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The Wave Equation in Two Spatial Dimensions

In more than one spatial dimension, spatial derivatives are replaced by a vector operator

called the gradient r that operates on a scalar �eld and whose form will depend on the system

of coordinates: rectangular (Cartesian), cylindrical, spherical, and so forth. In 2-D Cartesian

coordinates, the gradient is de�ned as:

r =
@

@x
x̂+

@

@y
ŷ; (1)

where x̂ and ŷ are Cartesian unit vectors in the orthogonal x and y directions. Second spatial

derivatives will be replaced with the Laplacian operator, r2 = r�r, which operates on a scalar

�eld and returns a scalar. In 2-D Cartesian coordinates the Laplacian is given by:

r2 =
@2

@x2
+

@2

@y2
(2)

In other coordinates systems, the gradient and Laplacian operators will be more complicated,
but that will not be discussed here.

1. The 2-D Wave Equation in Cartesian Coordinates

When we considered the 1-D wave equation, we represented the �eld variable, displacement,

with y(x; t). In 2-D, we'll represent displacement with u(x; y; t), because now y is one of the

two variables that represent spatial dimensions. Replacing the second spatial derivative with

the 2-D Laplacian, the 2-D wave equation can be written:

r2u =
1

c2
@2u

@t2
(3)

(4)

which in 2-D Cartesian coordinates becomes:

@2u

@x2
+
@2u

@y2
=

1

c2
@2u

@t2
(5)

We will consider a 2-D rectangular membrane or drum-head (the 2-D analog of a string)

stretched between 0 � x � a and 0 � y � b. The edges of the membrane will be considered to

be clamped, so the boundary conditions are:

u(0; y; t) = u(a; y; t) = 0 (6)

u(x; 0; t) = u(x; b; t) = 0: (7)

These are homogeneous, Dirichlet boundary conditions.

We now want to apply separation of variables to equation (5). We'll do it in two stages;

�rst by separating the temporal from the spatial parts of the equation and then by separating
the two spatial parts. We'll end up with three ODE's and two separation constants by the time

we're done. First, substitute

u(x; y; t) = U(x; y)T (t) (8)
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into equation (5), divide by U(x; y)T (t), and replace the temporal partial derivative by the:

1

c2T (t)

d2T

dt2
=

1

U(x; y)

 
@2U

@x2
+
@2U

@y2

!
= ��2: (9)

We introduced the separation constant ��2 on the right because we have a function of the

spatial variables equal to a function of time which requires that both sides equal a constant,

the �rst separation constant ��2. This yields two ODEs:

d2T

dt2
+ c2�2T (t) = 0; (10) 

@2U

@x2
+
@2U

@y2

!
+ �2U(x; y) = 0: (11)

Equation (10) is the temporal equation, and we're done with it. It has solution:

T (t) = A cos!t+B sin!t; where ! = c�: (12)

The spatial equation, equation (11), requires further separation as there remain two spatial

variables and the derivatives are partial derivatives. Let's apply separation of variables again

by letting:

U(x; y) = X(x)Y (y): (13)

Substituting this into equation (11), dividing by XY and replacing the partial derivatives by

total derivatives wet get:

1

X(x)

d2X

dx2
+

1

Y (y)

d2Y

dy2
+ �2 = 0: (14)

This can be rewritten as:

1

X(x)

d2X

dx2
+ �2 = �

1

Y (y)

d2Y

dy2
= q2; (15)

where, because we have a function of x equal to a function of y, we have introduced the second

separation constant, q2. From this we get the following two spatial ODE's:

d2X

dx2
+ (�2 � q2)X(x) =

d2X

dx2
+ p2X(x) = 0; (16)

d2Y

dy2
+ q2Y (y) = 0; (17)

where in equation (16) we have de�ned p2 � �2 � q2, or:

�2 = p2 + q2: (18)

We'll come back to this equation later. It says that the �rst separation constant depends on the
spatial separation constants and this will be important in the solution of the temporal equation,

equation (12), as frequency depends on �.
Solving the spatial ODE's we get:

X(x) = C cos px+D sin px; (19)

