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ABSTRACT

Spectral parameter estimation for physical systems with complicated temporal forcing functions is poorly
developed. Yet, to discern the effect of large-scale convection on helioseismic line widths (cf. Lavely & Ritzwol-
ler: Ritzwoller & Kelly, we require a method to retrieve line shape information in the presence of a stochastic
source spectrum. We consider the properties of two estimators, each designed to deal with the effects of a
complicated source spectrum differently. We show that one of the estimators (egs. [10], [201-[24]), based on a
Monte Carlo model of the source spectrum, accurately estimates input line-width and amplitude trends and
their errors in an idealized, but realistic, simulation of helioseismic data. The success of this method requires
its application not to individual spectral lines, but to the estimation of smooth trends over a large number of
spectral lines, for example, along a helioseismic dispersion branch. On average, additive noise amplifies and
broadens spectral lines and tends to mimic the line-broadening effect of convection. This biasing is shown to
have a relatively small effect on the line width variation within each multiplet, but can severely bias modal
average amplitude and line width. Cross talk due to incomplete spatial sampling biases line widths more sig-
nificantly, but a technique exists that may correct for its most significant components. Finally, line width mea-
surement accuracy degrades as the duration of the time series length shortens, but accurate measurements of

realistic line widths can be achieved with time series lengths as short as I month.

Subject headings: convection — Sun: oscillations

1. INTRODUCTION

Consideration of many physical problems requires the esti-
mation of the properties of damped harmonic resonances.
Spectral analysis to estimate the small set of parameters that
characterize the shapes of such resonance functions is usually
applied in the frequency domain where the power spectrum of
the data can frequently be related to a set of Lorentzian func-
tions. Spectral parameters, such as line widths, amplitudes, and
center frequencies, are functions of the physical system govern-
ing the spectra. Thus, spectral parameter estimates often form
data in inversions for models of the underlying physical
system, and their accurate and reliable estimation is the subject
of much interest in many fields of geophysics and astrophysics.

The purpose of this paper is to discuss the estimation of
spectral line characteristics where spectral peaks are obscured
by a compticated source time function. As discussed below, this
source function appears as multiplicative noise in the frequency
domain. If it is a complicated function of frequency, 1t will
distort the spectral line characteristics we wish to estimate.
Although we attempt to present the methods discussed in this
paper, as generally as possible, our motivation has been to
develop methods by which helioseismic line amplitudes and
widths can be estimated accurately. Consequently, our dis-
cussion will focus on the spectra of oscillating systems, and our
numerical simulations will concentrate on the problem of esti-
mating helioseismic line characteristics, in particular line
widths. The motivation for our emphasis on line widths comes
from Lavely & Ritzwoller (1993) who argue that large-scale
nonaxisymmetric convection should affect helioseismic line
widths in the systematic way that will be described below.

Although the physics governing various oscillating systems
may differ, many systems share a common mathematical for-
mulation. For example, the Earth’s core nutations, seismic
oscillations, oceanic internal waves, atmospheric tides, and
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helioseismic oscitlations are all governed by equations of the
form

az

302 dlr )+ Ldlr, 6) = ol 1), (1)
where d(r, ¢} is 2 displacement ficld defined over the body and
afr, t) repesents a forcing function. The operator £(r) contains
the dependence on the body’s internal composition and
dynamics and is written here as time independent so that the

equations separate. If the forcing function’s time dependence
can be written

olr, 1) = oln)h(t) , @

where h{t) is the source time history, and if a solution can be
found for a time-independent source, then the full solution can
be wntten as the convolution

d(e) = J "t — OeNr
(1]

where s(t) is the natural response of the system and solves

3

& .

3 s(r, O + L), 1) = a(nNé{r) . 4
After Fourier transformation, the convolution in equation (3)
becomes a simple pointwise multiplication:

diw) = slwh(w) , (5

where s(w) is the natural spectrum and h(w) is the source spec-
trum. As equation (5) shows, the source spectrum acts as multi-
plicative noise in the frequency domain, through which w¢
wish to retrieve the characteristics of s(w). More complicated
source functions can be represented by superposing a numbef
of sources of the form given by equation (2), as Lavely &
Ritzwoller (1992) discuss. They also argue that in helio-
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seismology the average of an ensemble of many spectra, each
formed with a different source spectrum, converges 1o the
natural spectrum. Thus, the ensemble average of d(w) 1s s(w).
Each source spectrum for a single time interval is called a single
realization of the source process, and d{w) is a single realization
of the data spectrum.

Differences between the spectral characteristics among oscil-
lating systems lie in the details of their dispersion relations, and
in their excitation and damping. For the purposes of this
paper, we assume that spectral lines are well separated 1n fre-
quency so that differences in dispersion curves, though very
interesting physically, can be effectively ignored. The biggest
difference 1 spectral parameter estimation of various oscil-
lating systems lies in the nature of the excitation process. If a
system undergoes free oscillations after a delta-like source time
history, much as the Earth does after a small earthquake,
spectral lines are relatively uncorrupted by the excitation
process, and estimation of the characteristics of the natural
resonance function is straightforward (e.g., Dahlen 1979; Chao
& Gilbert 1980; Masters & Gilbert 1982; Park, Lindberg &
Thomson 1987; Lindberg & Park 1987; Lavely & Ritzwoller
1993). In fact, such a simple excitation process admits a deter-
ministic estimation of the source moments {e.g., Dziewonski &
Woodhouse 1983). Other systems are driven by purely periodic
forces, such as the tides. These forces do obscure spectral char-
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FiG. |.—Ilustration of the way in which a pure Lorentzian (top),
s{w) = A(w), is modified by a stochastic source spectrum, hw), represented by a
noise sequence of unit expected value that is uniformly distributed in frequency
(middle). The resultant spectrum {(botiom}, d(w), 15 by £q. (5) the product of the
Lorentzian and the source spectrum, which'can be seen to act as multiplicative
noise, The sampling rate is 0.03 pHz, but convolution with a finite time series
length taper is not included.

actenstics, bul in a known way, so that the corrupting eflects
can be corrected. The analysis of stochastically excited systems,
such as helioseismic oscillations that are most likely excited by
turbulent convection in the solar photosphere is more difficult.
In this case, stochastic multiplicative noise obscures spectral
lines and obstructs spectral line width measurement, prevent-
ing any deterministic estimation of the source process. In
realistic simulations of the helioseismic source process, the
shape of the resonance function can be altered severely by the
source spectrum. (See Figs. 1 and 2.} As shown in Figure 3,
when applied to synthetic data from these simulations,
straightforward techniques for estimating resonance function
parameters often return values grossly in error.

