary condition in models of the

dynamics of the Antarctic ice sheets will be particularly aided by improvements in the

resolution of seismic models across Antarctica.
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Figure 1. Distribution of the heat ow data from the database of Pollack et al. [1].

Here and after, thick black lines show the plate boundaries.
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Figure 2. (a) Weights w(z) used in equation (2) to de�ne the structural similarity func-

tional, S�. (b) Model uncertainty u(z) used in equation (2). (c) The similarity functional

for a location in East Antarctica (84S, 90E). Similarity is greatest for a value of 0; i.e., the

darker regions, which are predominantly near shields and continental platforms. (d) The

similarity functional for a location in West Antarctica (78S, 110W). West Antarctica is

most similar to regions that have undergone recent tectonic deformation with relatively

thin crust.
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Figure 3. Local histograms of observed surface heat ow taken from the data base of

Pollack et al. [1] within 300 km of the speci�ed location. (a) Western United States

(40N, 120W). Total number of heat ow measurements is N = 344, mean heat ux is

�Q = 107:7 mW/m2, and standard deviation �Q = 85:9 mW/m2. (b) European platform

(50N, 30E). N = 198; �Q = 45:9 mW/m2, �Q = 17:3 mW/m2 (c) Mid-Atlantic ridge near

Island (62N, 24W). N = 57; �Q = 135:9 mW/m2, �Q = 84:9 mW/m2 (d) Western Atlantic

(32N, 68W). N = 156; �Q = 52:4 mW/m2, �Q = 6:4 mW/m2.
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Figure 4. Standard deviation of observed surface heat ux, �Q, plotted as function of

the mean observed heat ux, �Q. Values from the four locations presented in Figure 3 are

shown with triangles. Circles and squares show the values estimated by Pollack et al. [1]

for oceanic and continental tectonic units, respectively.
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Figure 5. E�ective number of heat ow measurements, Ne (equation 5), to be applied

at each spatial point.
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Figure 6. Comparison of heat-ow histograms computed using local observations (Qn)

obtained within 300 km of the speci�ed locations, with the histograms H(q) inferred

using equation (6). The four locations are speci�ed in Figure 3. Solid black lines are

the inferred histograms and thick grey lines are the histograms constructed from local

observations. The local data have been segregated and not included in computing the

inferred histograms in each case.
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Figure 7. Assessment of the e�ect of varying parameters in the similarity functional

on the inferred histogram of surface heat ux, H(q), for two of the locations shown in

Figure 3. Solid black lines are the inferred histograms obtained with wMoho = 0:5 and

�S = 0:2, dashed lines are the histograms obtained with wMoho = 0:5 and �S = 0:4, and

dotted lines are the histograms obtained with wMoho = 0:25 and �S = 0:2. Histograms

inferred within continents are robust relative to these choices, but histograms for young

oceanic regions are more variable due to the higher variation of heat ux measurements

near mid-ocean ridges.
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Figure 8. (a) and (b) Mean of the inferred heat ux distribution, �q, estimated by

equation (7). (c) and (d) Standard deviation of the inferred heat ux distribution, �q,

estimated by equation (8).
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Figure 9. Standard deviation of the inferred distribution of surface heat ux (�q, equa-

tion 8) plotted as function of the inferred mean of the distribution, �q, taken from equation

(7), for all points on a 2� � 2� global grid (small light circles). Values from the four lo-

cations shown in Figure 3 indicated shown with dark triangles. Dark circles and squares

show the values presented by Pollack et al. [1] for oceanic and continental tectonic units,

respectively.
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Figure 10. Inferred histograms of surface heat ux estimated using equation (6) for a

point in East Antarctica (84S, 90E) and a point in West Antarctica (78S, 110W). The

best-�tting log-logistic probability density functions are shown with dashed lines. For

the West Antarctic location C = 4:0 and �q = 107, and for the East Antarctic location

C = 5:5 and �q = 57.


