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Earth and Planetary Physics I

Strings and the Wave Equation

1. Waves on a String: Physical Motivation

Travelling Waves on a
  String +-

Pluck a String

Figure 1: Two traveling waves are set in motion in opposite directions by plucking a string.

Let's begin with a brief review of what you all saw in basic physics as undergrads. Consider

waves on a string. When you pluck a string, you send traveling waves in both directions as

Figure 1 shows. If the string is �nite and clamped at both ends, the traveling waves reect at

the clamping points and superpose to produce standing waves.

Travelling Sine-Waves
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Figure 2: Illustration of a traveling sine-wave. The crest of the wave occurs where the phase is

zero, which moves to the right with speed c = !=k.

Similar to the traveling waves shown in Figure 1, sine-waves can also travel as Figure 2

shows. In fact, if we let y(x; t) denote the displacement of the string in the vertical direction

as a function of position along the string (x) and time (t), it's easy to see that the following

expression is a traveling wave

y(x; t) = sin[kx� !t] = sin[k(x�
!

k
t)] = sin[k(x� ct)] (1)
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in which each wave-crest or trough moves with speed c = !=k to the right. Here ! is angular

frequency (! = 2�f) and k is wavenumber (k = 2�=�), where f is frequency in Hz and � is

wavelength, presumably in meters. To say that a sine-wave moves means that the peaks and

troughs move, that is that the locations of constant phase move. The wave given by equation

(1), therefore, is seen to move in the +x direction, because the phase k(x� ct) is constant only

if x increases as t increases. In fact, it is constant only if x increases with speed c. Of course,

similar expressions could be derived for a traveling cosine-wave: cos[k(x� ct)]; cos[k(x+ ct)].

We noted above that traveling waves on a clamped string superpose to produce a standing

wave. If the traveling waves are sine-waves this is easy to show using a simple trig identity

(sin(a+b) = sina cos b+cos a sin b). Consider the superposition of two traveling sine-waves and

apply the trig identity:

sin(kx� !t) + sin(kx+ !t)

= [sinkx cos(�!t) + cos kx sin(�!t)] + [sinkx cos(!t) + cos kx sin(!t)]

= [sinkx cos(!t)� cos kx sin(!t)] + [sinkx cos(!t) + cos kx sin(!t)]

= 2 sinkx cos!t; (2)

where we have also used the fact that cosine is a symmetric (or even) function around the origin

and sine is anti-symmetric (or odd) so cos(�!t) = cos(!t) and sin(�!t) = � sin(!t). It should

be apparent that sinkx sin!t is also a standing wave, but is shifted 90� (half a period) in time.

As equation (1) is the classical form for a traveling sine-wave, equation (2) is the form of

a standing sine-wave. Note that there is no standing cosine (cos kx sin!t; cos kx cos!t) for a

clamped string, because the cosine does not satisfy the boundary conditions that displacement

goes to zero at the ends of the string. If the string would be unclamped at one end, then the

standing cosine would be allowed.

From equation (2), we see that standing waves on a string are the product of a spatial shape

(sinkx) and a temporal harmonic or oscillation (cos!t; sin!t). The shape is sometimes called

the eigenfunction. To this point, we've merely posited the shape being a sine and ruled out a

cosine by consideration of the boundary conditions, but later in the notes we will derive the

shape of the string. The shapes of several sines are shown in Figure 3. Each of these potential

shapes of oscillation is called a normal mode or a mode of oscillation and can be denoted by

a single number n, sometimes called the quantum number of the normal mode because the

allowed shapes are discrete. The quantum numbers are integers n = 1; 2; 3; : : : where n = 1 is

the fundamental mode and n � 2 are the higher modes of oscillation. Inspection of Figure 3

shows that the wavelength of the fundamental mode is �1 = 2a and the �rst higher modes are

�2 = a; �3 = 2a=3, etc., and in general satisfy the following criterion:

�n =
2a

n

from which the following can be deduced:

kn =
2�

�n
=
n�

a
!n = ckn =

n�c

a
(3)

Because the boundary conditions determine the wavelengths, they also determine the frequen-

cies. This fact is commonly summarized by reporting that the boundary conditions are what

determine the frequencies of oscillation, or eigenfrequencies.
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Figure 3: Modes of oscillation of a string clamped at both ends. Each mode has a shape of

sin(n�x=a) with wavelength 2a=n, where n is the modal index or quantum number that speci�es

the mode.