To estimate spectral parameters accurately for a physical
systemn with a highly complicated source time history, better
estimation techniques must be devised. The first criterion for a
new method is to return accurately the parameters of the
natural resonance function line shape beneath the multiplica-
tive noise. The imposition of the multiplicative noise, however,
inherently robs the data of information necessary to recover
the underlying shape perfectly. Therefore, an equally impor-
tant criterion for a new method is to provide a meaningful
estimate of the errors of the spectral estimates.

We investigate the properties of two simple estimators. Let
8 nodel{®) = Aroge{®)Smoaa(@)} represent a synthetic or model
spectrum. The synthetic natural resonance function, s, 4c(@),
or set of natural resonance functions can be fully represented
by a set of parameters {c;} (defined in § 2) which we wish to
estimate, The synthetic source spectrum is given by h 4.{(w)
and its characteristics are dependent on the nature of the
source of the oscillations. Define Ad(w) = d{w) — d,q.(w) as

2340 2350 2360 2370
Frequency {uHz)

FiG. 2—Top: Plot of the 17 Lorentzians that compose the muitiplet ,S,,
with the azimuthal order m = { singlet all the way in back, with m incremented
by negative one to the m = —! singlet directly in front. Amplitude and fine
width variations with m across the multiplet are goverend by eq. (20), where
inpul {A,. Aj. 2g, o) are given in Table 1. These values are the ensemble
average values for {A,, 4,. oy, «,} determined in Lavely & Ritzwoller (1993)
from a model of giant-cell convection supplied by G. Glatzmaier for the multi-
plet .8, 0. Since the line width and amplitude contrasts within a multipiet
increase with I, the use of these valuss for ;S enhances visual variations for
this plot. Bottom: Plot of the same 17 Lorentzians modificd by a stochastic
source spectrum identically as shown in Fig. 1.
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FiG. 3—Illustration of the superiority of straight multiplet fitting over singlet fitting. Left - Results from singlet fiting. Plots of three Lorentzians (thick solid line).
A*"Ne), modified by uniformly distributed multiplicative noise (thin solid line), w), and the best fitting Lorentzian to cach noisy line (dashed line). The multiplet is
1561 With m = —61 (top), m = ~30 (middie), and m = O (bottom) plotied. The fit 10 each singlet by 2 single Lorentzian is systematically poor. (Right): Results frqm
multiplet fitting. The legend is the same as for the left column, but here the dashed line for each m value has been estimated by fitting for the trends across the entire
muyltiplet represented by the multiplet parameters {4,, 4;, %,, @;}. Table 1 summarizes the fits to the amplitude and Q for each line and shows that the multiplet
fitting reduces average crrors by approximately an order of magnitude relative to singlet fitting. "

the residual spectrum. We consider two 2-norm estimators that
minimize the residuval in a specified frequency band in two
ways:

min L"; Adw)? do , {6)
min r’] A in dw)? dow , N

where the absolute value symbols indicate the modulus of a
complex-valued function and the minimization is over some
suitably chosen frequency band [w,, wg]. The goal of each

method is to represent the source spectrum accurately and to
develop an ervor analysis for the case of multiplicative noise.
The motivation for the estimator given by equation (7) is that
the natural logarithm converts the multiplicative noise into
additive noise, for which we can provide error estimates on the
estimated coefficients.

This paper is divided as follows. In §2 we specify the
problem for helioseismic parameter estimation and present 3
general discussion of the two methods of spectral estimation
abstractly given by equations (6) and (7). We argue that for
helioseismic applications, use of estimator (6) is preferable t0
estimator (7), and describe a means of treating the source spec-
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trum that we cail Monte Carlo modeling, which when applied
to coefficient estimation produces a method we call Quasi-
Monte Carlo parameter estimation. This estimator is applied
to idealized, but realistic, simulations of helioseismic data in
§ 3. In § 4, we briefly discuss the effects of additive noise, finite
time series lengths, data gaps and nonuniform spatial sampling
on spectral line shapes and on the retrieval of natural line
shape information.

2. METHOQDS

The simulation of the effect of large-scale convection on
helioseismic oscillations, ignoring the effects of the random
source-time history, is discussed by Lavely & Ritzwoller (1992,
1993). Simulation of the source-time history will be discussed
in a later contribution in which we will argue that the solar
source spectrum should be stochastic and uniformly distrib-
uted in modulus and phase. These simulations are based on the
currently prevailing view that helioseismic oscillations are
excited by acoustic noisc generated by turbulent convection
near the solar surface (Goldreich & Kumar 1988; Kumar &
Goldreich 1989; Brown 1990), and are in agreement with
obscrvations (Woedward 1984).

In estimating characteristics of helioseismic spectra, we are
primarily interested in accurately estimating peak widths,
amplitudes, and center frequencies. Since the stochastic nature
of the source randomhizes spectral phase information, we will
ignore the phase of the spectrum.

2.1. Spectral Estimation for a Single Resonance Function:
Singlet Fitting

Although each helioseismic spectral line is actually com-
posed of a set of unresolved Lorentzians (Lavely & Ritzwoller,
1992, 1993), for simplicity we will approximate each peak as a
single Lorentzian and will refer to it as a singler. In helio-
seismology, each singlet can be represented by a triplet of
numbers: the radial order n, and the harmonic degree ! and
azimuthal order m of the spatial filter. The nature of helio-
seismic spectral estimation for the more realistic non-
Lorentzian case will be discussed in a later contribution.

Consider, first, a natural resonance function given by a
single Lorentzian, A(w):

A

stw) = Alw) = 1 (@ — oy’

®)
where Afa* is the amplitude of the spectral peak at @ = wg, o is
the attenuation rate (which is half the line width at the half-
maximum point of the amplitude spectrum), and w, is the
center frequency. The attenuation rate is often defined in terms
of a quality factor Q by

@
a=> 0 9

In accord with equation (5), to approximate a single realiza-
tion of the helioseismic spectrum we must multiply the Lor-
entzian by a uniformly distributed source spectrum, hw), as
seen in Figure 1. We wish (o estimate the set of singlet param-
eters {A, a, wy} using the estimators defined by equations (6)
and (7). This estimation procedure is called singlet fitting. We
treat equation (6} by solving the foliowing matrix equation
iteratively, updating the singiet coefficient vector ¢ (c, = A,
€3 =, €3 = wy) and the partial derivative matrix D on each
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iteration i (hereafter suppressed):
Ad? = HD¥3¢9 (10)

where ¢ = ¢~ 3¢ and Ad is the vector composed of the
residual spectrum arrayed row-wise as a function of frequency

