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ABSTRACT

We present the numerical application of the theoretical formalism of Lavely & Ritzwoller (1992) to the
medel of stationary, large-scale solar convection described by Glatzmaier (1984) in order to search for a useful
characteristic signature of giant-cell convection in helioseismic data. The numerical results contain two major
simplifications. First, they are based on degenerate perturbation theory rather than the more accurate quasi-
degenerate perturbation theory, with the consequence that only the toroidal component of flow has a helio-
seismic effect. Second, to insulate these synthetic experiments from explicitty simulating the source of
helioseismic oscillations, we present ensemble average results, the average effect of convection on helioseismic
data taken over a large number of observing intervals. Frequency and line-width measurements are presented
on spatially filtered spectra, so that references to azimuthal orders apply to the m-value of the spherical har-
monic, Y7, of the spatial filter. Frequency splittings are antisymmetric in m and are maximum for large |m|/l.
They are not well fitted by a low-degree Legendre polynomial and are below the currently measurable level
for Glatzmaier’s model of convection. Systematic patterns exist in radial order and harmonic degree which
may be able to be exploited observationally. The most significant helioseismic signature of Glatzmaier’s model
of large-scale convection is a systematic apparent line-broadening effect which is dominantly parabolic in m
(the azimuthal order of the spherical harmonic spatial filter) within each multiplet, so that line widths are
maximum for low-|m}/l states and are relatively unaffected for high-|m]/l states. We call this pattern the
O-bowl. The size of this line-broadening effect scales with average convective velocity and degenerate (. Since
Glatzmaier’s model is defined only to 0.95 R and since we ignore poloidal flows, the helioseismic effecis of
Glatzmaier’s model may be considered conservative. To offset this fact, we have set intrinsic Q to be high
(10%), consistent with very low frequency degenerate @ measurements, and to be constant with frequency,
although @-values above 2 mHz are considerably lower than this, Line broadening for certain nearly zonal
(m = 0) resonances exceeds 50% of this input intrinsic @ for Glatzmaier’s model. In addition, the measured
apparent degenerate ¢ of each multiplet is systematically reduced by convection. The magnitude of these
effects is dependent on the intrinsic Q, on harmonic degree I, and on the degenerate frequency of the multiplet,
Increasing the size of the nonaxisymmetric part of the flow model acts to depress degenerate Q further and
broadens the @-bowl. To establish the existence of convective giant cells, and, perhaps, to estimate their sta-
tistical characteristics, it should become an observational priority to measure individual m-state line widths or
line-width trends within multiplets. Current  measurements have been made by linearly recombining the
(21 4+ 1) resonances within a multiplet to produce a high signal-to-noise measurement of degenerate Q. Our
predictions on the systematics of measurements of degenerate @ in the presence of large-scale convection are
consistent with these observations.

Subject headings: convection — line; profiles — Sun: oscillations

1. INTRODUCTION

The promise for the use of helioseismic data to reveal new
information about the solar interior remains strong. Nowhere
is this more true than in the potential for the use of helioseismic
data to constrain the properties of large-scale convection deep
in the solar interior. Nevertheless, with the exception of esti-
mates of the axisymmetric component of large-scale convec-
tion, differential rotation (e.g, Brown et al 1989;
Christensen-Dalsgaard, Schou, & Thompson 1990; Thompson
1990; Ritzwoller & Lavely 1991), comparatively little emphasis
has been placed on this problem to date (e.g., Hill, Toomre, &
November 1983; Brown 1984; Hill 1988, 1989; Bogdan 1989;
Balmforth 1992a, b, ¢; Lavely & Ritzwoller 1992).

In this paper we do not propose to solve the helioseismic
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inverse problem for convection, Instead, we continue to inves-
tigate the forward problem on which the inverse problem must
surely rest and study the helioseismic effects of a single model
of convection in detail. We present numerical estimates of the
influence of a global-scale, steady state convective flow field on
helioseismic data—in particular, on modal frequencies and line
widths. It is intended that this work should provide part of the
necessary background for future attacks on the inverse
problem by determining the signature(s) of convection in helio-
seismic data. If the characteristic signature(s) of convection
should be observed, they would provide evidence for the exis-
tence of large-scale convection in the deep interior of the con-
vection zone. In addition, estimation of these signatures could
be used as data in future inversions to constrain deep-scated
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solar convection. Helioseismic constraints on the large-scale
dynamics of the solar interior would constrain convection
theories and, for example, should help dynamicists assess the
relation between solar convection and both the solar dynamo
and the observed large-scale solar magnetic activity.

Thus, the goal of this study is to aid in the understanding of
solar convection by using helioseismic data to constrain con-
vection deep in the solar interior. This paper is preceded by a
purely theoretical treatment of the forward problem by Lavely
& Ritzwoller (1992). The results of the current paper differ from
those of our subsequent studies in two principal ways. We
concentrate here on the average effects of convection on helio-
seismic data, and we ignore observational artifacts such as
cross talk, day/night sidelobes, noise, and so on. Given an
ensemble of helioseismic observation intervals and a stationary
convective field, by average we mean the expected value of the
effect of convection on helioseismic data taken over all, or at
least a great many, time intervals. We will refer to a single
observing interval as a single realization. The helioseismic
effects discussed here are called ensemble-average effects, and
we speak of frequency and line-width measurements made in
the ensemble average. As will be expanded upon below, single
observing intervals will not produce ensemble-average esti-
mates of helioseismic observables. Kelly & Ritzwoller (1993)
discuss how spectral estimates from single realizations can be
made to approximate the ensemble average and also discuss
the effects of observational artifacts ignored here.

We consider ensemble-average effects here for two reasons.
First, the ensemble-average effects are more simply related to
the input convective model. Thus, it is these effects that we wish
first to understand and later to estimate to constrain convec-
tion. Second, as we will show below, doing so frees us from
explicitly simulating the source of helioseismic oscillations.

1.1. Models of Solar Convection

The convective velocity field used in our computations was
computed by G. Glatzmaier in a numerical simulation of large-
scale solar convection and is described here in § 2.1. The reader
is referred to Glatzmaier (1984) for a description of the equa-
tions governing solar convection and the numerical methods
he used to solve them. A recent review of solar convection can
be found in Spruit, Nordlund, & Title (1990). Although our
numerical results are for a specific numerical model of convec-
tion, the methodology that we have introduced to calculate
helioseismic time series, power spectra, line widths, and fre-
quencies in a convecting model can be applied to any numeri-
cal model of convection whose scalar and vector variables can
be parameterized in terms of scalar or vector global spherical
harmonics, and whose properties satisfy the theoretical
assumptions on the splitting matrix listed in § 3. In addition,
although the magnitude and details of the effects of different
convection models will vary, the general character of the effects
that we stress here will be the same. As described in § 2.1,
Glatzmaier’s convective model is ideally suited as a basis
model for our simulations. However, it is only defined from
slightly below the base of the convection zone (since it models
convective overshoot) outward to approximately 0.95 R,
where R, is the solar radius. Since this model does not contain
the strong near-surface flows, its predictions of convective
effects on helioseismic data should be considered conservative.
To mitigate this fact, we have chosen input intrinsic @ to be
higher than measured intrinsic ¢ above 2 mHz. With an intrin-
sic @ of 10* we show that Glatzmaier'’s model produces a

strong, systematic signal in helioseismic line widths (which,
using the method of Kelly & Ritzwoller 1993, may be observ-
able at low frequencies) but a weaker one in frequencies which
are below the level of current measurements.

In Lavely & Ritzwoller {(1992) we discussed observational
evidence that is suggestive of the existence of coherent, large-
scale flows in the deep interior of the convection zone.
However, recent numerical simulations of convection by Stein
& Nordlund (1989) and Cattanco et al. (1991) demonstrate that
coherent structures near the top of the turbulent boundary-
layer model disintegrate into increasing disorganized motions
with depth. These simulations only model flows near the solar
surface and are outside of the depth regime that we consider
here and that is modeled by Glatzmaier, The question of the
existence of sustained, organized flow structures at depth
remains an open area of research and will ultimately be
answered only observationally. This is the prime motivation
for the present study.

1.2. Modeling the Effect of Convection on Helioseismic Data

The effect of convection on helioseismic data can be modeled
in a variety of ways. From a ray-theoretic point of view, con-
vection perturbs propagation speeds and alters ray trajectories.
Hill et al. (1983) and Hill (1988, 1989) have developed and
applied ray-theoretic concepts to model the influence of near-
surface convection on waves confined to the upper part of the
convection zone, From a modal-theoretic point of view, con-
vection couples modes from the reference state, the spherically
symmetric, nonrotating, nonmagnetic, adiabatic, isotropic,
static (SNRNMAIS) solar model, and splits frequencies. In
terms of traveling waves, coupling corresponds to deflection
and deformation of wave fronts. Splitting corresponds to path-
dependent speeding up and slowing down of waves, We follow
Lavely & Ritzwoller (1992), who presented a general modal
theory using quasi-degenerate perturbation theory to model
the influence of global-scale convection on modal coupling and
splitting, In this theory, modes of the SNRNMALIS solar model
that are nearly degenerate in frequency are allowed to couple.
For numerical simplicity, here we use degenerate perturbation
theory, described in § 3 and Appendix B, which is a special case
of the quasi-degenerate perturbation theory. Under degenerate
perturbation theory, only those modes with the same degener-
ate frequency in the SNRNMAIS model can couple. That this
restricts the number of possible coupling partners provides
another reason why the results presented here should be con-
sidered conservative, In particular, as discussed in § 7 of Lavely
& Ritzwoller (1992), under quasi-degenerate perturbation
theory both poloidal and toroidal flows produce modal cou-
pling and, therefore, potentially observable effects, whereas
under degenerate perturbation theory only odd-degree toroi-
dal flows couple modes.

The basis for our numerical simulations is the theoretical
expression for the acoustic wave field, u,(r, 1), for multiplet
k = (n, 0), presented by Lavely & Ritzwoller (1992). The dis-
placement field of multiplet k in the corotating frame generated
by the oth source is given by

uilr, 1) = (¢ A) exp (LA™ + (o, + iol]t} = [APta"Hp)]
(n

where T and ¥ denote, respectively, the transpose and adjoint
operators, I is the identity matrix, * denotes the convolution
operator, a™(t) is the source vector defined below by equation
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(3), 3, is the degenerate frequency, o, = @, /(2Q,) is the intrinsic
attenuation rate, and @, is the intrinsic quality factor, s, is the
vector of displacement eigenfunctions s for (—! < m < [), A%
is the eigenvector matrix that diagonalizes the splitting matrix
H,, A® is the diagonal matrix containing the eigenvalues of H,
and is defined in terms of H, and A* by equation (13). The
total wave field for multiplet k is given by

"k(",t)=zurf"=f)a (2)

a

where the sum is taken over all sources ¢. Modal notation and
terminology are discussed further in Appendix A.

The displacement eigenvector s, and degenerate frequency
w, in the linear theory are dependent solely on the reference
SNRMAIS solar model and were computed using the method
of Woodhouse (1988). The reference solar model was com-
puted using a stellar evolution program written by R. Gilli-
land. Theoretical estimates of the quality factor @, are
dependent on mechanisms that produce damping and aux-
iliary quantities such as turbulent viscosities, radiative opac-
ities, the choice of the atmospheric model above the
photosphere, the nature of convection-oscillation interaction,
the inclusion of nonlinear effects, and so forth. Because of the
increase in the effect of damping processes with frequency as
modes compress near the surface, (¢-values in the Sun decrease
with frequency. Nevertheless, in most of our numerical experi-
ments we will assume that Q is constant with frequency. We do
this for two reasons. The first reason is simplicity, so that
frequency-dependent Q effects caused by convection can be
easily identified. Second, theorctical models of intrinsic O
{(Christensen-Dalsgaard, Gough, & Libbrecht 1989) are at
variance with observations and each other, and, as we will
argue below, observed Q trends will be affected by apparent
line broadening caused by convection. Therefore, choice of the
nature of frequency dependence is not entirely straightforward.
A more significant assumption than the constancy of intrinsic
.Q is our choice of its value, 10, which is about 5 times too
large for modes between 2 and 3 mHz, but is consistent with
very low frequency Q measurements (Libbrecht 1988). We have
chosen a high @-value in an attempt to offset the fact that we
consider Glatzmaier’s model of large-scale convection to be
conservative. As will be shown below, convective line-
broadening scales directly with convective velocity and Q.