Note that we have shown that if each standing wave or normal mode on a string, yn(x; t), is

the sum of two traveling waves then it is simply the product of a spatial shape and a temporal

oscillation. Let's represent the spatial shape and temporal oscillation as Yn(x) and Tn(t) so

that:

yn(x; t) = Yn(x)Tn(t) = sinknx (An cos!nt+Bn sin!nt) : (4)

This is actually a rather powerful result, and doesn't hold for all phenomena, and in fact only

holds for the string under certain restrictive conditions that we have implicitly assumed here

(e.g., the equilibrium tension in the string does not change with time). This result, equation

(4), is called the separation of variables and we'll use it later in solving the string equation more

formally.

The actual displacement that the string would undergo if plucked or kicked would be a sum

or superposition of the modes of oscillation as follows:

y(x; t) =
1X
n=1

yn(x; t) =
1X
n=1

Yn(x)Tn(t) =
1X
n=1

sin(knx) (An cos!nt+Bn sin!nt)

=
1X
n=1

sin
n�x

a

�
An cos

n�ct

a
+Bn sin

n�ct

a

�
: (5)

Each coe�cient An and Bn is a weight that determines both the relative contribution of each

mode of oscillation to the �nal displacement and the phase of the temporal oscillation. These

coe�cients depend on how the string is set into motion; if it is plucked or kicked, for example.
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If, for example, you pluck a string near the node of a mode of oscillation, you will not excite

that mode.

It is important to know that the way in which the string is set into motion is called the

initial conditions and the initial conditions are what determine the An and Bn. Finding the

An and Bn is easy if you know about Fourier Series, although it can be rather tedious. The

initial shape of the string can be seen from equation (5) to be just the displacement at t =

0: y(x; 0) =
P

1

n=1An sinn�x=a. This is simply the Fourier Series expansion of the initial

displacement pattern of the string. So, if you can �nd the Fourier Series expansion of the initial

displacement pattern, you have the An. Similarly, you can �nd the Bn from the initial velocity

applied to the string, except you will need to take the Fourier Series expansion of the initial

velocity pattern of the string, which is the time derivative of equation (5).

2. A Di�erential Equation You've Seen Before

The wave equation for a string is a di�erential equation. An example that you've seen before

is the simple harmonic oscillator (Figure 4).

+x-x

m

Figure 4: Schematic representation of a simple harmonic oscillator (SHO), in which a mass m,

connected connected to a spring with spring-constant �, oscillates with displacement �x about

equilibrium.

For small displacements its motion can be modeled with Hooke's Law that says that the

force is in the direction opposite to the displacement from equilibrium and has a magnitude

proportional to the displacement (F = ��x). When this is placed into Newtons' second law

(F = ma) you get a di�erential equation as shown here:

m
d2x(t)

dt2
= ma = F = ��x(t)

d2x(t)

dt2
+

�
�

m

�
x(t) =

d2x(t)

dt2
+ !2x(t) = 0 (6)

Equation (6) is sometimes called the simple harmonic oscillator (SHO) equation. The SHO, as

you recall, oscillates with frequency ! =
p
(�=m). In the parlance of di�erential equations, it

is a linear, second-order, homogeneous, ordinary di�erential equation with constant coe�cients.

It is

� a di�erential equation because there are derivatives in it,

� ordinary because there are no partial derivatives in it (more on this later),

� second-order because its highest derivative with respect to the independent variable t is

of second-order,

4



� homogeneous because the right-hand-side of the equation is zero which means physically

that there are no applied forces, and, �nally,

� it has constant coe�cients because the terms that multiply the functions of x are constant

{ in this case it's !2 = �=m.

Because this is a linear ODE, if x1(t) and x2(t) are solutions, so is ax1(t)+ bx2(t) where a; b are

arbitrary constants. Because it is a second-order ODE, there are two and only two independent

solutions. Also within the parlance of di�erential equations, equations like equation (6) are

called Helmholtz equations. Ordinary di�erential equations are often called ODEs.

Helmholtz equations, like the SHO-equation, are particularly easy to solve. The trial solu-

tion can be written in a variety of equivalent ways, one of which is:

x(t) = A cos!t+B sin!t; (7)

where !2 = �=m and A and B are arbitrary constants that depend on the initial conditions {

that is on how the oscillator has been set into motion (drag and let go or a kick, for example).

Note that there are two independent solutions (cos!t, sin!t) whose linear combination is also

a solution. We can show that equation (7) is a solution to equation (6) by direct substitution:

dx(t)

dt
= �A! sin!t+B! cos!t

d2x(t)

d2
=

d

dt

�
dx(t)

dt

�
= �A!2 cos!t�B!2 sin!t (8)

Substitution of equations (7) and (8) into (6) establishes the result:

d2x

dt2
+ !2x =

�
�A!2 cos!t�B!2 sin!