;2

Ad(wj) = d(m_;) - A(wj)hmodet(mj) . (l l}

the matrix H is the diagonal matrix whose nonzero clements
are the estimates of the source spectrum: Hyy, = R ogol@ )00
The model spectrum chosen can be any member of an ensem-
ble of spectra that have a prescribed distribution function with
respect to source amplitude. [See § 2.3 for a more detailed
discussion of i, 4. (wy).] The frequency band over which fitting

is performed is discrete with @, & [®w,, ..., wx]- The K x 3
partial derivative matrix is given by
MNwy) 1
- - 12
o=y = Awy), (1)
Moy —2a .,
Dy, = Fady Aew)) , (13)
Aw) Ao, —wy) ,,
Dy = = . 14
3 B0, A Awy) {14
Similarly, we treat equation (7) by iteratively solving
Alnd? = PO§D | (15)

where the partial derivative matrix P is given by
_dln[AMw)] Dy
T B My (e
The residual of the logarithm is defined as follows:
Alnd{w) = Ind{w) — Ind, 4 (w0}
= [Ins(w) + In kw)] — [In Alw) + Inhyg.(e)] (17)

= Alns(@) — [In hpoge(@) — In h(w)]

P,

= Alns{w) — n(w), (18)
which allows us to rewrite equation (15) as
Alns? = PG 4 g | 19

where n, = [Inh_galwy) — In h{w,)] is the difference between
the actual source spectrum and our model source spectrum
and can be considered to be additive noise. Its statistics will
depend on the nature of the source process. For helioseismic
spectra, it should be log uniform. Taking the logarithm trans-
forms the multiplicative noise into additive noise, from which
error estimates are easily computed.

Thus, we implerient the estimators given by equations (6)
and (7) by solving equations (10) and (19) and refer to these
methods as straight and logarithmic fitting, respectively. Unfor-
tunately, simulations indicate that in the presence of a uni-
formly distributed source spectrum neither estimator retrieves
the input amplitudes and line widths accurately. Figure 3 and
Table 1 show that the multiplicative noise produces a spectrum
that is poorly fitted by a Lorentzian, and the estimated spectral
line parameters differ markedly from the input parameters.
Unless an accurate, deterministic estimate of the source spec-
trum exists, the estimates of line width and amplitude will
contain large errors. Frequency estimates are not similarly
biased. Multiplicative noise does increase their variance, but
frequencies can even be well estimated by the moment-ratio
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TABLE 1}
SUMMARY OF THE FriTeED AMPLITUDES AND QS IN FIGURE 3

m A, Error (%) 2. Error (%)
Input Values
6L 1.005 . 9821
=30 1.249 8257
L1 1.490 ... 7139
Muliiplet Fit
=6l 1.033 1.0 9862 04
=30 1.299 40 81190 1.8
0. 1.563 49 6904 33
Singlet Fit
=61 1.350 34 6991 29
=30 1.861 49 6123 26
O 0.579 61 12542 76

Computed values of resonance pezk amplitude and quality factor for three
different azimuthal orders m of the multiplet ,S,. The singlet and multiples
fitting routines were supplied with an identical full multiplet data set of pure
Lorentzian functions to which uniformly distributed multiplicative noise had
been applied. The line widths and amplitudes of each singlet were computed
from the line width trend parameters {A,, A,, «,, #;} computed in Lavely &
Ritzwoller 1993, These input values arc listed for m = —61, m = —30, and
m = 0. The line shape corruption due to the application of multiplicative noise
substantially biases the singlet parameter estimales, yielding estimates with
errors of ~ 50%. This biasing error is greatly diminished if line width trends
are sought by simultancously fitting over the entire multiplet (see Fig. 3.)

method (e.g., Lavely & Ritzwoller 1993). Since frequency esti-
mation is not problematic, we will drop discussion of it here-
after. Experience shows that what is needed to estimate
spectral line widths and amplitudes accurately is to consider
not a single spectral line, but variations in line attributes across
a number of lines.

2.2. Spectral Estimation over Multiple Resonance Functions:
Multiplet Fitting

Information is lost from the spectrum when multiplicative
noise is applied to the underlying resonance function. To
retrieve this information requires the addition of auxillary
information. For helioseismology, this information is that, irre-
spective of multiplicative noise, helioseismic spectral character-
istics are expected to vary smoothly and slowly within a
multiplet and therefore variations can be parameterized in
terms of simple functions. Lavely & Ritzwoller (1993) showed
that certain models of large-scale convection in the solar inte-
rior possess an amplitude and line width signature in helio-
seismic data which, to a good approximation, can be modeled
by a degree two polynomial in m/l. They also showed that the
polynomial coefficients should trend approximately linearly
with harmonic degree L Optimally, line widths and amplitudes
should be parameterized simply in terms of the n of each node
and the ! and m of the spatial filter, and the spectra of all the
hines should be fitted simultanecusly. The simulations reported
in § 3 show that it is sufficient to estimate the amplitude and
line width variations within a single multiplet and then fit a
posteriori for trends with [ and n. (A multiplet comprises the
(2! -+ 1) lines, each characterized by a different m, for a single »
and 1)

We call this fitting {or the amplitude and line width trends
within a multiplet, multiplet fitting. Like singlet fitting, multi-
plet fitting is based on equations (10) and (19}, but with the
following transformations: Afw,) - A"™(w,), D — D, and
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P — P, where the features of the Lorentzians within each muiti-
plet are given by the following equation:
Ao + Ay Pym/])

(m), —
ATw) = {0 — w,..)z + [@e + 2, Pz(m/[)]z ’

(20)

We wish to estimate the set of multiple parameters {¢, = A,
€y = Ay, €1 = ay, ¢4 = a,} for each multiplet. Spectra in the
data vector and partial derivative matrices are stacked verti-
cally first as a function of frequency around each of the (21 + 1)
lines within a multiplet and then as a function of azimuthal
order m so that the row index is n=K(m+ ) +k The
K(21 + 1) x 4 partial derivative matrix is given by

N Y

nl a Ag D ‘k"l.' L] (21)
A"
2= 2 ippo, @
A
o=, 3
Xo
A
o= 22O pep 24)
doy
= 8in[A"(w,)] b,
P e = s 25)

Although the frequencies around each line are labeled identi-
cally (w,), they will differ from line to line, though their number
around each line will remain approximately fixed, being gov-
erned by the time series length.