Inspection of equation (1) reveals four principal challenges in
simulating acoustic wave fields: (1) constructing the splitting
matrix H = AAA' (which is a function of the flow field), (2)
simulating the source vector a™*(t), (3) projecting onto a single
spherical harmonic component of the displacement eigen-
function s7 by spatial filtering, and (4) making the spectral
estimates of modal amplitudes, frequencies, and line widths.
The flow field is discussed in § 2, and the construction and
nature of the splitting matrix H is discussed in § 3. Calculation
of power spectra and spectral estimation of modal amplitudes,
frequencies, and line widths are discussed in § 4. The majority
of the numerical results appear in § 5. In the remainder of § 1
we will primarily discuss the source vector and the spatial filter.

1.3. The Acoustic Source Process

We adopt here the currently prevailing view that solar
acoustic modes are excited by acoustic noise generated by
turbulent convection near the solar surface (Goldreich &
Kumar 1988; Kumar & Goldreich 1989; Brown 1990; Baim-
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forth 1992c). Goldreich & Kumar (1988) showed that acoustic
emissions vary as the eighth power of the Mach number. Con-
sequently, Brown (1990) suggested that most of the cmission
originates from that small fraction of the flow volume contain-
ing the very highest velocity flows. Observational support of
Brown’s model can be found in Goode, Gough, & Kosovichev
(1992). Simple scaling arguments suggest that the characteristic
spatial dimension of a source region is considerably smaller
than the horizontal wavelengths of low- and intermediate-
degree modes, and that the lifetime of a given source is compa-
rable to typical modal periods. Therefore, Lavely & Ritzwoller
{1992), in § 9, using the source representation theory of Backus
& Mulcahy (1976a, b), assumed that the sources of acoustic
energy are well approximated with delta functions in space, but
retained the general time dependence of each source. The
acoustic wave field is given by the convolution of the source
time functions with the harmonic resonances of the convecting
solar model. The dependence of the acoustic displacement fieid
on the source process is modeled with the source vector a’ (1)
which describes the source time history of the oth source. The
azimuthal order-m component of #”%(z) is defined by the rela-
tion

—Me(r,, t):e®m*(r )
N, w? ’

agHt) = 3)
where M°(r,, t) is the moment rate tensor evaluated at the
source centroid location r, of the ath source which is sufficient
to represent a general dipolar and/or quadrupolar acoustic
source, ¢ ™ is the strain tensor of the SNRNMAIS mode (n, 1,
m), and N, is the normalization constant defined by equation
{A4).

Three principal assumptions simplify the use of equations (1)
and (3) presented here. First, the turbulent nature of the source
process suggests that the components a;* of the source vectors
at each time are uncorrelated. This is called the random phase
approximation and was used, for example, by Kumar & Gold-
reich (1989) in their study of nonlinear modal interactions
among solar p and f modes. Second, the observed equipartition
of energy (Libbrecht, Woodard, & Kaufman 1990) among the
(2! + 1) m-states of a given multiplet implies that, on average,
the modulus of the spectral density of a%;*(t) is independent of
m. Third, as discussed above, we seek herc only ensemble-
average spectral characteristics. As we will argue below, in the
ensemble average the source spectrum (i.e., the power spectrum
of the source time history) is constant over narrow frequency
bands, ic., it is locally approximately flat. Thus, seeking only
ensemble-average effects allows us to ignore the time depen-
dence of the source vectors. In a later contribution, we simulate
the source time history and demonstrate that spectral esti-
mates made on a large number of realizations do, indeed, con-
verge to the ensemble average.

1.4. Data Reduction and Helioseismic Observables

The remaining undiscussed challenge is that we attempt to
provide estimates of the effect of large-scale convection on
aspects of helioseismic data similar to the form in which they
are observed. Typically, observers spatially filter time
sequences of helioseismic images, projecting each image onto a
set of spherical harmonics to produce for each spherical har-
monic degree and azimuthal order, Y7, a single time series.
This procedure is discussed further in § C2 below. We note that
the result of the spatial filtering process can be approximated
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by simply considering the time series for each spherical har-
monic component of the displacement eigenfunction s in
equation (1). Our procedure essentially produces a perfect
spatial filter. Tt possesses no modal cross talk due to uneven
sampling, no seeing effects, and no noise of any kind. We say
that each such time series created by spatial filtering is associ-
ated with an m-state, or that the displacement pattern
described by the spherical harmonic Y™ is an m-state. An
understanding of what is meant by m here is crucial. In a
spherical or axisymmetric model each m-state is associated
with a single frequency, and, thus, an m-state is a single mode
of oscillation. Inspection of equation (1) shows that each
m-state in a convecting model is multiply periodic, being com-
posed of (21 + 1) individual harmonic functions. We call the
cluster of (2 + 1) unresolved Lorentzians (the power spectrum
of a decaying, complex exponential in the time domain) a gen-
eralized resonance function. Typically, observers fit a single
Lorentzian to each resonance function in the frequency
domain. Since each generalized spectral “line ” is actually com-
posed of (21 + 1) individual lines, the single Lorentzian model
is imperfect. Therefore, we refer to the frequency and quality
factor estimates of the Lorentzian fit to the generalized reson-
ance function as the apparent frequency, w,,,, and the apparent
Q. Q.pp. of the generalized resonance function. The values
taken by the apparent frequency and apparent Q estimates are
dependent upon the method of fitting, since the fit is imperfect.
This is discussed further in § 4.

Thus, the line-broadening effect of convection that is the
focus of this paper is caused by the multiply periodic nature of
gach m-state. In a nonlinear theory, convection and acoustic
oscillations can couple and convection can damp the oscil-
lations and change the intrinsic @ of an acoustic mode. But our
theory is linear, and convection and oscillations do not explic-
itly exchange energy. The line broadening we discuss in this
paper is merely an apparent line broadening which results
from the fact that the spectra being considered are for a single
(!, m) pair, and there are multiple lines caused by coupling in
each generalized resonance function. In our theory, the intrin-
sic @ of each individual mode of oscillation of the convecting
model has not been changed by convection. However, we
measure Q-values not on individual modal lines but on gener-
alized resonance functions. It is these spatially filtered spectra
which display the line-broadening effect.

L3. Overview of the Paper

The paper is organized as follows. In § 2 we describe the
convection and differential rotation models used in our
numerical calculations. In § 3 we describe the numerical con-
struction of the splitting matrix. In § 4 we derive an expression
for the power spectrum of a generalized resonance function in
the emsemble average and discuss the methods that we use to
estimate apparent frequencies and line widths. Tn § 5 we
present numerical estimates of these quantities, and we discuss
the comparison between our predictions and existing observa-
tions in § 6. Technical discussions supportive of the arguments
in the body of the text are included in the Appendices.

2. MODELS OF CONVECTION

Examples of numerical, global-scale models of convection
include the models computed by Gilman & Glatzmaier (1981),
Glatzmaier & Gilman (1981, 1982), Glatzmaier (1984), and
Gilman & Miller (1986). These models share a number of char-
acteristics that make them natural for use with the theory
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presented by Lavely & Ritzwoller (1992). First, the long-
wavelength, deep-seated components of the flow fields in these
numerical simulations are approximately stationary for sub-
stantial periods of time. Second, the models were computed in
the anelastic approximation, and their maximum convective
velocities are small enough to justify the assumption of linear-
ity in our perturbation theory. Finally, the models are global in
extent, and the convective variables of the models are param-
eterized in scalar and vector spherical harmonics which are
used in our theory. The numerical model used in our calcu-
lations was computed by Glatzmaier (1984). In § 2.1 and 2.2
we describe, respectively, the nonaxisymmetric and axisym-
metric components of the velocity field. In this paper, the con-
vecting model is defined to include both nonaxisymmetric and
axisymmetric velocity fields, whereas the differentially rotating
model refers to the axisymmetric part of the convective velocity
field alone.

2.1, The Convective Velocity Field

We represent the global-scale convective velocity field with
vector spherical harmonics which are the natural basis func-
tions for a vector field on or in a sphere. A general stationary,
laminar velocity field uy(r, 8, $) can be decomposed into poloi-
dal and toroidal components:

wolr, 0, 9)= ¥ Y [H()Y0, ¢

=0 t=—3
+ OV, Y0, ) — wilrF x V, Y0, §)], (4

where the expansion coefficients ui(r) and v(r) define the poloi-
dal flow, and the coeflicients wi(r) define the toroidal flow. The
anelastic condition V - [p,u,(r)] = O constrains the poloidal
expansion coefficients by the relation &,(rlp,tl) = p,rs(s
+ 1jv}. The reality of the flow field and the relation Y*™* =
(— 1YY, " imply that the radial expansion coefficients satisfy
the conditions u; ‘= {—1u*, o' = (—1yu2* and w ' =
(— 1y'wi* where the asterisk here denotes complex conjugation.

Gilatzmaier (1984} represents the convective velocity field in
a form that conserves mass flux so that the velocity field auto-
matically satisfies the anelastic condition. From equation (4a)
of his paper, his representation of the flow field can be rewrit-
ten

vr, 8, ¢) =

1 N 5
VxV
Po(") s§0 I=Z—S
x [WiNY{0, §)F] + V x [Z() YO, $F] . (5
Equating the r, 0, and ¢ components of v and u,, and using the
orthogonality of the spherical harmonics, we obtain the follow-
ing equalities:

1

0) = 77 - s+ D) ©®
1

Wi = - 5, ™

iy = L W)

i) = - =20 ®

Equations {6) and (8} together yield a relation identical to the
anelastic condition cited above.

We obtained the expansion coefficients Wi{r), &, wi(r), and
Zyr) from Glatzmaier and transformed them using equations
(6)~(8). Figure 1 displays the moduli of the expansion coeffi-



g F T 1T | LR i T i TT T ‘r"l‘l"l'—E_T’lﬁ"*"L
Eojul(r =0.95R.)
- o
Sl @ 908 (mfs) 8-
C . e
I ® 8 %
=T .
s ..c.o.-
F e ol ilill
o ST
. . : :
- ) ) i
w [ R i
ol SIS AR A B ST AU N A AT O
0 5 19 15 20 25 30
o T T |I\II1I\I‘TrT'TI\I\I TT1TF
c):‘
s I (r = 0.8580. )|
s'q'j T @ 78 /s
=N
o8
— L
'g w [
=
= _F :
=
‘g or . :
& o .
g: -.
N N N R R S A
a 53 10 15 20 25
@ FT r F'I_I_T"Tj r"l—fT | S e [ LA f"l rr t l
™ a .
- |ui[r =173
r o
S @ 47T onds) ..
a | _
~ L
ol ;
o[ _
ol : ]
r . ]
o bttt i i T
[ 3 14 12 20 25 ao

ao

25

20

30

25

30

20

15

10

_! T T ‘ TT 77t ‘]'T'T T | TTrrr T"T 1'7777_TTV‘|'T—[77
L iy = 0,938 ) 7 n .
E. 74 {m/s) & -
N .. - ) -

. s .

il B
25 30

TT T Ty

Ll =830

UL e Tt R R B S B B

1.5 {mfs) R

Lot [
20 25 30

:F‘l_llll\ II]I\I‘II 'I'IITIWLI\'[

L |oltr = 0.T3R.)

@ L5im/s) L

u . 1

r .

I B AT i AP WIS AT

o] 8 10 15 20 25 30

harmonic degree s

10 15 20 25 30
LA Y O O LD B BB
.

T T

0
I
=)

.

L B L B N L B B B

|wi(r = (LO5R,.}|

TTTT T T

1
® 218 (m/s) RN

[=3

20 25 30
.Ilf]l\l\l\l.\]l\\l‘!l‘
.

15

10

30

10 15 20

0
OE-I’\kll‘\]l\l\ll\"\|l

e

L S B B B

[wi{r = 0.83R.)|

L B

T

& 215{(m/s)

[

P Il IR AVRDT SR N TR B S S

5 1o 12 20 25

SO by ada ey laaa s

o
{1
©

CETTTT T

T T

lw' (= 0.3

L B

16,4 (/8]

I IS U

Ldadad 1

w
0

F1G. 1—Modulus of the complex expansion coefficients «'(r), v'(), and w*, (in meters per second) of Glatzmaier’s model described in § 2.1, plotted at three different
radial levels. Top panels: r = 0.95 Ry, middle panels: r = 085 R, bottom panels: r = 0.75 R, corresponding respectively to the top, middle, and bottom of the
convection zone. The size of each symbol is proportional to the size of the associated velocity coefficient, where size is normalized separately for each graph. As radius
decreases, the velocity reduces and wavelengths increase. Most of the power in the poloidal coefficients, «} and v}, is concentrated in the sectoral components which
can be identified with banana-cell type convection. For the toroidal field, w!, the zonal (t = 0) expansion coefficients for s = 1, 3, 5 (which correspond to differential
rotation) have been omitted, since their large size would overwhelm the features of this figure. Most of the power in the toroidal velocity field is in the longest

wavelength components.