�
+ !2 (A cos!t+B sin!t) = 0:

The procedure that we followed here is actually similar to how di�erential equations are

solved in practice, you guess a solution and see if it works. The guessed solution is often called

the trial solution or ansatz, which is the fancier German name for it and you can use this to

impress your friends who don't know any better. Now that we know the solution to Helmholtz

equations like the SHO equation, we have a starting point for trial solutions later on.

3. Derivation of the 1-D Wave Equation for a String

Consider the displacement applied to a string of length L in a coordinate system shown in

Figure 5. The displacement y is a function of time t and the spatial coordinate x: y(x; t). Let

� be the mass density of the string with units of mass per unit length and assume that � is

constant. Let T be the tension in the string. Tension is a force and assume that when the string

is plucked the tension remains constant throughout the string. This is the same as assuming

that the displacement is small for a homogeneous string. Also, assume that the force of gravity

is much weaker than tension (�Lg << T ) so that it does not a�ect the motion of the string

appreciably and can, therefore, be ignored.

Inspection of Figure 6 shows that the x- and y�components of force (i.e., tension) can be

written as follows:

x-tension
X

Fx = T cos �2 � T cos �1 (9)

y-tension
X

Fy = T sin �2 � T sin �1 (10)
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Figure 5: Coordinate system for a string of length L that will undergo vertical (or transverse)

displacements y(x; t).

We're interested in modeling the vertical motion of the string, y(x; t), so we will explore the

use of equation (10).

x x + dx

A

B

ds dy

dx
y

y + dy

θ1

θ2

T

T

θ1

Figure 6: .

Because the oscillations are small, the angles �1 and �2 are small. Thus, sin �1 � tan �1

and sin �2 � tan �2. We note that the increment of mass in length ds is just m = �ds. Again,

because the oscillations are small, ds � dx so m � �dx. We can, therefore, rewrite equation

(10) as Newton's second law governing motion of the string in the y-direction:

may = �dx
@2y

@t2
=
X

Fy = T tan �2 � T tan �1 = T (tan �2 � tan �1) : (11)

Inspection of Figure 6 again reveals that tan � � @y=@x, thus we can rewrite equation (11) as:

�dx
@2y

@t2
= T

��
@y

@x

�
B

�

�
@y

@x

�
A

�
(12)

Note that the slope of the string at point B can be expressed as a truncated Taylor Series

expansion about point A: �
@y

@x

�
B

�

�
@y

@x

�
A

+

 
@2y

@x2

!
A

dx: (13)

Therefore, �
@y

@x

�
B

�

�
@y

@x

�
A

=

 
@2y

@x2

!
A

dx: (14)
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Substituting equation (14) into equation (12), therefore, reveals that:

�
@2y

@t2
= T

 
@2y

@x2

!
; (15)

where we cancelled the factor of dx on both sides of the equation. This equation holds at any

location A along the string, so we have removed the subscript A and make location implicit in

the function y(x; t).

Both sides of equation (15) have units of force per unit length. If there are forces F (t)

applied to the string, they will be added to the right-hand-side of this equation, as follows:

�
@2y

@t2
= T

 
@2y

@x2

!
+ F (t); (16)

where F (t) has units of force per unit length.

Remember that the LHS is analogous to ma in Newton's second law so that the RHS

represents the forces on the string. The �rst term on the RHS is the restoring force exerted

on the displacement by the string itself. In the absence of applied forces (after the initial

conditions), we get the equation for the free oscillations of a homogeneous string which can

rewritten as:

@2y

@x2
=

1

c2
@2y

@t2
; (17)

where c =
p
T=� is the speed of propagation of the wave traveling in the �x-direction.

Equation (17) is generally referred to as the 1-D wave equation. It says that the curvature

of the string at spatio-temporal point (x; t) is proporational to the vertical acceleration of the

string at that point and that the constant of proportionality is related to the horizontal speed

of propagation of a wave on the string. I don't know about you, but I wouldn't have guessed

that.

All of this holds if the string is homogeneous, that is if the density and tension and, hence,

the speed of a wave on the string are constant. If T and � are a function of position along the

string, then the wave equation is

�(x)
@2y

@t2
=

@

@x

�
T (x)

@y

@x

�
: (18)

We will consider di�erent methods to treat this case later on.