Figure 3 and Table 1 show that straight multiplet fitting
greatly improves the ability to retrieve natural resonance func-
tion characteristics for spectral lines within a multiplet, with
errors reduced from straight singlet fitting by an I-dependent
amount, approximately an order of magnitude for ! ~ 50.

The application of the equations (10), (19), and (20)-{25)
suffers from three main problems. First, we require a model of
the source spectrum, h,, . {®w). We will discuss this in § 2.3.
Second, error estimates of the estimated parameters are neces-
sary to interpret the results. In principle, since the multiplica-
tive noise has been transformed into additive noise by the
logarithm, error estimates for the logarithmic estimator (eq.
T19]) are straightforward. Unfortunately, simulations show
that they are difficult to interpret since they are log-uniform in
distribution. Error estimates for the straight estimator (eq.
[10]) will also be discussed in § 2.3 and 3. Finally, the com-
bined effect of additive noise and multiplicative noisc has not
been considered in the equations above. The logarithmic esti-
mator is unstable to the addition of additive noise to the spec-
trom because the logarithm weights up the low-amplitude
parts of the spectrum. When noise is added, it is preferentiatly
fitted by the logarithmic estimator so that even very high
signal-to-noise ratio data are irretrievably corrupted. This con-
sideration causes us to discard at this point the logarithmic
estimator which can perform well only in an extremely low
additive-noise environment. Hereafter, only the straight esti-
mator will be considered. The effect of additive noise on
straight maltiplet fitting witl be discussed in § 4.

2.3. Monte Carlo Model of the Source Spectrum and Error
Estimation

Since we cannot produce an accurate model of the stochastic
solar source process to generate a model of the source $pec-
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trum, we choose instead to generate these spectra so as to have
the same statistical characteristics as are seen in the data. To
do this, we can use equation (10) iteratively to find the least-
squares fit Lorentzian to the data. We then use this Lorentzian
and the data to solve for h, .. (w) by setting the left-hand side
of equation (10) to zero. By analyzing histograms of the ampli-
tudes of A, 4. (w), we can determine empirically its distribution
function. When this technique is applied to data collected by T.
Brown in 1989, we find that the distribution of source spectrum
noise can be acceptably modeled as uniform.

Consider an ensemble of model source spectra distributed
identically with that derived from the data, {hZ, (@w)}2 .
with each member considered to be a potential single realiza-
tion of the source process. We draw for this ensemble a finite
number of realizations, {A,.(w,)}] ;. We refer to this process
as a Monte Carlo model of the source spectrum. With each
realization of the source spectrum, we solve equation (10) iter-
atively, yielding coefficient estimates ¢, and then consider the
average, ¢, and the standard deviation, &, of the coefficients
over this ensemble of P estimates. The source process is treated
statistically, but for each realization of the source spectrum,
coefficient estimation is deterministic. For this reason, we refer
to this process as quasi-Monte Carlo spectral parameter estima-
tion or fitting. At the very least, in each realization, the model
spectrum and the partial derivative matrix match the data
statistically.

The sum of uniformly distributed functions goes to a con-
stant function as the index on the sum increases. The average
source spectrum, therefore, is a constant function of frequency,
hooaelw) = 1 or H = I, where I is the identity matrix, With this
model of the source spectrum, a pure Lorentzian is fitted to the
data, returning limiting case coeflicient estimates €. We call this
Lorentzian fitting. The nuances of individual source distribu-
tions will cause single realization coefficient estimates to differ
from the Lorentzian fit estimates. As more relevant data points
are considered, either by improving resolution or by fitting
multiplets rather than singlets, single realization estimates con-
verge to the Lorentzian estimates. In addition, we have found
that the average of many individual realization estimates also
converges to the Lorentzian estimate, as the number of
instances of source spectra considered becomes large.

In § 3 we discuss the characteristics of the application of
straight multiplet fitting {eqs. [ 10], [20]-[24]) with the Monte
Carlo model of the source spectrum. We show that the
expected value of the quasi-Monte Cario coefficient estimates,
¢, are on average accurate and converge to Lorentzian spectral
estimates. In addition, we show that the standard deviation of
the ensemble for each coefficient, &, provides a useful measure
of the expected error. Although these methods are applied here
only in search of the line width broadening signal predicted by
Lavely & Ritzwoller (1992), the mcthods are a generally apptic-
able means of measuring spectral parameter trends and their
associated uncertainites. These methods may prove to be
useful for measurement of frequency splitting trends used. for
example, by Goode et al. (1991) to detect latitudinal and radial
variations in the solar rotation rate.

3. APPLICATION TO SIMULATED HELIOSEISMIC DATA

3.1. Synthetic Spectra

Lavely & Ritzwoller {1993) argue that helioseismc spectral
peak widths reveal more information about solar convection
than other speciral parameters. They show that helioseismic
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spectra produced from spatially filtered images corresponding
to spherical harmonic degree and order { and m, respectively,
are systematically broadened for low |m}/! relative to high
im|/l. The broadening is not an intrinsic damping effect and
can be explained simply. Let s/ and [ represent the azimuthal
order and harmonic degree of the eigenfunctions of the spher-
ically symmetric relerence solar model. These parameters are
two modal quantum numbers, unlike m and { which are two
indices of a spherical harmonic spatial filter. The line broaden-
ing predicted by Lavely & Ritzwoller (1993) results from the
fact that low ||/l modes tend to couple more strongly than
high {m |/l modes. This is because differential rotation domi-
nates the frequency splitting and spaces low | it{ /{ modes more
closely than high {#|/! modes. This coupling means that low
| m| /I spectra are not pure Lorentzians, but are composed of a
set of unresolved spectral peaks. Using Glatzmaier's model of
stationary convection (Gilman & Glatzmaier 1981; Glatz-
maier & Gilman 1981, 1982; Glatzmaier 1984; Gilman &
Miller 1986), Lavely & Ritzwoller {1993) show that the trend of
peak widths within a multiplet is approximately parabolic in
|mi/L Tt is this peak-broadening signal, which is the signature
of large-scale convection in the natural resonance functions,
that we wish to estimate through the random solar source
spectrum. Analysis of 1989 data observed by T. Brown indi-
cates that such a line-broadening signal exists (Ritzwoller &
Kelly 1993), but it is not yet clear that this broadening exceeds
similar broadening caused by the cross talk and additive noise
effects discussed in § 4.