EFFECTS OF CONVECTION ON HELIOSEISMIC DATA 815

cients uifr), vi(r), and wi(r) at the three radial levels, r = 0,95
Rg, r=085 Ry, and » =0.75 R, for harmonic degrees
1 <5 < 30 and azimuthal orders 0 <t < 5. The sizes of the
hexagons in each of these figures are proportional to the
modulus of the coefficients. These coefficients represent the
configuration of the velocity field at a single time step in Glatz-
maier’s numerical simulation. Glatzmaier evolved his convec-
tion model until initial transients died out and major
components of the flow had reached approximately steady
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FiG. 2.—{a) Horizontal component of the poloidal flow field for 1 <5 < 7,
odd 5; —5 <t < ¥ at radial level r = 0.95 R,. The latitude and longitude are
normalized, The horizontal flow displays alternating zones of divergence and
convergence corresponding to the well-known banana cells. (b) Toroidal flow
field for T < s < 7, odd 5; —s <t < 5 at radial level » = 0.95 R,. Streamlines
are cenfined to spherical shells. In contrast to the poloidal flow plotted in (a),
the toroidal field is divergence-free.

state conditions. The simulation contains spectral components
extending to s = 42. We have truncated the plots in Figure 1 at
5 =30, since the power in the components in the range
31 < 5 < 42 is greatly diminished relative to the power in the
longer wavelength components.

Because of their distinctive geometries, poloidal and toroidal
flows affect acoustic modes in different ways. For example,
under degenerate perturbation theory modal coupling is insen-
sitive to the poloidal component of the flow and to the even-
degree component of the toroidal flow (see Lavely &
Ritzwoller 1992). Figures 2a and 2b are plots of the poloidal
and toroidal velocity fields for a subset of the expansion coeffi-
cients. These figures illustrate the well-known facts that poloi-
dal flows are characterized by zones of convergence and
divergence, whereas toroidal flows are confined to spherical
shells and have closed streamlines. We use degenerate pertur-
bation theory in this paper, and, therefore, the poloidal com-
ponent of the flow is not included in our calculation.
Nonetheless, we have shown these coefficients to emphasize a
fundamental nonuniqueness inherent in degenerate pertur-
bation theory: the frequencies and displacement patterns of
modes in the convecting model are insensitive to dynamicaily
significant components of the flow,

2.2. The Differential Rotation Model

The velocity field due to differential rotation is the toroidal,
odd-degree, axisymmetric component of the total velocity field
#,y, i.e., the terms wo(r)f x V, Y%@, ¢) for odd s. These are the
same basis functions used by Ritzwoller & Lavely (1991) in
their study of the forward and inverse problems of differential
rotation. We replaced the low-degree components w?, w3, and
w? of Glatzmaier’s velocity model with components that repro-
duce the velocity field inverted from helioseismic data by Lib-
brecht et al. (1990). This change was made to make our
simulations more realistic, since, as we show in § 5, coupling
strength is a strong function of differential rotation. Inversions
of helioseismic data (e.g., Libbrecht et al. 1990; Brown et al.
1989) suggest that the rotation profile is constant on concentric
spheres, whereas Glatzmaier’s differential rotation velocity
field is constant on cylinders.

We have adopted /27 =400 nHz as the value of the
average angular surface rotation rate. Thus, in the corotating
frame, the differential rotation profile of Libbrecht et al. (1990)
(in radians per second) is given by

Qr, =2 > Q)cos o, (9)

k=0,2,4

where £y =30 nHz, 2, =Q, =0 for 0 <r <r, and where
Q, =062 nHz Q, = —58 nHz, Q, = —84 nHz for r, £r <
R, r, being the radius at the base of the convection zone. The
velocity field corresponding to the angular rotation rate in
equation (9) can be expressed in terms of the toroidal, odd-
degree, axisymmetric expansion coefficients of the vector
spherical harmonics (Ritzwoller & Lavely 1991):

Wi [ Q) | 3Q40)
2—n_2\/;r[90(r)+ s+ 36 ] (10)

wir) . [m [2Q,0)  28Q,(r) 1
2n ”2\/;"[ 15 1 315 } (an

wi(r) n | 8Q,(r)
o 2 Hr[ 315]‘ (2
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3. THE SPLITTING MATRIX

In this section we discuss the splitting matrix, H,, and its
numerical computation using the convective model of Glatz-
maier. The derivation of the splitting matrix is based on the
assumptions that the convective flow field is steady state and
anelastic, and that the governing equations of motion are lin-
earizable in the mode displacement and convective flow field.
Lavely & Ritzwoller (1992) discussed the significance of each
assumption and argued that, with the cxception of the steady
state assumption, each is valid over the entire solar convection
zone with the exception of a thin layer near the surface, consti-
tuting approximately 0.3% by radius of the convection zone,
where the convection is highly turbulent. Since Glatzmaier’s
model does not extend this close to the surface, these assump-
tions are satisfied over the entire radial extent of Glatzmaier’s
model.

The only troubling assumption is that the convective flow
field is steady state in the frame in which the perturbed equa-
tions of motion are solved. However, large-scale magnetic
activity observed at the solar surface and large-scale numerical
simulations such as those of Glatzmaier (1984) suggest that
there are coherent flows at depth that are sustained from
periods of time ranging from several weeks to several months.
Furthermore, mixing-length calculations show that the lifetime
of eddies near the base of the convection zone is approximately
1 month. {Fig. 1 of Lavely & Ritzwoller 1992 shows the charac-
teristic convective time scales, length scales, and velocities pre-
dicted by mixing-length theory as a function of radius.) Thus,
though solar convection is definitely not steady, long-
wavelength components of the flow deep in the convection
zone may be approximately steady over a single observing
interval (1-3 months). Furthermore, a laboratory model of
convection in a rotating shell operated in the microgravity
environment of Spacelab 3 (Hart et al. 1986a; Hart, Glatz-
maier, & Toomre 1986b) showed sustained giant-cell features
that are similar to those modeled by Glatzmaier. Therefore,
Lavely & Ritzwoller {1992) suggested that their theory should
be interpreted as a short-time approximation of a full theory
governing nonsteady flows.

However, with respect to the results we wish to stress in this
paper, the nonstationary nature of solar convection is not cen-
trally important. We will show in § 5 that in the simulations
reported here the most significant signature of convection is a
systematic nearly m-parabolic line broadening due to modal
coupling. The qualitative nature of this signature is not depen-
dent on the stationarity of convection. Time-varying flows will
produce the same helioseismic signature as a stationary flow,
although the details of the coupling and, thus, the line widths
and frequencies will change with time if the flow field is time-
varying.

The major result of the theory of Lavely & Ritzwoller (1992)
is a formal expression for the splitting matrix (their eq. [90]).
The matrix element H™™ describes the convective coupling of
the SNRNMAIS modes (n, I, m) and (n, I, m") and depends on
the radial eigenfunctions of these modes and on the expansion
coefficients that characterize the convective flow field. The
modes of a SNRNMALIS solar model may couple strongly in
the presence of a convective flow provided that certain condi-
tions are satisfied. These conditions are stated formally as
selection rules in § 7 of Lavely & Ritzwoller (1992). Qualita-
tively put, the degree of coupling depends on the strength of the
structural asphericity or convective field producing the cou-
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pling, the proximity of the eigenfrequencies of the modes, the
relation between the geometries of the perturbing field and the
oscillations, and the similarity of the radial eigenfunctions of
the two modes. It was shown in Lavely & Ritzwoller (1992)
that the strength of coupling varies as the square of the matrix
clement H™™, and as the inverse of the difference Hj;™ — Hy™
The latter depends solely on the differential rotation, and,
therefore, modal coupling strength is strongly controlled by
the differential rotation, Modes that are most nearly degener-
ate couple the strongest. The frequencies used in assessing
near-degeneracy should be taken in the corotating frame.

Practical use of the splitting matrix requires its eigenvalue-
eigenvector decomposition:

AR = A“‘”Hk AR s (13)

where A® is the eigenvector matrix that diagonalizes H, and
A® is the diagonal matrix containing the eigenvalues of H,.
This result and the components H7 ™ of the splitting matrix are
presented in Appendix B. The expansion coefficients that
define the eigenfunctions of the convecting model are given by
the components of the eigenvectors of H, such that the jth
eigenfunction is written

1

wjin = 3 AGs0), (14)

m=—1
where the complex constants A% (—{<m <) are the com-
ponents of the jth eigenvector of the splitting matrix. The
associated eigenfrequency of the jth eigenfunction is given by
oy -+ 0, where o, is the degenerate frequency, and dw; =
A%, We'have labeled the row index of A®” with the azimuthal
order m (where the first row corresponds to m = —1), since the
elements of the mth row specify the contributions of the spher-
ical harmonie, Y[", of the spatial filter to the (2[ + 1) eigen-

functions denoted by the j index.

The numerical computation of the splitting matrix and its
eigenvalue-eigenvector decomposition represent the bulk of
the computational labor. The radial integrals in the matrix
clements H7™ (eq. [B3]) are evaluated by computing the cubic
spline fit to the integrands and performing the integration ana-
Iytically. Recurrence relations for the Wigner 3-f symbols can
be found in Schulten & Gordon (1975), and computational
algorithms are included in Zare (1988). The splitting matrix is
decomposed using the complex Hermitian path in EISPACK
(Smith et al. 1976). It is only necessary to compute numerically
the full upper triangle of the splitting matrix because of its
Hermitian symmetry.

The radial expansion coefficients for the convective model
were computed by Glatzmaier as a summation over Cheby-
shev polynomials for each degree and order. We interpolate
these coefficients onto the radial knots of our spherical model.
The splitting matrix, H, (eq. [B3]), is then assembled using the
toroidal velocity field expansion coefficients w; in the range
1 <s=<30; —s<t<s, and its eigenvalues and eigenvectors
are computed. The multiplets ,S; used here lie in the range
5 <1< 95, and the range of n for each I corresponds to the
modes that have been observed by Libbrecht et al. (1990).

To gauge which modes should couple strongly for the con-
vection model described in § 2.1, we consider the frequency
splitting generated by the axisymmetric component of the
model. In particular, we plot in Figure 3 the frequency splitting
of the multiplet ;4 S4,, which is representative of the frequency
splitting of all the multiplets considered here. The complete
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FiG. 3—Frequency splitting produced by the differential rotation model
described in § 2.2 in the corotating frame for the multiplet ,,S,,. Frequency
splitting in the nonaxisymmetric convective model described in § 2.1 remains
dominated by the differential rotation. Modes that are most nearly degenerate
in frequency tend to couple most strongly. Thus, the presence of a plateau in
the frequency splitting for low-| m|/! states suggests that the coupling strength
will be greatest among SNRNMAIS modes with low | m |/ values.

differential rotation model is prescribed by the axisymmetric
component of the toroidal velocity field expansion coefficients
[wi(r), 1 <s<30; odd s]. The frequencies were calculated
with equation (B6). They are transformed to the inertial frame
by the substitution @] — wf — mf), as discussed in Appendix
Cl. The most prominent feature of the splitting profile is the
broad plateau for low-| m | states where the frequency difference
of — wpt! is much smaller than the corresponding difference
for high-|m|/I states. Thus, low-} m | modes in the SNRNMAIS
solar model will couple more strongly in the presence of non-
axisymmetric convection than high-| m |/l modes.