Here we have considerd transvese oscillations. For longitudinal oscillations, u(x), the result

will be the same but the derivation will di�er. For longitudinal waves, relace tension T (x)

with Young's modulus k(x), which is analogous to the spring constant for the simple harmonic

oscillator. For the longitudinal oscillations of an inhomogeneous string, therefore:

�(x)
@2u

@t2
=

@

@x

�
k(x)

@u

@x

�
: (19)

In this derivation, stress is assumed proportional to strain (Hooke's Law) and the constant of

proportionality is k.
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4. Solving the 1D Homogeneous Wave Equation with Separation of Variables

We now want to solve the wave equation in 1 spatial dimension (1-D), equation (17). This

equation governs wave propagation in a 1-D medium, such as a string or a wire.

Partial di�erential equations such as equation (17) are usually not solved directly, but are

transformed into other equations that can be solved. Usually they are transformed �rst into a

set of ODEs, one for each free variable. For the 1-D wave equation, therefore, we'll expect two

equations, one in x and one in t. The method we're going to follow now is called the method of

separation of variables.

Equation (17) can be separated into these two constitutive equations by using the method

of separation of variables in the following way. Let us assume that the solution can be written

(as we know it can for a string) in terms of the product of two functions, one in x and the other

in t, in the following way:

y(x; t) = Y (x)T (t) (20)

Y (x) and T (t) are the unknowns we wish to �nd and equation (20) is a a kind of trial solution

and we'll see if it works. To substitute equation (20) into equation (17) we'll �rst need the

space and time derivatives of y:

@y(x; t)

@x
= T (t)

@Y (x)

@x
= T (t)

dY (x)

dx
@2y(x; t)

@x2
= T (t)

@2Y (x)

@x2
= T (t)

d2Y (x)

dx2
(21)

@y(x; t)

@t
= Y (x)

@T (t)

@t
= Y (x)

dT (t)

dt
@2y(x; t)

@t2
= Y (x)

@2T (t)

@t2
= Y (x)

d2T (t)

dt2
(22)

Note that we've replaced the partial derivatives on the right-hand side with total derivatives

because they are derivatives of functions of a single variable. Substituting equations (21) and

(22) into equation (17) we get:

d2T (t)

dt2
Y (x) = c2

d2Y (x)

dx2
T (t)

which upon rearranging yields:

1

c2
1

T (t)

d2T (t)

dt2
=

1

Y (x)

d2Y (x)

dx2
(23)

Note that the left-hand side of equation (23) is just a function of t and the right-hand side is

only a function of x.

Now, comes the key step. It's simple, but you have to pay attention. How can a function

of t, which in principle could be changing arbitrarily in time, be equal to a function of x that

may be changing arbitrarily in space? Well, to make a long story short, the only way is if both

sides of equation (23) are equal to the same constant which is called the separation constant.

For a reason that will become apparent later, let's let that constant be called �k2, so:

1

c2
1

T (t)

d2T (t)

dt2
= �k2

1

Y (x)

d2Y (x)

dx2
= �k2
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which after a little rearranging can be rewritten as:

d2Y (x)

dx2
+ k2Y (x) = 0 (24)

d2T (t)

dt2
+ c2k2T (t) = 0)

d2T (t)

dt2
+ !2T (t) = 0 (25)

where the latter result in equation (25) holds because ! = ck.

Equations (24) and (25) are the two ODEs whose solutions, Y (x) and T (t), can be substi-

tuted into equation (20) to give a solution to the PDE, the wave equation given by equation

(17). Comparison of equations (24) and (25) with equation (6) reveals that both of these equa-

tions are simply Helmholtz equations, which we know how to solve because of their role in the

SHO. Their solutions, therefore, are simply:

Y (x) = A cos kx+B sinkx (26)

T (t) = C cos!t+D sin!t (27)

where A;B;C; and D are arbitrary constants. You can see why we de�ned the separation

constant as �k2 because doing so yields equation (26) where k plays the role of wavenumber

as we have de�ned it previously.

The boundary conditions allow us to �nd A as well as k and, hence, ! as we will now show.

The initial conditions will specify the products BC and BD. This is discussed further in the

next section.

Now, let's apply the boundary conditions. Assume that the string is clamped both at both

ends: x = 0 and x = a. The boundary conditions, therefore, are y(0; t) = y(a; t) = 0 or

equivalently Y (0) = Y (a) = 0, so using equations (26) and (27) we see that:

0 = Y (0) = A cos(0) +B sin(0)) A = 0 (28)

0 = Y (a) = B sinka) k =
1

a
sin�1(0)) kn =

n�

a
; (29)

where n is an integer. Remember that the expression sin�1(0) should be read as the angle(s)

at which sine is zero; which is just multiples of �.