We construct synthetic spectra along the n = 3 branch with {
ranging from 1 to 100. For each singlet, 2 uniformiy distributed
source spectrum, h{w), with unit expected value is applied to
each natural resonance function which here is a Lorentzian.
The input line shape multiplet parameters {4q, 4,, aq, a,} are
the ensemble average estimates of Lavely & Ritzwoller (1993).
[nput frequencies are also taken from Lavely & Ritzwoller
(1993). Our syathetic spectra here contain no “cross talk”
which would be caused by the incomplete sampling of the
spatial filter, nor any additive noise. Intrinsic @ is set for each
mode at 10,000, This is a realistic intrinsic  at very low fre-
quencies, but is a factor of 3-5 too large for frequencies above 2
mHz. The frequency sampling is chosen to be 0.03 yHz, which
corresponds to a time series length of roughly a year. Spectra
have not been smoothed by convolution with a finite time
series length nor a day—night duty-cycle function. These effects
will be discussed in § 4 as well. Fitting is performed over a
symmetric frequency band centered about each line down to
20% of the peak power.

3.2. Estimation of Spectral Trends within and across Multiplets

. Each multiplet is initially considered independently, and
straight quasi-Monte Carlo multiplet fitting is applied to yield
estimates of the multiplet parameters {Ag, A,, &g, o,}. Input
multiplet parameters must be determined to initiate iteration.
This is done in the following way. Each singlet frequency is
estimated with the moment-ratio method which proves to yield
a highly accurate frequency estimate. Straight singlet fitting is
then applied to each singlet to determine o, and A, approx-
imately, and {A,, A1, ay, @} are initially estimated from the
singlet estimates by regressing over m. A set of synthetic source
spectra, (M, fw)}h_,, are then computed with the initial
multiplet parameter estimates with statistics matching the
source spectrum of the data, and straight multiplet fitting is
applied iteratively to each using eqs. [10], [20]-{24]. The
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numerical stability of the partial derivative matrix is quite
good with typical condition numbers ~ 10, and convergence is
achieved within a few iterations for each synthetic source spec-
trum. The averages and standard deviations of the multiplet
spectral parameters taken over the P realizations of the model
source spectrum are then tabulated.

Figure 4 shows the results of quasi-Monte Carlo multiplet
fitting for 3 84; for a single input source spectrum. (We use
hereafter the geoseismologic notation , S, to denote the over-
tone with radial order n of the spheroidal mode of oscillation
with harmonic degree 1) The input values for the multiplet
parameters are at the intersection of the bold crosshairs on
each plot. Each small x represents the estimated multiplet
parameters for a single synthetic source spectrum. The average
of the estimated parameters, which is the quasi-Monte Carlo
estimate, is represented by the triangle at the intersection of
cach error bar whose length is equal to the standard deviation
of each estimated parameter. The convoluted line shows the
convergence trajectory over realizations of the source spec-
trum. We wish to draw two conclusions from this figure. (1) As
asserted in § 2.3, the quasi-Monte Carlo estimate converges to
the Lorentzian fitting estimate which is represented by the
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F1G. 4—Result of straight multiplet fitting for the multiplet , S, The bold
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bottom panel, respectively, for a single draw of the source spectrum, k).
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fitting, to which the quasi Monte Carlo estimates would converge as P — oo,
The error bars can be seen here and in Fig, 6 10 be a uscful estimate of the
errors in the estimated parameters.
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small circle near the intersection of each pair of error bars. (2)
The error bars can be seen to provide meaningful estimates of
the errors in the estimated parameters.

With enly a single realization of the input source spectrum
for a multiplet, the quasi-Monte Carlo estimator is biased; ie.,
the cloud of individual estimates seen in Figure 4 does not
center on the input parameters. This arises because multiplica-
tive noise inherently robs the spectrum of information, and
changes the apparent line width and amplitude of each line.
Imagine the improbable situation in which the source spec-
trum for a single line were zero everywhere except at the spec-
tral peak. We could never retrieve the natural line width of this
spectrum. The quasi-Monte Carlo technique assumes that we
draw a “typical ” synthetic source spectrum. Since in this worst
case scenario the source spectrum is not typical, the estimated
coefficient will be biased. For the quasi-Monte Carlo tech-
nique to reduce the bias, we must ensure that the data source
spectrum is more nearly average. This can be achieved by con-
sidering not a single multiplet at a time, but a large set of
multipiets. Considering a large number of lines reduces the
chance that the data source spectrum is grossly atypical. This is
consistent with the assertion that biases decrease with increas-
ing I. (The number of lines over which the fit is performed
increases linearly with 1) In addition, simulations show that
when an improbable input source spectrum leads to large
biases, the cloud coefficient estimates will have a similarly high
standard deviation. We can thus use these standard deviations
as a reliable estimate of the error on the estimated parameters.

Thus, application of straight quasi-Monte Carlo multiplet
fitting is insufficient to retrieve accurate line shape parameters
for a single multiplet. However, error estimates from this tech-
nique are meaningful and it is necessary to consider trends in
the estimated parameters with | to retrieve the input values
accurately. In addition, as Figure 5 shows, for each multiplet
there is a high covariance between a subset of the multiplet
parameters. This trade-off is also diminished by considering
along-branch trends.

Figure 6 shows the results of the application of straight
quasi-Monte Carlo multiplet fitting along the ;S branch for |
ranging from 40 to 100. The dark solid line represents the input
values of the multiplet parameters, and the straight line is the
weighted linear fit to the parameter estimates and estimated
errors. We draw two conclusions from this figure. (1) Although
the error for a single muitiplet can be large, the fit with !/
accurately retrieves the input parameters. (2) The error bars
approximate ! ¢ errors. In each plot, approximately two-thirds
of the error bars cross the input line, and the estimated errors,
on average, increase with the size of the error. For example, the
error and the error bars decrease with /.

In conclusion, straight quasi-Monte Carlo multiplet fitting
is adequate to retrieve the along-branch trends which should
be the signature of large-scale convection. As witnessed by the
fact that errors decrease dramatically with I, straight quasi-
Monte Carlo along-branch fitting or a similar simultaneous
fitung of many neighboring multiplets would be preferable to
simple multiplet fitting, although it would be much more com-
putationally costly.

4. OTHER EFFECTS

Although the primary purpose of this paper is to describe 2
method by which natural line shape information can be recov-
ered in the presence of multiplicative noise caused by a sto-
chastic source process, there are other phenomena affecting
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helioseismic data that can mask the line shape signature of
convection. These include additive noise (caused principally by
photospheric convection), finite-gapped observing intervals,
and cross talk due to nonuniform spatial sampling. To this
point, our reported simulations have been additive noise-free
and, although finitely sampled in the frequency domain, have
been for natural resonance functions unbroadened by finite
temporal observing intervals or spatial cross talk, It is impor-
tant to determine the effect of additive noise, in particular on
line width measurements, to place a lower bound on the time
series lengths required to retrieve accurate line shape estimates
and to determine the magnitude of the line width corruption
caused by cross talk.