Another way to assess the strength of coupling is by inspec-
tion of the eigenvector matrix A® (defined by eq. [B1]). Figure
4 shows the moduli of the eigenvector components 4, of the
multiplet ,458,,. The eigenvectors are plotted in order of
decreasing eigenfrequency, and are arranged in equidistant
increments along the horizontal axis. For a spherical or

axisymmetric solar model, each mode of oscillation is uniquely-

identified with a single spherical harmonic so that the eigen-
vector matrix is diagonal, ie., the only nonvanishing com-
ponents of the eigenvector matrix are given by A%, for
—1 < m < 1 Since modal frequencies of the convecting model
are dominated by differential rotation, we can associate an
eigenvector of the convecting model with the corresponding
single-component eigenvector of the axisymmetric model.
Figure 4 shows that the greatest hybridization (coupling of
m-states) is among those modes that are identified with low-
| m| states in the axisymmetric or differentially rotating model.
This is in accordance with the near-degeneracy of these modes
(see Fig. 3). The eigenvector matrix for the multiplet ,, S, is
plotted in Figure 5 with the eigenvectors arranged along the
horizontal axis according to their associated eigenfrequencies.

eigenvector index

FiG, 4—Moduki | 4% | of the complex eigenvector components of the eigen-
vector matrix for the multiplet ,, §,,. Each column contains the modulus of
the coefficient in the eigenfunction expansion for the displacement pattern of a
mode of the convecting solar model (see eq. [14]). Each row corresponds to a
unique value of m of a SNRNMAIS eigenfunction. The rows are arranged from
top to bottom in order of increasing m (the top and bottom rows correspond
respectively, to m = —[ and m = ). The eigenvectors are arranged in equldls-
tant increments from left to right in order of decreasing (associated) eigen-
frequency. In a purely axisymmeiric solar model, the only nonzero
components of the eigenvector matrix would be along the diagonal, and each
eigenvector could be uniquely identified with a single m-state given by the
indices on the horizontal axis. It is evident that coupling strength is greatest
among the low-| m |/! states.

The height of the spikes in each row of this figure is pro-
portional to the moduli of the eigenvector components. The
strong frequency dependence of the spike density emphasizes
the dependence of coupling strength on near-degeneracy. This
effect is what leads to the systematic line broadening discussed
in § 5 that is the hallmark of large-scale convection.

4, POWER SPECTRA AND SPECTRAL ESTIMATION IN THE
ENSEMBLE AVERAGE

It is worthwhile to note the distinction between the eigen-
values of H, (which determine the modal frequencies of the
convecting model) and the frequencies estimated from helio-
seismic time series. A modal frequency w; is the frequency of
oscillation of the complex displacement pattern described by
uj(r). It is shown in Appendix D that the generalized resonance
function that is retrieved from the spatial filtering process
yields an apparent frequency that is a linear combination of the
(21 -+ 1) modal frequencies. We wish here to obtain expressions
for the frequency and Q of the generalized resonance functions
in the ensemble average. Most of the technical details relevant
to this section are presented in Appendix C,

4.1. Generalized Resonance Functions in the Ensemble Average

Helioseismic displacement fields are observed from the
surface of the Earth, and, therefore, for the results of this paper
to be useful, the displacement field in equation (1) must be
transformed to the observer’s frame. This transformation is
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discussed in §Cl. In § C2 we use this resuli o present an
expression for the time series T and power spectrum
| Fre=t axgoctated with the ¥} component of the acoustic
displacement field of the multiplet , 5, We find that | FF o) ?
ikt bas written

[

i I
Il = Uiw® §  F  AZLACR
i =

-] =1

w ¥ ¥ o Meoda A AR feopdB i) . (15)

We use two assumptions (o simphily equation (15}, The first
asserts the cquipartition of energy among the (2 + 1} m-slales
of a given multipler. That is, the expected value of the modules
-ud'E af ) iwhere the sum s over all #) s independent of m
This assumption is based on the prevailing conception that the
sources af acowstie energy in the Sun are oncorrclated and
isotropically distributed and is, more imporiantly, justified by
observation [e.g., Libbrecht et al |19%0), The second is the
random-phase approximation, which is stated mathematically
in its application to the source cocfiicients by equation (C9) 1t
remaoves one of the summations over o in equation {15}, Using
these assumptions and the unitarity properly of the cigen-
vector matrix, A™, we show in § C3 that the power specirum in
the enmemble average of the multiplet |5, with spatial shape
given by the spherical harmonic component ¥7 1% given by

bl P (AR
4 :a-d“}""w—ﬂﬁ.]tl

L AtA

=i ==

| Fe ) |® = (16

where
Ibyle)® =¥ |agMo)l' for —T=m <1, 17

Yiol. 403

We cull | byies} | the soierce specirum, Since the source spectrum
for any given reslization is unknown, the cstimation of ihe line
width and frequency of | Fi'{a)|* & compromised. As discussed
by Kelly & Ritzwoller (1993), the source specirum presents
multiplicative noise through which we must attempt [0 esti-
miate the speciral characteristics, For this reason we consider
below the statistical propertics of |F7 (o) in the ensemble
average over many realizations of the source process.

In any single realization, | bad* will be a stochastic Tunc-
tion of frequency. By the energy cquipartition assumption, the
expected walwe of the source spectrum is constant over the
narrow [reguency range spanned by the multiplet. Therefore,
the source spectrum i locally Mal in the ensembde average. The
ensemble average (denoted by angular brackeis) of the source
spectrum Lhen is just

| bl | = | By P . 1)

where | by | i3 the expecied value of the source spectrum in the
narrow frequency band around multiplet & I8 i interesting 1o
oot that o flal source spectrum is identical 10 a source Hme
history given by a temporal delta function. The ensemble-
average power specirum can now be writien s follows:

Uie b |? | AR
4 pit o+ fm — )

AFPw?y = (19}
Equution (19 15 the central analytical result of this paper and
will be used 1o estimate the frequencies and line widths of the
resonance function associated with the spherical harmonic Y77,
We refer fo <] Frlod|*y as the power spectrign of the gemer-
alized resonarce fisnction in the mnsemble areroge.

4.2, Spectral Analysis of the Generalized Resonance Function
i the Ensemble Avevrage

Most helioseismaological inferences are based upon measure-
metits of the frequencies, line widths, and amplitudes of
observed spectra; These data are functionals of the structere
amd dynamics of the Sun. The resonance function for a con-
vecting model in the ensemble average (eq. [19]} is owr syn-
thetic datum hese and forms the basis of our data analysis. The
methods we use to assign a frequency and line widih to this
resonance function are described in Appendix I,

The freguencies, line widths, and amplitudes of generalized
resonance functions are not precisely defined, since there & no
simple anolviic function that cxactly models the frequency
dependence of the resomanes funclions Thes has motividled our
use of the terms apparent frequimcy und apparenr @, o, and
P g Fespectively. However, Lorentzians can approximately
mioded the propertses of generalized resonance lunetions, with
the disndvantage that the model cannot exactly fit even nogse-
free data and the estimated porameters that charocterize the
Lorenttian depend on the fiithg technigue. Lorentzan fitting
schemes commonly used to estimaie these parameters include
beast-squares fitting {Masters & Gilbert 1983), the full width at
hal-muaximum (FWHM| method, and algebraic weighting
technigues (Dahken 1979). Since each fitting scheme magnifies
depariures from Lorentzan behavior differently, the resulting
frequency and ling-width estimates from ench differ, In general,
the residusl between the model Lorentrizn and sctusl spec-
trum varies as a function of frequency and me-state, The depen-
dence on the me-state [ollows from the asymmetry of the
cipenvector matrin as a fonction of row index (each row is
identified with a single m-state), Further, the residual is a fune-
tion of the fAtting procedure. For example, the FWH M method
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depends only on two points of the spectrum, whereas the least-
squares method depends on the entire spectrum over which the
fitting is performed. Of course, these methods yield the same
estimate of the line width if the spectrum is a perfect Lorentz-
ian, but they may yield quite different results if, for example,
the power of the spectrum away from the half-maximum points
is significantly different from a Lorentzian spectrum. That this
effect is a function of the m-state can be seen from the com-
ponents of the eigenvector matrix shown in Figure 5 and from
the discussion in § 5.

To illustrate the non-Lorentzian character of generalized
resonance functions, we have plotted {| Fl{w)|*> (eq. [19]) in
Figure 6 for the convecting and differentially rotating models
as well as the Lorentzian that approximates the resonance
function of the convecting model. This figure shows the most
important effect of convection, the convective line broadening,
and it also illustrates the departure from Lorentzian behavior.
Nonetheless, we have chosen to model generalized resonance
functions as though they were Lorentzians, i.e., we characterize
each resonance function by its amplitude, half-width, and fre-
quency centroid, and use first-moment and FWHM fitting pro-
cedures as they are applied to Lorentzians. We use these
methods, since they are easy to perform; Kelly & Ritzwoller
(1993) present methods designed for use on real data.

normalized spectral amplitude

frequency (uHz)

F1G. 6.—Three power spectra of the apparent m = 0 state of the multiplet
a ¥o5- The solid line is a perfect Lorentzian and is the power spectrum produced
by the axisymmetric differentially rotating medel of § 2.2. The dotted line is the
ensemble-average power spectrum produced by the odd-degree toroidal com-
ponent of the convective model described in §2.1 for 1 <s <30 and
—35 < ¢ < 5 This spectrum is a sum of Lorentzians computed with eq. {19). The
FWHM-estimated Lorentzian which approximates the generalized resonance
function of the convecting model is given by the dashed line. This figure
illustrates that large-scale convection generates non-Lorentzian spectra, and
that spectral lines are broadened relative to the resonance function of the
differentially rotating model. Nevertheless, the spectrum is Lorentzian-like,
and we are motivated to fit the spectra of the convecting model with Lorentz-
ian functions, The intrinsic quality factor of the axisymmetric model and of
each of the Lorentzians that contribute to the sum in the ensemble average for
the convecting model are given by 104, The estimated apparent quality factor
of the model Lorentzian is 5569.
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The large quantity of helioseismic data has led observers to
parameterize their data in simple functional forms. In keeping
with this practice, we parameterize apparent frequencies within
a multiplet in the form

m;:app =y +1 Z aj,fPJ-(~m/[) > (20)

Jjodd

where P; is the degree-j Legendre polynomial. Since frequency
splittings are antisymmetric in m about the degenerate fre-
quency, only odd terms need be retained in the sum. (See Fig. 4
in Lavely & Ritzwoller 1992.) We truncate the series at j= 5
here. Ritzwoller & Lavely (1991) argued that, in spite of its
wide usage in the helioseismological community, this param-
eterization is a suboptimal representation of splitting data,
especially for the purpose of inversion for differential rotation,
and that Clebsch-Gordan coefficients should be used instead of
Legendre polynomials. Nonetheless, in § 5 we summarize the
results of our synthetic splitting experiments in terms of the o}
coefficients to facilitate comparison with observed aj,f coefhi-
cients. In analogy with equation (20), we introduce the follow-
ing expansion for the m dependence of the apparent quality
factor Q7.

Qe =40 + 2. diP(mfl). (21)

Jeven

However, we have not included a factor of ! in the definition of
Or.app Since, unlike the frequency splittings, the apparent
quality factors do not show a dominantly linear dependence on
I. Since apparent @ variations are symmetric in m, only even
terms need be retained in the sum. Note that, in contrast to
geophysical applications, here g = ¢ 1. In the simulations pre-
sented here, only two terms will need to be retained, g% and g%.

3. NUMERICAL ESTIMATES OF APPARENT FREQUENCIES
AND LINE WIDTHS

In this section we present the two most important results of
the paper. First, we show that large-scale convection can sig-
nificantly and systematically broaden resonant lines. The char-
acteristic line-broadening pattern is strongly dependent on the
apparent m-state, with low-|m|/l states the most significantly
broadened (which follows from their near-degeneracy). This
line broadening is dominantly parabolic in m for Glatzmaier’s
model. Second, frequency perturbations produced by Glatz-
maier’s convective model are at or below the current noise level
of observations. In §§ 5.1 and 5.2, we describe the effect of
convection on frequencies and line widths, respectively, In § 6
we discuss, among other things, the observed properties of
helioseismic oscillations that are suggestive of the convective
line-broadening effect.

Lavely & Ritzwoller (1992) discussed in detail how the fre-
quency degeneracy of a given multiplet is lifted by the advec-
tive effect of convection and differential rotation, although
differential rotation dominates the frequency splitting for the
models considered here. For an axisymmetric flow, the pertur-
bation in phase velocity is greater for a wave propagating in
the direction of the flow than for a wave propagating obliquely
to the flow. This effect is illustrated from a modal-theoretic
viewpoint in Figure 3. Waves associated with the azimuthal
orders m = +1 travel directly with or against the axisymmetric
flow field and, consequently, display the largest frequency per-
turbations, whereas the m = 0 wave propagates along the
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polar great-circle path so that its frequency perturbation is
zero. Analogous interpretations for a convecting model are
more complicated, as can be seen in Figure 2b, which shows
the nonaxisymmetric component of the odd-degree toroidal
flow to degree s = 7. In the traveling wave representation, a
wave whose wavevector is initially inclined at a given angle
with respect to the rotation axis is continuously deflected from
a great-circle path by the nonaxisymmetric velocity field. The
resulting wave requires a sum of spherical harmonic basis func-
tions (the eigenfunctions of the SNRNMAIS model) to rep-
resent its path. This is modal coupling. Thus, modes in this
model cannot be identified with a single spherical harmonic.
For a nonaxisymmetric flow, the notion of a wave propagating
along a fixed great circle breaks down. Instead, the wave front
must be represented with a linear combination of spherical
harmonics, and the expansion coefficients are given by the
column vectors of an eigenvector matrix such as the matrices
displayed in Figures 4 and 5. The interpretation of a mode
tdentified with a single m-state and great-circle propagation
path is approximately valid if a single component in a given
cigenvector dominates all other components.