We see, therefore, that we've established that there are a countably in�nite number of

allowable separation constants k indexed by the number n, that we recognize as the mode

number or quantum number as discussed above. In section 1, we established that kn = n�=a

based on purely physical considerations, here the reasoning was more mathematical but the

result is the same. We see now that:

kn =
2�

�n
=
n�

a
!n = ckn =

n�c

a
; (30)

which is the same as equations (10) above. You can see through equations (28) and (29) how

the boundary conditions determine the frequencies of oscillation in practice.

The �nal solution y(x; t) is a linear combination of all of the solutions indexed by n:

y(x; t) =
1X
n=1

yn(x; t) =
1X
n=1

Yn(x)Tn(t) =
1X
n=1

Bn sinknx (Cn cos!nt+Dn sin!nt) (31)

=
1X
n=1

sinknx
�
A0n cos!nt+B0

n sin!nt
�
=

1X
n=1

C 0

n sinknx (sin(!nt� �n)) (32)
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where we recombined the three arbitrary constants into two (A0n � BnCn and B0

n � BnDn) and

also rewritten in terms of a phase shift �n which we will reference in the discussion of energy

below. This reproduces the physically motivated equation (5) above. As before, the initial

conditions will determine the coe�cients (A0n, B
0

n) or (C
0

n, �n).

5. Application of Initial Conditions

For a string clamped at both ends, the the solution for displacement y(x; t), dropping the

primes on the coe�cients, is:

y(x; t) =
1X
n=1

sinknx (An cos!t+Bn sin!t) ; (33)

where the coe�cients An and Bn depend on how the string is set into motion, i.e., on the initial

conditions, and kn = n�=L and !n = ckn where L is the length of the string and c is the speed

of propagation of waves on the string.

If f(x) and g(x) are the initial patterns of displacement and velocity imparted to the string,

then from equation (33) we see that:

y(x; 0) = f(x) =
1X
n=1

An sinknx =
1X
n=1

an sinknx; (34)

v(x; 0) = _y(x; 0) = g(x) =
1X
n=1

!nBn sinknx =
1X
n=1

bn sinknx: (35)

The �nal equality in equations (34) and (35) is just the expansion of f(x) and g(x) in a Fourier

Series. In both cases, the Fourier Series is only a sine-series because the boundary conditions

require that the function go to zero at the end-points (x = 0; x = L). As usual, the coe�cients

in the Fourier Series are given by:

an =
2

L

Z L

0
f(x) sin(knx)dx; (36)

bn =
2

L

Z L

0
g(x) sin(knx)dx; (37)

Here the constant in front of the integral is 2=L rather than 1=L because of interval we're

considering goes from 0 to L rather than �L=2 to L=2. Comparison of equations (34) and (35)

with (36) and (37) reveals that:

An = an =
2

L

Z L

0
f(x) sin(knx)dx; (38)

Bn =
bn
!n

=
2

!nL

Z L

0
g(x) sin(knx)dx: (39)

These equations together with equation (33) give the solution to the problem with the initial

conditions imposed.

Example: Let y(x; 0) = f(x) = y0 sin(2�x=L) and _y(x; 0) = g(x) = 0. Then an = y0�n2 and

bn = 0 so

y(x; t) = y0 sin

�
2�x

L

�
cos

�
2�ct

L

�
: (40)
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6. D'Alembert's Solution to the 1-D Wave Equation

To this point, we expressed the solution to the 1-D wave equation as a sum of standing

waves. This is called the solution in terms of normal modes or Fourier basis functions. There

is another approach in terms of traveling waves that is attributable originally to d'Alembert.

The idea is to try to �nd a pair of independent variables that transforms the 1-D wave

equation, equation (17), into a simpler equation. Let's try a linear transformation:

� = x+ at � = x+ bt; (41)

where a and b are to be determined. We want to rephrase the string equation in y(x; t) in terms

of y(�; �). To do this we need to �nd @2y=@x2 and @2y=@t2 in terms of derivatives in � and �:

@y(�; �)

@x
=

@y

@�

@�

@x
+
@y

@�

@�

@x
=
@y

@�
+
@�

@x
(42)

@y2(�; �)

@x2
=

@

@x

�
@y

@x

�
=

@

@x

�
@y

@�
+
@�

@x

�
(43)

=
@2y

@�2
@�

@x
+

@2y

@�@�

@�

@x
+

@2y

@�@�

@�

@x
+
@2y

@�2
@�

@x
(44)

=
@2y

@�2
+ 2

@2y

@�@�
+
@2y

@�2
(45)

Through a similar derivation we can show that

@y(�; �)