4.1. Finite Time Series Lengths and Day-Night Gaps

Finite time series lengths and time series gaps present no
formal problem. To incorporate these effects we define a tem-
poral sampling function (TSF) spectrum, the Fourier trans-
form of the temporal sampling function in the time domain,
which we convolve with the data spectrum, the synthetic spec-
trum, and the partial derivative matrix in the methods
described in § 2. In practice, however, short time series lengths
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can smooth the data spectra to the point that line width infor-
mation is ircecoverable. Figure 7 shows spectra of three TSFs,
two of which are ungapped with leagths of 3 and 12 months,
respectively, and one of which 1s gapped with a total length of
12 months. In this range of frequency offsets, the gapped and
ungapped spectra nearly overlay one another, and are very
difficult to resolve. Let us define the half-width of the TSF
spectrum as the distance to the first node off the central lobe,
1.e., the Fourier bin spacing. Synthetic experiments suggest that
as long as the half-width of the TSF spectrum is less than half
of the line width (z), then the multiplet trend parameters can be
estimated accurately.

At 3 mHz, for a spectral line with Q¢ = 3000, line widths at
the amplitude half-maximum point are approximately o = w/
20 = 0.50 gHz. The requirement that the half-width of the
TSF spectrum be less than half the line width means that time
series lengths should exceed ~ 20 days.

Matters worsened only slightly when time series gaps are
introduced. Figure 7 shows that the amplitude spectrum for a
year-long 42% duty cycle {approximately 10 hr on and 14 hr
off) TSF roughly overlays the ungapped vear-long TSF spec-
trum for small-frequency offsets. However, the 42% and the
ungapped TSF spectra diverge for larger offsets as can be seen
in Figure 8. The 42% duty-cycle TSF spectrum has large side
peaks spaced at frequency offsets of nf24h with amplitudes in
excess of 70% of the central lobe amplitude. This is a serious
spectral leakage problem and underscores the need for the use
of Global Oscillations Network Group (GONG) data which
should have a duty-cycle in excess of 90% when fully deployed
(Anderson 1992). However, simulations show that this pheno-
menon has little systematic effect on line widths. It is the struc-
ture of the TSF spectrum for small frequency offsets which is of
greatest significance.

4.2, Additive Noise

The effects of additive noise on the estimated multiplet
parameters depend strongly on the way in which it is incorpor-
ated in the spectrum. In particular, they depend on the relative
noise-to-signal ratio (NSR) as a function of m. We assume here
that the absolute noise level is constant across m. Since low
| m| /! lines have lower amplitude in our simulations than high
{ml/1, the relative NSR is higher for low {m|/l and, therefore,
the relative effect of noise is greater for tow |m|/l. For real
data, the variation in absolute noise level across m depends
dominantly on the nature of the spatial filter which dictates the
spatial sampling. Noise will be lowest for those spatial filiers
that weight the center of the observing disk the highest.

Figure 9 demostrates the way in which we add noise to
power spectra. Although the stochastic nature of the source
process requires us to ignore the phase of the amplitude spec-
trumn, we cannot ignore its phase relative to the additive noise
spectrum. Thus, the resultant noisy data depend on two
random variables: an additive noise amplitude, (N>, with a
Gaussian distribution, and a uniformly distributed relative
phase, ¢, between the natural resonance function signai and
the additive noise. Inspection of Figure 9 reveals that, on
average, the spectral power is increased by additive noise,

We report here the result of varying the NSR on the multi-
plet line shape parameters. If the NSR is small, the expected
value of the signal is only slightly changed; whereas if the noise
and signal levels are comparable, the measured signal level is
appreciably increased. Since the low [m|/! lines have a smaller
signal amplitude than the high |m|/{ lines, they have a higher
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NSR on average. Although additive noise raises the observed
power level of all lines, it has a larger relative effect on low
| m| /1 lines and therefore, tends to diminish the amplitude con-
trast between lines within a multiplet. In addition, additive
noise broadens spectral lines. This broadening is relatively
greater for narrow lines than for broad lines, so that it has a
larger effect, on average, on high {m|/l lines than on low |m|/I
lines. Thus, additive noise has a complementary effect on peak
amplitudes and line widths. Recall that peak amplitudes here
equal 4/«?, which implies that the effect of additive noise on
modal line widths and amplitudes wiil be the result of this
competition. Figure 10 displays the measured values of the
singlet amplitude A and attenuation a parameters and shows
that, on average, the a effect dominates. Thus additive noise
tends to broaden low [ m| /I lines in relation to high |m| /1 lines,
which mimics the multiplet trend due to large-scale convection
in both the amplitude and attenuation parameters.

Figure 10 shows that the effect on the multiplet parameters
by additive noise actually peaks at mid-range | mj /I values, but
displays nearly a parabolic shape in m. In fact, the effect of
additive noise can be represented by a simple transfer function

in m, relating the input (A4, a) to the estimated (4, &) values:
A, =T mA,,
&, = T(m), .

These transfer functions are dependent on the NSR and on the
input values of the multiplet parameters, and thus removing
the effects of additive hoise by inverting equations (26}-(27)
could be a difficult transcendental problem. This difficulty is
mitigated for two reasons: the correction is small for the
parameters of greatest interest, and the dependence of the
transfer function on additive noisc level is much stronger than
its dependence on the values of the input parameters. Since the
spectral parameter of greatest interest is the line width a, T,(m)
is the most important function to invert. Figure 11b shows that
for a representative value of 4% additive noise in the power
spectrum, T,(m) is less than 10% different from unity. Thus, the
bias due to additive noise will be small in comparison to other
biases to which line width measurements are subject. Figure 11
also shows that variations in the additive noise levels produce
much bigger changes in the transfer functions than do vari-

(26)
27
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Fig. t1—Effect of varying the power of the additive noise-1o-signal ratio (NSR) and the input multiplet parameters on the transfer function relating the input and
measured parameters for 35, . Sixty realizations of the additive nois¢ process were performed for cach m value. Lefi : {a) Transfer function relating input to measured
amplitude plotted vs. azimuthal order for seven different values of the NSR: 2%-14% in increments of 2%. (b) Same as (a), but for line widths o. Comparison of (2}
with (b} shows that line widths are less affected by additive noisc than amplitudes, and that the transler function of line widths may be negligible for small Jevels of
additive noise. Right: (c) Transfer function relating input to mcasured amplitude plotted vs. azimuthal order for seven different values of the amplitode trend
parameter, A,, ranging from 0.5 to 2.0 times the input value in uniform increments. (d) Same as (c), but for line widths ranging from 0.5 1o 2.0 times the input value in
uniform increments. The dependence of the measured multiplet parameters on the values of the input parameters is weaker than the dependence on NSR, suggesting
that for larger values of additive noisc, the transfer function might be approximated as being only a function of additive noise Jevel.

the data observed at a single time ¢ as a vector d{t) in which
different rows i contain data from the different spatial focations
of the solar image, then the data are related formally to their
spherical harmonic expansion coefficients ¢; by the matrix
equation .