We show in this section that the dominant way in which
convection manifests itself in helioseismic data is in terms of
modal line widths rather than frequencies. The estimation of
both modal line widths and frequencies requires the use of
equation (19) to compute the ensemble-average spectrum,
¢| F*(w)|*). This requires the construction and decomposition
of each splitting matrix as described in § 3. Each generalized
resonance function is computed over a 15 pHz interval cen-
tered about the frequency {w, — m'Q)) with a frequency binning
of 0.035 yHz. The apparent frequency of each resonance func-
tion is estimated according to the procedures described in
Appendix D. We evaluated the moment integral in eguation
(D2) with a Newton-Cotes quadrature scheme, and we imple-
mented the weighted-sum method in equation (D3). The agree-
ment that was found between these estimates served as a
consistency check. The splitting coefficients a} (eq. [20]) for
1 =j < 5 were then obtained from the estimated frequencies
Of app (—1 < m <) by linear regression. Two sets of coeffi-
cients were calculated, one each corresponding to the convect-
ing and differentially rotating models described in § 2.

Estimation of line widths is more troublesome, since the
values obtained are dependent on the nature of the estimator.
in this paper, for simplicity, we use the FWHM method
described in Appendix D to estimate line widths, and, subse-
quently, apparent quality factors Q... The synthetic gener-
alized resonance function was computed for an infinite-length,
untapered time series, and so we use equation (D6) with
T = oo to estimate line widths. However, as discussed by Kelly
& Ritzwoller (1993), this method is not successful in retrieving
useful @ measurements with realistic data. They discuss a least-
squares fitting procedure that does work. Since the FWHM
method produces fits that intersect the input generalized reson-
ance function at the half-maximum point, and since the least-
squares result tends to cross the input function above this
point, least-squares ( estimates tend to be smaller than the
FWHM estimates. Consequently, the ensemble-average Q-
values presented in this paper will be larger than in our sub-
sequent papers, and the variation of apparent Q within a
multiplet will be smaller. The FWHM estimated line widths
are used to calculate apparent guality factors, and these are
exposed in terms of the expansion coefficients, g5 and 45,
defined by equation (21).
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5.1. The Effect of Convection on Estimated
Helioseismic Frequencies

A useful way to assess the effect of convection on frequencies
is to compare frequencies associated with a single spherical
harmonic displacement pattern in the convecting and differen-
tially rotating models. As an example, we plot in Figure 7 the
residual in apparent frequency between the convecting and
differentially rotating models described in § 2 for the multiplet
s So5. The residual pattern is a characteristic feature of splitting
for the multiplets considered here. Systematic behavior of fre-
quency splitting for different multiplets k is mirrored in the
systematic behavior of the &% expansion coefficients. We have
plotted in Figures 8a-8c the residuals of these coefficients
between the convecting model and its axisymmetric counter-
part for the harmonic degrees j = 1, j = 3, and j = 5, respec-
tively. Standard deviations of the model parameters have been
estimated by assuming that the errors of the frequency esti-
mates represent a Gaussian process with values given by the
difference between the input frequencies and the truncated
Legendre polynomial fit to the frequencies. The errors would
be zero if sufficient Legendre polynomials were included to fit
the data perfectly. The standard deviations are nonzero, since
there exists structure in the frequency splittings higher than
degree 5. The standard deviations of the estimated splitting
coefficients a5 and o are typically small relative to the differ-
ences of these coefiicients for the convecting and differentially
rotating models. However, the difference in the % coefficients
between the two models is generally comparable to the stan-

dard deviation of the estimated a% of the convecting model.

frequency difference (uHz)

azimuthal order m (for the axisymmetric model)

F1G. 7—The solid line is the difference {or residual) in the estimated appar-
ent frequency, wf.,,,, of the multiplet , S, between two models: the differen-
tial rotation model described in § 2.2 and the odd-degree toroidal component
of velocity field model described in § 2.1, which is just the flow represented by
the coefficients w’ for 1 < s < 30, odd s, and —5 < ¢ < 5. The dotted line is the
difference between the Legendre polynomials fitted to the velocities of the
differentially rotating and conveciing models, where each series is truncated at
degree N = 5 (see eq. [20]). Note the odd symmetry of the split frequencies.
This figure illustrates the failure of the low-degree polynomial fit to capture the
frequency residuals, which are peaked near the sectoral modes.
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Typical valucs of af, o}, and o are, respectively, 400, 20, and 5
nHz. It is evident from Figures 8a-8c that differences in like-
degree splitting coeflicients of the two models are relatively
smull, Indeed, comparison of the splitting coeMcient diferences
with the error estimates of the corresponding observed split-
ting parameters in Libbrecht ot al, (1990) shows that the fre-
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gquency  signal  produced by Cilatzmaiers model  of
NCMMAXESYMmELric convection s well below the current level of
ohaervability.

The ability o detect the presence of large-scale convective
flows through frequency measurements is dependent on &
number of factors, including the size of the frequency pertur-
bation, the coherence of the perturbation as a lunction of the
m-state within ench multipled, and the coherence as o function
af the multiplet index & The splittimg cocfficient residuals
between the convecting und differentially rotating models in
Figares Bo-Bc desplay systematic patterns as o function of the
multiplet index. It is evident that the residuals are strongly
frequency-dependent in that there are aliemating rones of
large and small residuals. This behavior enn be understood by
noting that the cigenfunction shapes nre themselves strongly
frequency-dependent (see, for example, Figs, 3a and 36 of
Lavely & Ritrwoller 1992, which shoow the radial dependeno:
of the eigenfunctions of near-degenerate modes). The zones of
extinction nd 1o near-orthogenality of the velocity
model with the eigenfinction shapes. The residuals of the o
splitting cocflicients also display 8 maximum at an angle of
approximutely 60° with the horizontal, This maximum results
from the fact that modes along this line bottom near the base
of the convection zone and receive the greatest splitting effect.

Our results show that if the large-scale convective velocity
field in the Sun & similar to Glatzmaker’s model, then inver-
gions for the differential rotation profile that use frequency
splittings of low-{ {! < 100} multiplets of the Sun are unlikely to
be biased by global-scale convection. Simtlarly, senrches for
global-scale convection through measurements of apparent
frequencics will be hampered by the small signal. However, the
frequency perturbations presented here probably underpredict
actual convection-caused frequency perturbations, since the
upper radius of the numerical convection model is ~095 R,
which excludes the very large velocities that are expected in the
top 15% of the convection zone, In addition, as seen in Figure
7, the representation of perturbed frequencies in terms. of low-
degree splitting coefficients fails to extract the largest frequency
effects. This finding suggests the need for observers 1o obtain
higher degree splitting coeMicients, or a1 |east 1o concentrate o
nearky sectoral lines in searching for a giant-cell effect on fre-
quencies. The stronger frequency perturbations of the high-m
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states relative to the low-m states can be understood as follows.
The low-m states contain frequency contributions from modes
of the convecting model that are nearly similar in frequency,
whereas the high-m states contain contributions from modes
with larger frequency spreads whose contributions are less
symmetric about the target m-state.

5.2. The Effect of Convection on Estimated Helioseismic
Line Widths

5.2.1. Interpretation of Line Widths in a Convecting Model

It is customary to interpret modal line widths in terms of
intrinsic damping processes. Several of the approaches that
have been used are summarized in Christensen-Dalsgaard et
al. (1989}, who adopted the hypothesis that the acoustic modes
are intrinsically damped but excited stochastically by convec-
tion. An oscillator that satisfies these conditions is modeled by
a simple differential équation of the form

44 dA
EtT+2oc“d?+w§A=f(t), (22)
where A(f) is the amplitude of a damped linear oscillator, « is
the intrinsic damping rate, and f(f) is a stationary random
function. Christensen-Dalsgaard et al. (1989) showed that the
average power spectrum of A(f) is given by

1 flwg)?y
42 2 + (0 — wp)?’

where the angle brackets denote the ensemble average, and it
was assumed that {| f(®)|*) varies slowly with w,. From this
result Christensen-Dalsgaard et al. (1989) concluded that it was
appropriate to interpret line widths of a stochastically excited
oscillator in terms of intrinsic damping.

Equation (23) is consistent with our equation (19) in that the
spectrum is given by the product of a frequency-dependent
function that is dependent on the nature of the source process
and a Lorentzian whose half-width at half-maximum is related
to the intrinsic damping of the medium, which we represent by
. However, the derivation of equation (23) did not account for
the effect of modal coupling on the broadening of the width of
the generalized resonance function produced by spatial filter-
ing. When this effect is included, the power spectrum analo-
gous to (| A{w)|*> and produced by the Y7 component of the
time derivative of the acoustic displacement field is given by
{| F % in equation (19). [Note that egs. (19) and (23) appear
to differ by a factor of e*. One factor of w? results from the fact
that eq. (19) represents the spectrum of a velocity field, whereas
eq. (23) is for the spectrum of a displacement field. The other
factor of w? comes from the definition of the source spectrum
h(w) in eq. (3).] It is evident that {| F{j*) is a linear com-
bination of functions of the form {| A{w)|*>, each with a differ-
ent center frequency. Therefore, as will be discussed further in
§ 6, convective apparent line-broadening effects must be con-
sidered in the interpretation of observed line widths.

In equation (1), we assumed that the intrinsic attenuation
rate of each mode is given by o, = w,/(2Q,), where @, is the
intrinsic quality factor associated with the multiplet 8§,
Mechanisms of p-mode damping that contribute to line widths
include, for example, radiative damping, turbulent viscosity,
and nonlinear interaction with convection. Each of these
mechanisms operates most effectively in a thin layer near the
solar surface. Since eigenfunction shapes in the upper part of

AA@)*> = (23)
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the convection zone are strongly frequency-dependent (see, for
example, the eigenfunction plots in Figs. 3a and 3b of Lavely &
Ritzwoller 1992), the intrinsic damping rates are also strong
functions of frequency but are independent of the modal azi-
muthal order. Therefore, we have taken @, to be the same for
all (21 + 1) m-states associated with each multiplet. Although it
is known that intrinsic quality factors strongly decrease with
increasing degenerate frequency, as discussed earlier, for sim-
plicity of presentation many of the results presented in the
following section are computed with the assumption that the
intrinsic guality factor is identical for all multiplets. In particu-
lar, we use Q, = 10%,

5.2.2. Numerical Estimates of the Effect of Convection
on Line Widths

We wish to determine the nature of the convective line
broadening witnessed, for example, in Figure 6, and to attempt
to estimate the size of the effect that might be expected for the
Sun. The cause of the line-broadening effect of convection can
be seen in Figures 5 and 9. Figure 5 shows the modulus of the
eigenvector components for the splitting matrix of 454,
plotted as a function of the frequency perturbation associated
with each eigenvector matrix element. It demonstrates that
coupling is strongest among nearly degenerate states, which
correspond to the low-| m|/! states for each multiplet. Figure 9
plots two generalized resonance functions for the m = 0 and
m= —61 states of ;8,, along with the eigenvector com-
ponents and the Lorentzian fit. This figure clearly shows that
line broadening results from modal coupling and is greatest
where the coupling is greatest; ie., for low-| m|/I states. Thus,
convection does not merely broaden spatially filtered spectral
lines; it imparts a systematic line broadening, which is greatest
near m =0 and decreases (with small undulations) with
increasing |m|. As we will show, the magnitude of the line
broadening is a strong function of the intrinsic damping rate;
the effect is negligible if the natural line width is greater than
the convective line-broadening effect. In addition, the effect
also strongly depends on the value of the harmonic degree [ of
the multiplet. As ! increases, more SNRNMAIS modes are
available for coupling, which results in a greater frequency
spread of the contributors to the generalized resonance func-
tion of the apparent m-state. We will investigate here the
pattern as functions of m, l, and w, as well as the magnitude of
the convective line broadening as a function of intrinsic (.