@t
= a

@y

@�
+ b

@y

@�
(46)

@2y(�; �)

@t2
= a2

@2y

@�2
+ 2ab

@2y

@�@�
+ b2

@2y

@�2
: (47)

Substituting equations (45) and (47) into equation the string equation, equation (17), we get: 
1�

a2

c2

!
@2y

@�2
+ 2

�
1�

ab

c2

�
@2y

@�@�
+

 
1�

b2

c2

!
@:y

@�2
= 0: (48)

We can choose a and b to be anything we want, as long as it makes the resulting equation easy

to solve. Let's set a2 = b2 = c2 so that the �rst and third terms in equation (48) disappear and

also choose a ane b to have opposite signs, to ensure that @2y=@�@� 6= 0. The result is:

@2y

@�@�
= 0: (49)

where

� = x� ct � = x+ ct: (50)

Equations (49) and (50) are equivalent to equation (17). Equation (50) is a linear transformation

that takes equation (17) into equation (49).

To solve equation (49) we �rst integrate with respect to �, which gives us an arbitrary

"constant" which is actually an arbitrary function of �:

@y

@�
= h(�): (51)
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We now integrate again with respect to � where the arbitary "constant" of integration is a

function of �. The result then is:

y(�; �) = f(�) + g(�) (52)

y(x; t) = f(x� ct) + g(x+ ct): (53)

Equation (53) is the result we wanted. It says that the general solution to the 1-D wave

equation is a function traveling to the right at speed c, f(x� ct)), and another one traveling to

the left at speed c, g(x+ ct). The entire displacement of the string is a superposition of these

two waves.

The functions f and g can be found by specifying the initial displacement and velocity of

the string. For example, suppose that the initial displacement is some function �(x) and its

initial velocity is  (x) so that

y(x; 0) = �(x) _y(x; 0) =  (x): (54)

Then,

�(x) = f(x) + g(x) (55)

 (x) = �cf 0(x) + cg0(x); (56)

where the primes mean di�erentiation with respect to x. Integrating equation (56) from 0 to x:

f(x)� g(x) = �
1

c

Z x

0
 (x0)dx0 + a; (57)

where the constant of integration a = f(0) � g(0). Adding and subtracting this to equation

(55) gives:

f(x) =
1

2
�(x)�

1

2c

Z x

0
 (x0)dx0 +

a

2
; (58)

g(x) =
1

2
�(x) +

1

2c

Z x

0
 (x0)dx0 �

a

2
: (59)

Therefore,

y(x; t) = f(x� ct) + g(x+ ct) =
1

2
[�(x� ct) + �(x+ ct)] +

Z x+ct

x�ct
 (x0)dx0: (60)

Equation (60) is d'Alembert's solution to the 1-D wave equation. It gives the displacement

y(x; t) in terms of the given initial conditions on displacement, y(x; 0) = �(x), and velocity,

_y(x; 0) =  (x).

Example 1: Suppose that  (x) = u(x; 0) = 1 � jxj for �1 � x � 1 and is 0 otherwise, and

that  (x) = _y(x; 0) = 0. That is, assume the string starts from rest but is deformed around the

origin by a triangular diplacement pattern. As time increases, the displacement will be given

by:

y(x; t) =
1

2
[�(x� ct) + �(x+ ct)] : (61)
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The original triangular waveform splits into two triangles each with half the amplitude of the

original one, with half moving to the right with speed +c and half moving to the left with

speed �c. So, if the string is simply displaced from equilibrium, the waves that propagate on

the string will look like the original displacement. If the string has a non-zero original velocity,

however, the propagating displacement pattern will di�er from the original displacement.

Example 2: As a second example, consider the following:

y(x; t) = Cei(!t�kx) + C�e�i(!t�kx); (62)

where � denotes complex conjugation, which is necessary to ensure a real function. This is

called a plane wave solution, and is useful since an arbitrary function with only a �nite number

of discontinuities can be expressed as a sum of such plane waves. This is just a 2D Fourier

Series.