&) = Y1), (28)

where each column of Y represents a unique {, m} com-
bination, and ¥j; is the associated spherical harmonic evalu-
ated at the latitude and longitude represented by i. We desire
the cocfficient time series cf{t) for spectral analysis, but are
typically provided with an approximation, é{t), that exploits
the near orthonormality of the matrix Y,

&) =Y'dr), (29)
where Y' indicates the hermitian transpose of the matrix Y.

The approximate coefficients &t} can thus be predicted from
the desired coefficients ot} by substituting equation (29) into

equation (28):
&0 = Y'Ye(t) (30)

Because the solar image is sampled discretely and nonuni-
formly over a hemisphere, the matrix X contains appreciable
off-diagonat elements. These off-diagonal entries are most sig-
nificant when the sum I; + m, for the ! and m associated with
the ith row has even integral difference from the I, + m; sum
associated with the jth column. The magnitude of the off-
diagonal coefficients is increased with decreasing sampling
resolution, or by decreasing the solid angle of the surface
observed, for example, by excluding limb data.

Equation (31) can be Fourier transformed to yield

&) = Xdw) , (32

showing that the spectra &w) are typically linear combinations
of the spectra we wish to analyze ¢(w). Thus, a given resonance
is contaminated slightly by neighbouring modes, especially
those modes within the same multiplet for which Am = +2
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and a, the more reliable signifiers of large-scale convection.

Since the frequencies of the contaminants are offset from the
frequencies of the target mode, cross talk will tend to bias the
measured line widths to be too wide.

The magnitude of the bias depends on several factors. As
indicated previously, the magnitude of cross talk contami-
nation will depend on the data, and on the image cropping of
the data sampling Measurement bias will also depend upon
the size of the intrinsic line width in comparison to the fre-
quency separation of cross talk partners. If the intrinsic line
widths are much narrower than the frequency separations,
cross talk will produce distinct side lobes that will not affect the
measurement of the main lobe’s width. If the intrinsic line
width is tnuch wider than the separation, the side lobes will be
masked within the higher amplitude region of the main lobe,
and will produce little effect on line width measurements. The
greatest bias should occur when the intrinsic line width is com-
parable to the frequency separation, de, o ., Of cross tatk
partners, where side lobes merge indistinguishably with the
main lobe edges. Thus, we expect that cross talk bias will be
maximal at critical intrinsic Q, ™ @4/ 05 ais-

To evaluate the bias due to cross talk, consider the synthetic
multiplet ;,5,,, composed of uniform pure Lorentzians with
the line widths and frequencies provided by Lavely & Ritzwol-
ler (1992). Each singlet within the multiplet is given a typical,
average line width and amplitude, and subjected to the pre-

dicted cross talk that would be produced as a result of using a
100 x 100 observation grid, cropping the image at $0% radius
and cosine tapering between 80% and 90% of the solar radius.
This experimental configuration was used by T. Brown for his
1989 data set. We then fit each singlet-for its Lorentzian
parameters, compute the measured Q for each mode, and plot
the ratio of the minimum value Q,;, to the common input
intrinsic value Q.. in.ic- Due to the structure of the cross talk
matrix, Q.. will be given almost always by @,_,, and
Qinerinsic = @,.—;. This central line broadening caused by
spatial filtering mimics the predicted line broadening signature
of convection. Thus, the ratio Qn.io/Qinuinsc Provides an estima-
tion of the extent to which @ is reduced by cross talk effects
alone.

Figure 13 shows the substantial effect of cross talk on the
measured line widths of a uniform multiplet; that is, each
singlet within the multiplet has an identical amplitude and line
width. We sec clearly the sharp bias toward low @ measure-
ments near a critical value of Q. inac = 2500, where intrinsic
line widths are comparable to the frequency separations of
cross talk partners. The magnitude of the bias is significant:
cross talk alone can account for a 30% increase in line width,
which is smaller than, but of the same order of magnitude of
the broadening effect of convection using Glatzmaier’s convec-
tion model.



488 KELLY & RITZWQLLER

Effect of Crosstalk on Mimimurn Measured @ vs Qume

82—|—|—“1'—7—r|1:1u-“rr].\:|!rr‘I-HF
: P
8- B
& W/
-] - 4
o I e
o L o

i 6 Ve

& -
g I /
4 i

E T4 |
(o3 L

72

v 1 \\

L .

S SR Y N U P O IR I aotd

2000 3000 4000 5000 6000 7000
intrinsic @

FiG. 13.—Cross talk acts to broaden measured multiplet lines independent-
1y of any broadening due 10 convective coupling. Here, a synthetic multiplet of
pure Lorentzian shapes is produced, cach singlet having an identical
Qyrinaic = @y, located at the center frequencies predicted for the multiplet
11530- The multiplet is then contaminated by the predicted cross talk that
would result for an observed solar image sampled on a 100 x 100 grid cropped
at 0.9 solar radii. Each singlet is then least-squares fitted individually for
Lorentzian parameters. The ratio of the minimum  measurement (normalky
Q,) among these generalized resonance functions 10 its input intrinsic value is
plotied as a function of the input @,y ;e A Minimum occurs near [ N——
2500, where cross talk sidelobes merge to the edges of the main lobe. This effect
compeles with broadening due convective coupling, but can be ameliorated
using the technique of singlet stripping.