Figures 10a and 10b show, respectively, the apparent quality
factor estimates, for the multiplets ; S¢; and 4, Se,, for five
different values of the intrinsic quality factor Q,, ranging from
2 x 10° to 10 in increments of 2 x 10%. The convective line
broadening is greatest for those multiplets with narrow natural
line widths and, therefore, convective line broadening increases
with increasing Q,. The jagged behavior of Q.. with m in
Tigures 10a and 10k resuits from the asymmetry about the
antidiagonal for a given row of the eigenvector matrix. Its
exact form is a function of the line-width estimator, consistent
with our discussion in § 4. The middle row of each eigenvector
matrix, for example in Figure 4, corresponds to the m = 0 state
of the spatial filter. Because of its symmetry it is the only row
that generates a generalized resonance function symmetric
about the frequency centroid. Other rows corresponding to
other m-states produce skewed spectra because of departures
of symmetry about the antidiagonal of the eigenvector matrix.
The m-dependence of apparent Q, QF .., for each value of 0, in
Figures 10a and 106 is dominantly parabolic, consistent with
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illustrates the that modal coupling can broaden spatially filtered spectral lines considerably,

the structure of the eigenvector matrix for these multiplets. The
dependence on intrinsic () continues to higher intrinsic O-
values. As can be seen in Figure 11, the apparent Q measure-
ment for nearly zonal resonances of 58, is systematically
depressed from the intrinsic Q-value and saturates at approx-
imately 15,000, whereas apparent { measurements for sectoral
resonances closely approximate the intrinsic (. Attempts to
measure average apparent degenerate ¢ must be informed that
Q can vary appreciably with m. Wise estimators of intrinsic Q
should concentrate on the sectoral (m ~ [} resonances and
radial resonances (/ = 0) to minimize this effect. Fortunately,
the m-dependence is simple. Figure 12 iltustrates that, except
for smalil undulations, a parabola does a good job of fitting the
apparent  profile for the multiplet , S, with @, = 10* For
obvious reasons, we refer to the line-broadening effect of con-
vection as the Q-bowl.

Figures 10, 11, and 12 display the convective line broadening
for just two multiplets. To determine the systematics of this
signature of convection, we now consider the apparent quality
factors for a suite of low- and intermediate-degree multiplets.
In Figures 13 and 14 we display line-broadening trends with n,
I, and w similarly to the way frequency splittings are shown in
Figures 8a-8c. We plot in Figure 13 the variation in apparent
@ for the m = 0 state as a function of the multiplet index, and
in Figures 14a and 14b we show the dependence of apparent
quality factors on the expansion coefficients ¢, and g, defined
in equation (21).

Figure 13 presents the value of the minimum apparent Q
estimate within each multiplet. This will occur for the m =0
state, and we present QF,  in the normalized form

1 — Qim= /0, for the same set of multiplets used in the compu-
tation of the frequency splitting coefficients. The minimum
value for the normalized form on the plot is 0.55, which corre-
sponds to a minimum apparent @ of 4500, though the input Q
is 10*. A more robust measure of the line-broadening effect of
convection is the multiplet expansion coefficients, ¢, and ¢%, of
equation (21). The ¢ coefficient represents the apparent degen-
erate frequency, and the g% coefficient represents the depth of
the @-bowl. These coefficients are displayed in Figures 14a and
14b, respectively. Since these coefficients are estimated from the
(2! + 1) generalized resonance functions of each multiplet, they
are more easily measured than the apparent @ for any single
generalized resonance function. Kelly & Ritzwoller (1993)
discuss methods for their estimation using least-squares tech-
nigues.

Figure 15 shows line-width effects as a function of harmonic
degree and degenerate frequency. As shown in Figure 15¢, the
minimum apparent quality factors, Qf .., and the apparent
degenerate Qs q,. tend to decrease with increasing /, since
there are more states available for coupling. For these two
parameters a smaller value indicates a bigger effect. For g,, the
larger the parameter the larger the effect, and g, is seen to
increase with [ in Figure 15a. Thus, line-width effects tend to
increase with harmonic degree along a dispersion branch for
the multiplets we consider here. As Figure 15b, shows, line-
width effects tend to decrease with frequency, however. This is
because we have taken intrinsic {0 to be constant, so that
intrinsic line widths increase with frequency. As the discussion
about Figures 10a and 106 indicated, convective line broaden-
ing decreases as intrinsic line width increases. The magnitude,



24 LAVELY & RITZWOLLER

IIItIIII|I||||||'|1r|III

(a) 3561

10000

o
_T-Ii Ill'IE""'""._
E g_ |I s r'l- rJ -
= — L] o =1
&. E:‘I—.,\" '\ -I' § .I' "'- |I —
B "'!. X & N " i i ~ i
E 5 Ty | e S _IH"'. . l,."
3 SO VU A e S S T,
& B, TN - 7]
El-i - 1'.\__.! --\..\'__‘r1 :‘_-.i'll _‘_,.-J "‘._J‘-- o
1 ar e
! E
= o e
% L Qi = w0
L Ry owm R —_— -
- By 0= o o e e - - - rh
[its (= T
= l.=: - 53|
i ||.L_|.-JI.I.IIIIIIIIII'_I__||]'|
-84 -4 =20 o 20 40 Edl
II T 1 I T l1[1 | I 1 1 I T |I||I|T
57 (b) l'r'SEl -}
A % '
w _-\"—u__,_.-—h_‘_\__r_ ___._._-'_'I-._—I'-F.-?-
= e I -1
= F
g St -]
%- Z ]
S 20 ]
28 "
28 e -
= Ay o e e e -
e q. = EER - W W -
o = Hy. s | s =
2 ®
|rl|lll|IlJJ|!|||||||J_J.
—8i —40 —20 a 20 EYi] Bl

azimuthal order m

Fio, H—Phos of appasent 7 = o funotion of e, E:m._tnnw dsfTerent
multiplets with walues of mpul intrmsic  mnging from 1 = It 10 in
incemesis of 2 = HF', Resulis are sherwn fod [a) 5, Gy = LTRSS mHEd and
b)) 78 fay = 450004 miz). Clearly. the sim of the appareni £ effect is a
sircang fonction of Uke intrmsic (2 of the mode, and cbssrations of the §-howl
willl be gamiesd for Jow-Trequency medes where infrinsic & bighesi The
(-howl |5 shallower for (o8, than it is for 5., since mirinsc line widibs
incresse with Ineyuency et we v aken inbssc G (o be constenl.

but not the generul character, of all of these effects depends
strangly on intrinsic {7,

Figures 12, 14, and 145 display the most important resuliz
of this paper. The apparent depenerate 0 of each multiplet
should be depresed relative to the intrinsic (. In addition, due
to the strong dependence of the coupling strength on the fre-
quency splitting profile cstablished by the differential rotation,
the nearly parabobic m-dependence of the line widihs is a

apparent quality factor Q.
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and ox, i provides litthe information about the geometry of
convection. In § & we will discuss how g, and g, vary with the
magnitude of the convective fow velocities,

o, RESCLISSHIN

Simce mversions for differential rotation normally ignore
nanuxisymmetric Bows, il is important o determine the effect
that nonaxisymmeiric conveciion = likely to have on estimates
of the diferentinl rotation profile. We have shown that the
frequency signal produced by Glalzmaier's model of non-
axisymmetric convection & below the noise level of observas
tional frequency estimates. Thus, the bias introduced by
Crlatzmaier's convection model 15 mimmmal, However, it is
important o remember that our frequency splittings are prob-
ihly lower bounds for two reasons: Firsl, Clatzmuoier does not
model velocity Gelds in the top 5% of the Sun (by radius) where
the comvective velocitics are largest. Thus, the frequency per-
turbations that we have caleulated can place only o lower
bound on the bias caused by nonnxisymmetric convection,
Second, since we have not modeled the effect of poloadal Aows
on modal coupling, our estimates of the frequency pertur-
bations are consarvitive,

More important, we wish to consider how the effect of large-
scale convection can be observed in helioseismic data. The
major observational line-width signatures are (1} o nearly m-
parabolic variatien of apparent @ within a multiplet, (2} &
decrease in apparent depgenerate @, and (3) an increase of
mmportance of the line-width effeci with harmonic degree |
[everyihing else being equall In addition, (4) there should be no
convective line broadening for radial {f = 0) modes, We will
consider each of these in .

First, the sirongest observational support of the convective
line-brondening effect would be the detection of a systematic
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m-parabolic lme-width signature represented by the g% expan-
sbon cocfficient in equation (21). (This dominantly parabolic
behavior of line widths produced by convective line broaden-
ing 15 illustrated in Fig. 11} Unfortunately, ine-width measure-
menis  of individual  mestates  from  intermediste- and
high-degree multiphets are not yei available In their absence
we must ook cleewhere for the effect of convection.

Socond, instead of making line-width measurements on indi-
vidual m-states, observers have commonly linearly recombined
the (21 4+ 1) resonance functions associated with the m-states of
& given maltiplet. This operation produces a single “stacked ™

]

-
=

degenerate frequeney (m H

!

degenerate fequency (m T

harmonic degree |

Fig. 14— Represesiaton, smilar o Figs. B and 13 or the ame ses of
multipless, of the cosficanis g (see eq. [217)in the noemalioed form | — 500,
where ), = §0%: ja) j = i fram which the apparen| degemeraie (f can be exi-
muted; i) § = 1. which mepresemts the depih of the J-bowl. For exasple, far
1 — g, = D32, g ~ HR0,
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Fic. 15—Harmonic degree and frequency dependence of Q4= (solid line),

(dotted line), and g% (dashed line). Line-width effects increase with harmonic
degree due to the increase in the number of available coupling partners with L.
Line-width effects decrease with frequency, since we have taken intrinsic line
widths to increase with frequeney.

resonance function with an improved signal-to-noise ratio that
yields an apparent degenerate Q measurement, but eliminates
the m-dependent signal that is the hallmark of large-scale con-
vection. (Studies of such apparent degenerate Q’s include Lib-
brecht 1988, Christensen-Dalsgaard et al. 1989, and Jeffries et
al. 1991.) Figure 1 of Christensen-Dalsgaard et al. (1989) dis-
plays the observed line widths from Libbrecht {1988) versus
theoretical line widths for various models of intrinsic damping
processes. Each of the damping models underpredicts the line
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widths of acoustic modes with frequencies below approx-
imately 2.5 mHz, as do the models of Balmforth (1992a) (see
Figs. 4b and 5b in his paper). Since convective line broadening
is most pronounced for modes with low intrinsic damping
rates, it is plausible that at least part of the mismatch in theo-
retical and observed line widths for low-frequency modes may
be explained by the convective line-broadening effect. As can
be seen from Table 1 of Libbrecht (1988) and Figure 9a of
Libbrecht & Woodard (1991), the line widths of modes with
frequencies greater than about 3.5 mHz are so large that the
line-broadening effect of modal coupling is likely to be negli-
gible.

Third, an additional characteristic feature of convective line
broadening is its increasing strength with increasing I. This
trend is illustrated in Figure 154, and we have explained it in
§ 5 as follows: The coupling of m-states from the SNRNMAIS
mode! produces the line broadening. Multiplets with large har-
monic degrees have more states available for coupling, and the
total frequency range spanned by these states increases as /
increases. The combined effect produces the /-dependence seen
in Figure 15a. This relationship between ! and line width is
qualitatively consistent with the observed [-dependence of
helioseismic line widths. Figure 95 in Libbrecht & Woodard
(1991) shows modal line widths averaged over the frequency
interval 2.4 mHz < @ < 3.0 mHz, as a function of spherical
harmonic degree I. The authors suggest that the trend of
increasing line width with increasing ! is due to the fact that, at
constant frequency, modes with higher [ have larger surface
amplitudes (which would lead to increased damping) than
lower I modes. However, this observational trend is also con-
sistent with convective line broadening, which may explain
part of the observed trend.