Substituting equation (62) into (17) shows that the solution is acceptable provided that !

and k satisfy ! = �ck { the dispersion relation again. For sinusoidal traveling waves such as in

equation (62), displacement patterns repeat. Points at which the displacement amplitudes are

equal have equal phases; i.e. !t � kx = !(t +�t) � k(x +�x). This is true if !�t � k�x =

0 ! c = dx=dt = !=k. This is the velocity of a phase, so is called the phase velocity. Wave

groups are more complicated and we'll get back to them later, but they are constructed out

of a set of component waves such as plane waves and satisfy the condition of constructive

interference; that is each component must have the same value of the phase angle !t� kx+ �

although the individual values of !; k and � may be di�erent. Thus, the quantity !t� kx+ �

must be independent of frequency if evaluated at a characteristic frequency, !0, of the group:

d(!t�kx+�)=d!j!0 = 0. Carrying out the di�erential we �nd that the constructive interference

condition will be met for a wave traveling with the group velocity U = d!=dkj!0 . Thus, the

group velocity is just the slope of the dispersion relation. For a nondispersive system, the

dispersion relation is linear and the group velocity is constant with frequency. For the 1D

homogeneous string, the slope of the dispersion relation is just c, and therefore U = c. It is not

true for all nondispersive systems that group and phase velocities are equal.

As an historical aside, D'Alembert hoped that this method of solution to the 1-D wave

equation would be applicable to other PDEs, but that's not the case.

The point of this exercise has been to show that there are two types of basis functions

that are useful in studying waves on a string: the Fourier type (standing waves, sines and

cosines) and the d'Alembert type (traveling waves). In a string, we see (and hear) the modes

of oscillation and the waves themselves are obscure. However, in the Earth we see individual

packets of energy arriving on a seismogram. Although we will frequently use modal techniques

to solve di�cult problems, we frequently see and identify waves in data and, therefore, think of

modes superposing to produce the waves. A facile geophysicist must be able to think in both

modes and waves as he or she must be able to think both in the time and frequency domains.
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7. Energy and its Conservation

Energy

Expressions for the kinetic and potential energy density are required for Lagrangian and

Hamiltonian dynamics, and we will consider them briey here. The energy density of a string

is its energy per unit length. Let K denote kinetic energy density, then:

K =
1

2
�v2 =

1

2
�

�
@y

@t

�2
; (63)

and the total kinetic energy, K, is:

K =
1

2

Z L

0
�

�
@y

@t

�2
dx: (64)

Note that here we use K rather than T for kinetic energy so as not to confuse it with tension.

Italicized capital letters distinguish quantities that have units of energy density from those

having units of energy.

The derivation of the appropriate expression for potential energy is a little more complicated.

Consider an increment of the string, dx, stretched to a new length ds. The change in length is

just ds� dx. This derivation is a little easier if we consider transverse rather than longitudinal

oscillations. The �nal equations are the same if tension, T , is replaced with Young's modulus,

k. So imagine a transverse perturbation, dy. Then, ds2 = dx2 + dy2 and factoring out a dx:

ds� dx = dx

�q
1 + (dy=dx)2 � 1

�
: (65)

Under the small oscillation approximation, dy=dx << 1, so we can Taylor expand the square

root in equation (65) which yields:

ds� dx =
1

2

�
dy

dx

�2
dx: (66)

Stretching takes place against tension, and the work against tension is just tension times stretch:

W =
1

2
T

�
dy

dx

�2
dx; (67)

and the potential energy density, V, is:

V =
1

2
T

�
dy

dx

�2
; (68)

so that the total potential energy becomes:

V =
1

2

Z L

0
T

�
dy

dx

�2
dx: (69)

Total energy density H = K + V, so that

H =
1

2
�

�
@y

@t

�2
+

1

2
T

�
dy

dx

�2
: (70)
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and the total energy can be written

H =

Z L

0
Hdx (71)

=
1

2
�

Z L

0

"�
@y

@t

�2
+ c2

�
dy

dx

�2#
dx: (72)

It should be noted that this equation only holds either when the endpoints of the string are

�xed or when the spatial gradient of displacement at the endpoints goes to zero. The former is

the the situation we are considering here so equation (72) is �ne, but it should not be considered

a general formula which is applicable in any situation. (For further discussion see Morse and

Feshbach ch. 2.1.)

It will be left as an exercise to calculate the energy per mode of oscillation. The kinetic,

potential, and total energies in terms of the modes of oscillation from equation (32) is simply:

K =
1

4
�L
X
n

�
n�c

L

�2
c2n cos

2
�
n�ct

L
� �n

�
; (73)

V =
1

4
�L
X
n

�
n�c

L

�2
c2n sin

2
�
n�ct

L
� �n

�
; (74)

H =
1

4
�L
X
n

�
n�c

L

�2
c2n: (75)

Thus, the kinetic and potential energies are out of phase by 90 degrees and sum to give a

constant of motion. In each mode, the energy oscillates between kinetic and potential forms as

the string itself oscillates. The periods of the oscillations of the string are 2L=nc, while those

of energy are half that great, corresponding to successive realizations of a given phase of the

motion.