This bias due to cross talk can be substantially reduced
using the technique of singlet stripping {(Ritzwoller, Masters, &
Gilbert 1986). Recall from equation (32) that we know the
relation between the desired, cross talk-free spectra dw), and
the observed spectra §w). The matrix relating the two, X, is
easily computable, and depends only on the observational
setup. We can thus formally invert equation (32) to obtain

dw) = X"¥w) . (33)

In principle, this technique could be used to strip both intra
and intermultiplet cross talk from the data by including every
(I, m) combination as a row in é&. For our purposes, however, it
will suffice to consider a multiplet at a time, and jimit the rows
of & to include only spectra within that muitiplet. This approx-
imation will completely remove cross talk from within the
multiplet, thus eliminating the cross talk from resonances
having azimuthal order difference (Am = +2), which are the
dominant contributors to line width measurement bias. A sub-
stantial cross talk contribution from neighboring modes
having Al = +1 and Am = +1 cannot be removed, because
the strong similarity of the spatial shapes of these modes pro-
duces a cross talk matrix with very similar columns, and such
matrices are very unstable to inversion. Inversion stability can
be measured by the condition number, which is the ratio of the
largest to smallest singular values of the cross talk matrix’s
singular value decomposition. When single multiplets alone
are considered the condition number is typically 0{10), if there
is sufficient spatial sampling for the harmonic degree of the
multiplet. This will generally be the case if n;q 2 I, where n iy
is the number of grid points along an edge of the solar image.
When neighboring multiplets are considered, however, the
condition number becomes typically @(10%). Such matrices are
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very sensitive to noise and round-ofl error, and cannot be
inverted reliably.

The cross talk component from neighboring multiplets will
not directly affect line width measurements, however, since the
frequency separation between the main resonance peak and
the cross-multiplet cross talk is always many times Jarger than
the resonance line widths for multiplets of interest. The cross
talk—to-main-peak frequency separation may be approx-
imately 11.6 pHz for these multiplets, however, which will
allow the day-night side lobes of the cross talk peak to overlap
the main peak and bias measurements made on its line width.
Knowing the time history of the observation window would
allow us to compute the strength of these side lobes and
incorporate this effect into forward models, but removing this
effect from observational data is very difficult. This problem
should be overcome when continuous data become available
from the GONG network, which will enable us to produce
spectra having minimal side lobes.

To test this singlet stripping technique, we prepared syn-
thetic spectra for multiplet ,,§;, having the expected line
width patterns, and subjected it to the cross talk produced by a
100 x 100 grid cropped at 85% of image radius. We found that
singlet stripping removes perfectly the bias induced by cross
talk. The technique is limited only by the inversion stability of
the matrix X, which depends only on the experimental setup
and on the harmonic degree of the muitiplet to which the
singlet stripping is applied. The matrix inversion is unstable if
there are too few grid points in the image to adequately differ-
entiate between ¥, functions within a multiplet. We can ensure
such sufficient resolution by limiting the use of singlet stripping
to multiplet of harmonic order [ less than the number of grid
points across one edge of the image. The matrix inversion will
also become unstable if too many limb data are rejected, as
would occur if the image is cropped below 80% of its radius.

5. DISCUSSION AND CONCLUSIONS

This is part of a series of papers (Ritzwoller & Lavely 1991;
Lavely & Ritzwoller 1992, 1993; and Ritzwoller & Kelly 1993)
which addresses the effect of large-scale convection on helio-
seismic oscillations. This paper is the first to discuss methods
by which the convective linc width signature predicted by
Lavely & Ritzwoller (1993) can be observed in helioseismic
data which are modified by a stochastic source spectrum. The
goal of these studies is to provide the background necessary to
establish clearly the existence of giant cell convection in the
deep solar interior and, once established, to constrain the sta-
tistical characteristics of its nature, perhaps as a function of
time over a solar cycle.

Our goal here has not been to present the optimal technique
for recovering line shape information in helioseismic data, but
rather to present evidence for the existence of one such tech-
nique. With this “existence proof” we encourage observers o
turn toward a greater interest in modal line widths and ampli-
tudes. Recovery of information about natural line shapes will
require the continuing development of intelligent new methods
of data analysis, but promises to reveal nonaxisymmetric struc-
tures which may hold the key to a greater understanding of
solar dynamics rather than the purely structural information
dominantly revealed by modal frequencies.

To detect the line-broadening signature of large-scale con
vection, time series should be as long and as ungapped 23
practically possible. Long/ungapped time series have the pos!-
tive effect of minimizing the width of the convolution fitter 10
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the frequency domain which can obscure the natural line
widths. In addition, the signal to additive noise ratio increases
with time series length. Thus, longer time sertes reduce the line
width bias introduced by additive noise. These considerations
underscore the need for the use of Global Oscillations
Network Group (GONG) data and space-based measure-
ments, such as those expected from the Solar Orbiting Helio-
spheric Observatory (SOHO).

In closing, we summarize the conclusions we have drawn.

1. A method to retrieve natural line width information
beneath a stochastic source spectrum has been presented. The
recommended method, represented by equations (10) and (20)—
(24), is called quasi-Monte Carlo spectral parameter estima-
tion.

2. Application of this method to a singte multiplet results in
estimates that converge to a pure Lorentzian fit. Unfor-
tunately, such estimates are biased by the deviation of the
source spectrum for this multiplet from an “average™ source
spectrum.

3. Error estimates produced by Monte Carlo source spec-
trum medeling adequately represent these biases.

4. Although these equations are applied to retrieve line
width parameters for a single multiplet, to estimate accurately

“the natural line width signature predicted by Lavely & Ritz-
woller (1993) requires the inclusion of information from more
than a single multiplet. In particular, line width variations
along a dispersion branch can be accurately retrieved.

5. Quasi-Monte Carlo parameter estimation encompassing
lines from more than a single multiplet will produce results
superior to those presented here, although they will be more
computationally costly.
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6. Even neglecting the eflects of modal cross talk and addi-
tive noise, time series lengths in excess of 20 days are required
to retrieve the input line width signal. Day—night gaps are less
important than overall time series lengths with respect to line
width estimation accuracy.

7. Additive noise tends to accentuate the signature of large-
scale convection and biases esimates of the multiplet param-
eters. Fortunately, the least sensitive parameter to the effect of
additive noise is the line width variation parameter, o,, which
is the most robust signature of convection. Nevertheless, obser-
vers should seek high signal-to-noise modes to minimize this
effect.

8. Cross talk produces a significant bias in the estimation of
line widths tending to broaden their measured values similarty
to the predicted broadening due to giant cell convection. If
giant cell convection is to be unambiguously observed in line
width patterns, it will aimost certainly be necessary to correct
for cross talk using the technique of singlet stripping or other
similar methods, until higher resolution data becomes avail-
able.

9. Observers should concentrate on observing and inter-
preting line width variations within and across multiplets to
discern the helioseismic effect of large-scale convention.
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