Finally, a very important way of distinguishing convective
line broadening effects from intrinsic damping is by observa-
tion of the line widths of radial modes, i.e., modes with { =0
and arbitrary radial order n. It is clear from the above dis-
cussion and from equation (19) that radial modes are insensi-
tive to the convective line-broadening effect, since there is only
one m-state (m = 0) for each multiplet , S,. Thus, observed line
widths of radial modes should be produced solely by intrinsic
damping. A plot of theoretical and observed line widths of
radial acoustic modes is shown in Figure 3a of Balmforth &
Gough (1990). The agreement is quite good, even at frequencies
less than 3 mHz. In comparison, the discrepancy in line width
for low-frequency modes with nonzero ! in Figure ! in
Christensen-Dalsgaard et al. (1989) is considerable. Our results
predict that the match between theoretical and observed line
widths worsens with increasing [, consistent with the observa-
tions described by Balmforth & Gough (1990).

Therefore, to the best of our knowledge, all existing Q esti-
mates are consistent with line broadening caused by large-scale
convection. However, to establish unequivocally the existence
of giant cells, it is important that m-dependent line-width mea-
surements should soon be estimated. Because of the nature of
the m-dependence of the convective line-broadening effect,
intrinsic Q measurements should concentrate on nearly secto-
ral modes, whereas searches for the effect of giant cells should
concentrate on the apparent Q difference between nearly zonal
modes and nearly sectoral modes. Kelly & Ritzwoller (1993)
discuss a method that should be successful in retrieving appar-
ent Q variations of the size predicted by Glatzmaier’s model.

The observation of the helioseismic signature of convection
would provide the strongest support to date for the existence of
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giant cells. If the signal is not observed with methods similar to
those of Keily & Ritzwoller (1993), then it is likely either that
giant cells are less vigorous than predicted by current convec-
tion theories or that degenerate s are less than the values we
have used here. To minimize this latter possibility, observers
should concentrate first on the lowest possible frequencies,
where intrinsic Q-values are highest. The successful observa-
tion of the helioseismic effect of convection would mean that
statistical constraints could be placed on the strength of con-
vection, though probably little if any geometrical information
could be retrieved from line broadening alone. It should be
remembered that any large-scale nonaxisymmetric field would
produce a similar line-broadening pattern, but it is not yet
clear whether any other field is large enough in magnitude to
have a measurable effect. Nevertheless, it would prove very
interesting to attempt to observe time variations in the line
widths and, perhaps, track the strength of convection deep in
the solar interior over a solar cycle. Tt is likely that this goal is
overly ambitious using line-width measurements alone.

We have discussed at some length the dependence of the
line-broadening effects of convection on [, ¢, and intrinsic Q.
Anaother obvious free variable is the size of the input convective
model, which up until now we have chosen to be Glatzmaier’s
model described in § 2.1. Figure 16 displays the effect on the
expansion coefficients gq and g, of 5S4, of varying the size of
the nonaxisymmetric components of Glatzmaier’s model,
where, again, we have chosen input intrinsic @ to be 10*. Thus,
we fix the nonaxisymmetric geometry of Glatzmaier’s velocity
maodel, but vary its size. Consider a new input model f{r, 8,
o) = pwir, 8, ¢), where § merely scales the nonaxisymmetric
components of Glatzmaier’s model wir, , ¢), leaving the
axisymmetric componenis unchanged. For the experiments
reported above, f = 1. As Figure 16 shows, the apparent
degenerate Q, g,, decreases nearly linearly with #, from 10* for
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Fia. 16—Plot of ¢, (solid line) and ¢*, (dotted line) for , S, vs. the scaling
parameter f§ defining the size of the convection model. The input convection
model is f{r, 8, ¢) = fmir, 8, ¢), where w represents the toroidal part of Glatz-
maier’s mode! defined in § 2.1.

EFFECTS OF CONVECTION ON HELIOSEISMIC DATA 827

the axisymmetric model (§ = 0) to approximately 4000 for
Glatzmaier’s model scaled up by a factor of § = 3. Since g,
changes rapidly with the size of the input model, it provides a
good indicator of model size. The “vertical relief” in the
Q-bowl, which is represented by the g, parameter, is not such a
simple function of §. As the size of the nonaxisymmetric com-
ponents increases, coupling among m-states significantly away
from m =0 increases. The bowl becomes systematically
broader at the bottom and is not as well fitted by a simple
parabola. Consequently, the g, coefficient tends to saturate.
The g, coefficient cannot effectively discriminate between
Glatzmaier’s model and, say, the model in which his non-
axisymmetric components are scaled up by a factor of 2. The
use of line-width coefficients to constrain the strength of large-
scale convection, therefore, will require their simultaneous
interpretation and care. Ultimately, g, may provide tighter
constraints on the magnitude of convective velocities than ¢,
though its use requires a knowledge of the intrinsic Q for each
multiplet. This will depend on the development of better theo-
retical models of intrinsic damping or on better measurements
of intrinsic ¢ coming, perhaps, from intensive study of the
nearly sectoral resonances and ! = 0 resonances which are least
likely to be broadened by convective modal coupling,

7. CONCLUSION

This paper presents the numerical application of the theo-
retical formalism of Lavely & Ritzwoller (1992) to the model of
large-scale convection described by Glatzmaier (1984), Its
purpose is to discover a measurable signature of convection
which can be sought to help establish the existence of solar
giant cells and, perhaps, constrain their general features. The
formalism of Lavely & Ritzwoller (1992) is based on a number
of assumptions, including the assumption that the convective
flow field is steady state and anelastic and that the governing
equations of motion are linearizable in the mode displacement
and convective flow field. Lavely & Ritzwoller (1992) argue
that these assumptions arc accurate in the region where Glatz-
maier’s model is defined. A more troubling assumption is that
the flow field is steady in time. Although the time dependence
of the flow field would affect the details of the results presented
here, the general characteristics of the principal results upon
which we focus are not affected by it. For example, the selec-
tion rules presented by Lavely & Ritzwoller (1992) would still
hold for a nonstationary flow field, and line widths would still
be broadened, though the degree of broadening would change
with time.

The computation of helioseismic frequencies and line widths
requires the construction of synthetic helioseismic velocity
ficlds. In this study, synthetic velocity fields are themselves
based on three practical assumptions. First, since turbulent
convection is the likely source of helioseismic oscillations, we
have applied the random phase approximation, which states
that the components of the source vector can be considered to
be uncorrelated. Second, to simplify the numerical experi-
ments, we have employed degenerate perturbation theory,
which couples only degenerate SNRNMAIS modes rather
than quasi-degenerate perturbation theory, which allows
modes to couple that are only nearly degenerate in the SNRN-
MAIS model. Finally, and most significantly, we present only
ensemble-average results which are the expected value of
results from a large number of observing intervals. The focus
on ensemble-average results insulates us from explicitly simu-
lating the source of acoustic oscillations. Kelly & Ritzwoller
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{1993) discuss methods by which ensemble-average results can
be estimated from a single observing run, and in a later contri-
bution will discuss explicit simulations of the acoustic excita-
tion field.

The results presented in this paper may be considered con-
servative for three reasons. First, we have employed degenerate
perturbation theory rather than the more accurate quasi-
degenerate perturbation theory, implying that we have effec-
tively ignored aspects of the flow field that should contribute to
convective line broadening. Second, Glatzmaier’s model runs
only to 0.95 R and, therefore, does not include contributions
from the high-velocity flows near the surface. Finally, the
FWHM method of measuring @ vields smaller @ variations
than the methods that are designed by Kelly & Ritzwoller
{1993) to work effectively on real data. However, we have
attempted to offset these factors by choosing an input intrinsic
0 model that is high, at least for modes above 2 mHz.

The principal conclusion of this paper is that the most sig-
nificant helioseismic signature of large-scale convection should
be a systematic, dominantly m-parabolic line-width effect
within each multiplet. This line-broadening effect for certain
resonances exceeds 50% of the intrinsic @ for Glatzmaier’s
model. The magnitude of this effect is a strong function of the
intrinsic Q, and we have taken intrinsic Q to be approximately
10* The source of this m-parabolic signature is easy to under-
stand. The width of a generalized resonance function depends
on the degree of coupling to neighboring SNRNMAIS modes.
If the range of frequencies over which coupling is significant is
broad compared with the intrinsic line width, then the
resulting resonance will be broadened. Frequency splittings are
controlled by differential rotation which has a characteristic
pattern with m. Different m-values are more closely spaced for
low |m]|/l than for high |m|/l. Therefore, coupling will be
strongest among low-| m|/l modes. This is why the low-|m|/i
modes are preferentially broadened relative to the high-|m|/i
modes. Helioseismic frequencies also are shifted by large-scale
convection, but not as significantly relative to measurement
error as line widths. Nevertheless, they possess distinctive pat-
terns that could be exploited to estimate their effect on mea-
sured frequencies.
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To establish the existence of convective giant cells, and
perhaps to estimate their statistical characteristics, it should
become a priority to measure individval m-state ling widths in
the future. Current @ measurements have been made by lin-
early recombining the 2! + 1 resonances within a multiplet to
produce a high signal-to-noise measurement of degenerate Q.
Our numerical results predict three effects of large-scale con-
vection on degencrate Q: (1) degenerate ¢ measurements
should be lower than intrinsic @, (2) the line-width broadening
should increase with harmonic degree I, and (3) radial {{ = 0)
modal line widths should be unaffected by large-scale convec-
tion. All three of these predictions are consistent with current
observations. The magnitude of the nonaxisymmetric com-
ponents of the model also affects the magnitude and character
of the line-width effect. This will be the subject of further study.

We are very grateful to Gary Glatzmaier for providing us
with a numerical model of convection, without which this
study could not have been completed, and to Juri Toomre for
suggesting its use. Adrian van Ballegooijen’s help throughout
this study has been exceptional. We would like to thank
Ronald Gilliland for providing us with a solar model and
stellar evolution code and John Woodhouse for modifying his
eigenfunction code for application to the Sun. Ken Libbrecht
generously provided his splitting coefficients and error esti-
mates which informed our discussion of differential rotation.
We thank Tim Brown, Thomas Bogdan, Douglas Gough, and
Pawan Kumar for many valuable discussions, We are grateful
to John Kelly for his collaboration on this project and for
constructing Figure 9. E. M. L. was supported by a postdocto-
ral feliowship from the Advanced Study Program and the High
Altitude Observatory at NCAR. This work was also supported
by the National Science Foundation under grants PHYR9-
04035, ATM-88-05194, ATM-88-05546; by NASA under grant
NAGW-1677; and by the National Center for Supercomputing
Applications at the University of [llinois, Urbana-Champaign
under grant xfo. The National Center for Atmospheric
Research is supported by the National Science Foundation.

APPENDIX A
MODAL NOTATION AND TERMINOLOGY

In this appendix we introduce the notation and terminology that we use to define and characterize the acoustic wave field. A
spherical, nonrotating, nonmagnetic adiabatic, isotropic, static solar model is referred to as a SNRNMAIS solar model. A mode of
such a model is uniquely identified by a single triple of quantum numbers (n, I, m) that denote, respectively, the radial order, the
harmonic degree, and the azimuthal order of the mode. A modal frequency of a SNRNMAIS solar model is simply the degenerate
frequency of the multiplet , S, that comprises the (2] + 1) modes with identical r and { values. The degenerate frequency is denoted
by w,, where k& is the multiplet index (n, I). Any symmetry-breaking agent such as rotation, magnetic fields, or convection will lift this
(2! + 1) degeneracy and split the frequencies of the modes composing the multiplet. If the symmetry-breaking agent is axisymmetric,
as is differential rotation, then to a good approximation the spatial structure of each mode will remain specified by the same triple of
quantum numbers. For a general, nonaxisymmetric perturbation, each modal eigenfunction is a linear combination of the eigen-
functions of the SNRNMAIS solar model. The expansion coefficients under degenerate perturbation theory are given by the
components of the eigenvectors of the splitting matrix H, (defined in Appendix B}. It is of dimension (2! 4 1) x (21 + 1), and is
composed of the block-diagonal general matrix elements HE(—l<m' <[ —l<m <.

Since the acoustic modes are spheroidal, the vector eigenfunctions s3'(¥) of the SNRNMALIS solar model can be written in the form

se) =, UnNYO, §)F + , ViV, Y76, 4) (A1}

where , U (r) and , Vj(r) are the scalar radial eigenfunctions, and the time dependence is given by exp (iw, 1). The coordinates (r, 8, ¢)
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are spherical polar coordinates (where @ is the colatitude) and #, #, ¢ denote unit vectors in the coordinate directions. The surface
gradient operator is given by
d I

=0t o

The function Y7(0, ¢) is a spherical harmonic of degree ! and azimuthal order m defined using the convection of Edmonds (1960):

Vi

(A2)

f YO, $)YT(O, ¢) sin 0d6de = 5,0, 014, (A3)

where the asterisk denotes the complex conjugate, and the integration is performed over the unit sphere, The vector eigenfunctions
satisfy an orthogonality condition given by

J' Po(rISE *(r) - sp(r)r® sin O dOdp dr = rgﬁo(r)[u UMD + 1+ 0, VEEY I Sy 00 01
0

= Nk 5m'm 5n’n 61’! » (A4)

where R, denotes the radius at the solar surface and p,(r) is the density of the solar model.
Seismic toroidal modes are excluded from the seismic basis set, since these modes are of zero or near-zero frequency and therefore
will not significantly interact with acoustic poloidal modes in the frequency range of interest (1.5 mHz < v < 5.0 mHz).