Equations (73) - (75) demonstrate a striking result, that the individual terms in the Fourier

series solution, equation (32), are independent in that each carries a �xed amount of energy and

this energy cannot be exchanged with the energies of any other mode, much as the traveling

waves in the string do not exchange energy when they pass one another but simply superpose.

We say these modes are, therefore, uncoupled.

Complexities added to the string can produce modal coupling as we will see as the course

progresses. Later on we will also consider reection of string waves o� �xed masses, the solution

to the inhomogeneous string problem, and perturbative and approximate methods for �nding

frequencies and shapes of oscillations.

Conservation of Energy

Although the total energy, H, is stationary for the entire string, energy can ow along the

string. Thus, an energy ux, J , should be de�ned. The energy ux, J , and the energy density

are related by the conservation of energy which states that the time rate of change of energy

density at a point is related to the net amount of energy owing into or out of a region. For

example, if more energy ows across the point x + dx than ows across x, then the energy

contained in the length dx of the string must diminish:

J (x+ dx)� J (x) = �dx
@H

@t
; (76)
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which upon rewriting becomes

@J

@x
+
@H

@t
= 0: (77)

Therefore, a closed form expression for energy ux can be found as follows:

J = �

Z
@H

@t
dx (78)

= �
1

2
�

Z
@

@t

"�
@y

@t

�2
+ c2

�
dy

dx

�2#
dx (79)

= ��

Z "
@y

@t

@2y

@t2
+
T

�

@y

@x

@2y

@x@t

#
dx (80)

= �T

Z "
@y

@t

@2y

@x2
+
@y

@x

@2y

@x@t

#
dx (81)

= �T

Z
@

@t

�
@y

@t

@y

@x

�
dx (82)

= �T
@y

@t

@y

@x
: (83)

Derivation of the String Equation from Conservation of Energy

Using this expression for energy ux and the expression for total energy density given by

equation (70), from the conservation of energy an alternative derivation of the wave equation

for the string results:

0 =
@J

@x
+
@H

@t
(84)

= �T
@2y

@x@t

@y

@x
� T

@y

@t

@2y

@x2
+ �

@y

@t

@2y

@t2
+ T

@y

@x

@2y

@t@x
(85)

=
@y

@t

 
�T

@2y

@x2
+ �

@2y

@t2

!
: (86)

Since @y=@t is an arbitrary function, equation (86) implies (17) where c2 = T=�. Recall the

previous derivation of the string equation came from the application of Newton's Second Law.

8. Lagrange's Equation for a String

Fetter and Walecka use Hamilton's Principle to derive Lagrange's equation for a continuous

system on pages 128 - 130. This is their equation (25.59), which is as follows:

@

@t

�
@L

@ _y

�
�

@

@x

�
@L

@(@y=@x)

�
=
@L

@y
(87)

The second term on the left-hand side is new, it does not appear in Lagrange's equation for

discrete systems. Thus, for a continuous system the functional dependence of the Lagrangian

is L(y; _y; @y=@x), at least in principle. From our discussion in section 7, we can write down L

explicitly. Instead of using kinetic and potential energies to derive the Lagrangian, let's obtain

the Lagrangian density (for simplicity still called L here) from the kinetic and potential energy

densities:

L = K � V =
1

2
�(x)

�
@y

@t

�2
�

1

2
T (x)

�
@y

@x

�2
(88)

16



Note that by retaining the functional dependence of tension and density on position x along

the string, we have the Lagrangian for an inhomogeneous string. You can see immediately that

L( _y; @y=@x); that is, that the Lagrangian density is independent of the displacement y. In the

parlance of Lagrangian mechanics, y is a cyclic coordinate. Remember that independence on

the amplitude of displacement results from the small amplitude approximation which is related

to Hooke's Law. The existence of a cyclic coordinate is a symmetry principle, which implies

the existence of a conserved quantity which in this case is mechanical energy.

We want to subsitute the Lagrangian for the inhomogeneous string, equation (88), into

Lagrange's equation for a continuous system, equation (87). First, take the appropriate deriva-

tives:

@L=@y = 0 (89)

@L=@ _y = �(x) _y (90)

d

dt
(@L=@ _y) = �(x)�y (91)

@L=@(@y=@x) = T (x) (@y=@x) (92)

Now, substitute the derivatives into equation (87):

@

@t

�
@L

@ _y

�
=

@

@x

�
@L

@(@y=@x)

�
) �(x)

@2y

@t2
=

@

@x

�
T (x)

@y

@x

�
: (93)

Which is the same as the inhomogeneous wave equation we wrote down but did not derive

earlier (equation (18).
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