APPENDIX B
SUMMARY OF DEGENERATE PERTURBATION THEORY

Degenerate perturbation theory is an approximation to quasi-degenerate perturbation theory that governs modal coupling and
splitting. Under this theory, only those modes that share the same degenerate frequency in the SNRNMAIS solar model are allowed
to couple. Using this fact, the principal result of degenerate perturbation theory follows immediately from quasi-degenerate
perturbation theory (Lavely & Ritzwoller 1992):

A = AWTH A® (B1)

where A% is a diagonal matrix of eigenvalues dw; (—! < j < I), A% is the unitary eigenvector matrix that diagonalizes the splitting
matrix Hy, and k denotes the multiplet , $,. The {(#', m) component of H, is given by

) i . .

Hu™ =+ I:J\Pu s ¥r) - 2 x spdPr + Jpo&'}!‘ *r) - u - VS?d3r] ) (B2
k

where —I<m' <l —1<m<I, and N, is given by equation (A4). In writing equation (B2), we neglected contributions from

perturbations to the density, adiabatic bulk modulus, gravitational potential, ellipticity of figure, and centripetal acceleration (the

matrix elements for these perturbations are given in Lavely & Ritzwoller 1992). In terms of the modal eigenfunctions and the

expansion cocfficients of the toroidal velocity field, H%™ can be written

HE™ = §,p m2 '[;Repo(2UV + VHdr +(— )"+ 1) ,§1 Vs !is (nlz’ f ':I) J;Repo{r)wg(r)’rs(r)rzdr , (B3)
where the kernel T{#) is given by
Ty = —ld+ 1r 20UV —U> — V[(I + 1) — 4s(s + 1)]}(_i ; i) , (B4)
and y, is given by
n=(2E)7 (B3)

The Wigner 3-j symbols in equations (B3) and B4) are defined according to the phase convention of Edmonds (1960).
The frequency splitting in the corotating frame due to differential rotation and the Coriolis force are given by the diagonal
elements of the splitting matrix (see Ritzwoller & Lavely 1991 ; Lavely & Ritzwoller 1992):

1 Ro Re
off = 0, + dw,, = 0, + — l:mQ f po Clryr2dr + Y oo J‘ wl(r), K,,(r}rzdr] , (B6)
N, o s=1,3.5,... o
where
AP = por TI2UV 4+ (s + V2 — U2 — [(1 + 1)V (B7)

and the coefficient yy; is defined in equation (33) of Ritzwoller & Lavely (1991). The frequencies " in the inertial frame are obtained
by subtracting m€ from the right-hand side of equation (B6).
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APPENDIX C
THEORETICAL WAVE FIELDS AND POWER SPECTRA

C1l. THE ACOUSTIC WAVE FIELD IN THE INERTIAL FRAME

The helioseismic displacement field given by equation (1) is calculated in the corotating frame. Since helioseismic Doppler images
are ordinarily measured from the Earth’s surface, it is necessary to transform the displacement field to a frame other than the Sun’s.
In this paper we identify the observer's frame with an inertial frame. As discussed in § 2 of Lavely & Ritzwoller (1992), the
transformation to an inertial frame is accomplished by the variable transformation ¢ — ¢ — Qt, where Q is the average angular
rotation rate at the solar surface. Noting that the dependence of s7'(r) on the azimuthal angle ¢ is given by exp (imé), and using index
notation for clarity, equation (1) can be written

3 I 1
wie, =Y Y A¥srn Y AP « 450 (83))]
J==lm=-1 i=—1
where A%)(r) is given by
A¥(e) = exp (iwfit) exp (—ot), (C2)
7, is given by
wf = o —mQ + AR, (C3)

and A% (—I <j <) are the components of the diagonal matrix A®. By the convolution theorem, we obtain in the frequency
domain
L

1 i
wiir, )= Y, %, I AR} ST 3. iA?,-‘”a?"(w)lfi‘}{w) . (C4)

j=—-tm=-

The Lorentzian function A%Yw) is given by

o) = [;] : (©5)

2 Loy + il — o)
where we have neglected the contribution from the pole &y, + (o + @),

C2. SYNTHETIC POWER SPECTRA

In practice, helioseismic time series are obtained by the application of a spherical harmonic spatial filter to a sequence of Doppler
images. Similarly, a synthetic time series of a convecting model is calculated by application of the spatial filter to the time derivative
of the theoretical wave field in equation (2). In this section we calculate this time series and its power spectrum. Since modes in the
convecting model are coupled, it is not possible to extract from Doppler images the time series and power spectrum that correspond
to a single mode of oscillation, as can be done with a spherically symmetric or differentially rotating model. Instead, the time series
and power spectrum are computed for the motion associated with a single spherical harmonic. The resulting power spectrum will
contain resonant lines from each mode in the convecting model that depends on the spherical harmonic.

The complex time series F'(£) associated with the target spherical harmonic Y7 (6, ¢) of the kth multiplet is given by

F(n) = j YIXO, ) (6, P)g(t)érs = 3. O,uilr, 1) sin 0dEde . (C6)

where é,, is the line-of-sight vector, g(¢) is a time-domain filter that accounts for gaps and tapers, and f(6, ¢) is a weighting function
applied to down-weight noise contamination near the solar limb [e.g., Tomczyk 1988 used f(6, ¢) = sin? # cos? ¢]. In practice, only
one hemisphere of the Sun can be imaged, and so the integration is performed only over the visible solar disk (0 <0 <m,
— /2 < ¢ < n/2). The acoustic wave field in equation (C6) is evaluated at the radius where the observed velocity field is imaged. The
time series FJ*(t) contains contributions from displacement patterns with quantum numbers nearly similar to the target quantum
numbers m’ and . This aliasing is due to the line-of-sight vector, the weighting function, the imaging of one hemisphere only, and the
finite resolution of the observed Doppler image. Each of these effects can be modeled as in equation (C6), but for simplicity we
neglect them here by (1) assuming that the sampling of the wave field over § and ¢ is continuous, (2) performing the integral in
equation (C6) over the entire sphere, and {3) defining f(f, ¢) = g(t) = L,and &,,, = 7.

After adopting the simplifications described above, the complex spectrum is obtained by substituting equation (C1) into equation
(C6) taking the Fourier transform, and performing an integration by parts:

I 3

F(w) = iqu,_E I A},’,‘,’j‘ Zl AW g @) Al w) . (C7)
i=- i=- s

The power spectrum is given by | Fi¥ ()|

I 1 i i
IFP)F = Ulo? 3 5 ADADE 3 3 ARTARET LY afelr el o)) (C8)

ji=-tir=- i==li=-



No. 2, 1993 EFFECTS OF CONVECTION ON HELIOSEISMIC DATA 831

C3. WAVE-FIELD STATISTICS: THE RANDOM PHASE APPROXIMATION

The existence of many acoustic sources and the turbulent nature of near-surface convection suggest that a statistical approach to
the calculation of power spectra is in order. We use the random phase approximation to simplify equation (15). In our application,
the random phase approximation asserts that

LY a@a™ew) = T T af@hf™@) + T T at(ad )

o'=g i'=i o' Ee i'Ef

=2 1af@) 28,0 Ot - (C9)

The second equality follows from the first, since phase randomization ensures that the components that contribute to the second
summation destructively interfere.

It is known from the observation of helioseismic oscillations that all (21 + 1) m-states of a given multiplet are excited to
approximately equal energies, In terms of the source coefficients, we are led to conclude that

Z]a“"(w)lz |b)?  foralli. (C10)

The dependence of this sum on i, together with the random phase approximation, leads to considerable simplification of our
expression for the power spectrum. Using equations (C9) and (C10}, we can rewrite equation (C8) in the form

|FE@) = Vio? Y ZAmﬂﬁE EAWWW&WMH%W%M. (C11)

j=-1j= i=—li=—1
The expression in curly brackets can be simplified as follows:

i i !
Kyt Ak L)t 4k
Z Z A‘(ii)TA}i)'*Téii’ = Z A;i”A_(i'z?*T

gl el i=—1
—5,, , (C12)
where we have used the unitarity property of the eigenvector matrix A™, ie.,
ADIA® (C13)
Equations (C11) and (C12) together yield

{Fr(@))? = Ufe? Z Z Am AGE| D) 285 A AN AR K w)
Je= ol e -
I
= ,,U,zwzlb,‘(w)lz_zl | AR, 1% A fe) 1
i
_JUie? bfw) * i
4 Pty %5 + (m W)}’

(k) |2

(C14)

APPENDIX D
SPECTRAL ANALYSIS OF SYNTHETIC DATA '

In this appendix we describe the techniques that we have used to estimate apparent frequencies and apparent quality factors from
generalized resonance functions of the convecting model in the ensemble average. More generally useful methods that are designed
for use on real data are discussed in Kelly & Ritzwoller (1993). In § 4 we discussed the problems inherent in estimating these
quantities from non-Lorentzian functions. We refer to the apparent frequency and the apparent quality factor, since these quantities
are not unambiguously defined to a generalized resonance function. We have chosen to use the first-moment and FWHM (full width
half-maximum) methods to estimate frequencies and line widths, respectively, since these methods are commonly used by observers.

We now consider the first-moment method of estimating frequencies. The power spectrum | % o(w)|* of a Lorentzian satisfies the
identity

L el
(© — @o)| L0} *dw = 0 , (D1)

— o0
where w, is the frequency centroid, and in the time-domain the Lorentzian function £ 4(f) is given by A, exp(—a, ) cos(w, 1), and
in general A, is complex. Thus, w, is the ratio of the first and zeroth moments of the power spectrum. Modeling the generalized

resonance function as a Lorentzian, the estimator wf,,, of the apparent frequency is given by

r (@ — W) < | Fr(@)]* > dw = 0. (D2)
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Substituting equation (19) in equation (D2), and evaluating the integral, we obtain
1 I
OFapp = 2, | AW, / )3 :l AR 2 (D3)
j=—1 ==
Thus, of,,, is the weighted sum of the frequencies associated with the eigenvectors of the splitting matrix H,, and the weights are
given by the squared moduli of the components of the m'th row of the eigenvector matrix AW,

We use the FWHM method to estimate line widths. With this method models can include the effect of time-domain tapers. Such a
correction was not applied in our numerical analysis, since g(z) in equation (C6) was set to unity. Since observed time series are of
finite length, we consider the effect of the boxcar taper on line-width estimates. Thus, we set g(t) = [H(0) — H(T)], where T is the
time-series length, and H(t) is the Heaviside step function. The power spectrum of g(t).# (t) is given by

| 4o 1?

Low))? =—5—"———
| o) = o

{1 + 72207 — 2¢727 ¢cos [(w — we) T}, (D4)
and is peaked at w = w, for arbitrary (%, T). For T = o0, the half-maximum values of the power spectrum are at the frequencies
wg + &y. Thus, & is often referred to as the half-width of the Lorentzian. The line width Ty is related to the quality factor @, by the
expression

rozz%zg—“. (D)

0

For a time series of length T, the ratio of the power spectrum at w, + ®, to its peak value at @, is given by

| Zolwo + %) _ 1 [1 + e~ 2T . 23T cos (a, T)]

| Lowo) P 2 1+ ¢ 29T _ g7

where the factor in brackets models the effect of finite T. Equation (D6) can be solved for ¢, iteratively. In the first iteration, we set
T = o0, and determine from the synthetic resonance function the two frequencies that correspond to the half-maximum values. This
yields an initial estimate of «,. The correction factor in square brackets in equation (D6) can then be computed, two new values of
frequencies are obtained (which yield a new value of «,), and so forth, In our synthetic experiments, we find that this procedure
typically converges in just a few iterations for a wide range of input (x,, T) values, provided that the frequency bins are small
enough. Clearly, expressions similar to equation (D6) can be derived for other tapers.

(D6)
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