Y (y) = E cos qy + F sin qy: (20)
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Now, let's apply the boundary conditions, which in terms ofX(x) and Y (y) can be rewritten:

X(0) = X(a) = 0 (21)

Y (0) = Y (b) = 0: (22)

Applying equation (21) to equation (19) and then equation (22) the the result:

0 = X(0) = C ! X(x) = D sin px (23)

0 = X(a) = D sinpa! pn =
1

a
sin�1(0) =

n�

a
; n = 1; 2; 3; : : : : (24)

Thus, we get the solution for X(x). Following exactly the same procedure we �nd

qn =
1

b
sin�1(0) =

m�

b
; m = 1; 2; 3; : : : : (25)

and the solution for Y (y):

Xn(x) = Dn sin

�
n�x

a

�
n = 1; 2; 3; : : : (26)

Ym(y) = Fm sin

�
m�y

b

�
m = 1; 2; 3; : : : (27)

Note that we introduced two quantum numbers here, n and m.

Before moving on to write the general solution, recall that �2 = p2+ q2. Because p depends
on n and q depends on m, � will depend on both quantum numbers as follows:

�2nm = p2n + q2m = �2
 
n2

a2
+
m2

b2

!
(28)

Di�erent modes of oscillation in 2-D are identi�ed by a pair of quantum numbers (n;m).

This discretization of � by the boundary conditions also discretizes the temporal solution,
equation (12):

Tnm(t) = Anm cos!nmt+Bnm sin!nmt; where !nm = c�nm = c�

 
n2

a2
+
m2

b2

!
1=2

: (29)

To get the general solution, we put equations (26) and (27) together with equation (29).

In doing so, we let AnmDn = anm and BnmFm = bnm. The result is a pair of sums over all

possible n and m:

u(x; y; t) =
1X
n=1

1X
m=1

umn(x; y:t) =
1X
n=1

1X
m=1

Tnm(t)Xn(x)Ym(y)

=
1X
n=1

1X
m=1

(anm cos!nmt+ bnm sin!nmt) sin

�
n�x

a

�
sin

�
m�y

b

�
; (30)

where

!nm = c�nm = c�

 
n2

a2
+
m2

b2

!
1=2

: (31)

Equation (30) is the general solution to the 2-D wave equation in Cartesian coordinates

with clamped boundaries. Like the string equation, it is expressed as a sum over normal
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modes, unm(x; y; t). Equation (30) gives us the allowed frequencies of oscillation for each mode
(n;m).

It remains to apply the initial conditions. To evaluate the arbitrary constants anm and bnm
in equation (30), we will need both the initial displacement and velocity of the membrane. The

process will depend on using the orthogonality of the two sets of functions fsin(n�x=a)g and

fsin(m�y=b)g.
First, suppose that the initial displacement of the membrane can be described by:

u(x; y; 0) = f(x; y): (32)

Setting t = 0 in equation (30) and applying equation (32) gives:

u(x; y; 0) = f(x; y) =
1X
n=1

1X
m=1

anm sin

�
n�x

a

�
sin

�
m�y

b

�
: (33)

This is a double Fourier-series. To evaluate the coe�cient anm, multiply both sides of equation

(33) by sin(n0�x=a) and sin(m0�y=b), and integrate over the area of the membrane. Using the

orthogonality property of the sinusoids we will �nd that:

anm =
2

b

2

a

Z a

0

Z b

0

f(x; y) sin

�
n�x

a

�
sin

�
m�y

b

�
dydx: (34)

Similarly, to evaluate the coe�cients bnm, we use the initial velocity �eld of the membrane:

_u(x; y; t) =
1X
n=1

1X
m=1

!nm (�anm sin!nmt+ bnm cos!nmt) sin

�
n�x

a

�
sin

�
m�y

b

�
: (35)

If the initial velocity �eld is _u(x; y; 0) = g(x; y), then following the same procedure we took to

�nd the anm:

_u(x; y; 0) = g(x; y) =
1X
n=1

1X
m=1

!nmbnm sin

�
n�x

a

�
sin

�
m�y

b

�
(36)

bnm =
1

!nm

2

b

2

a

Z a

0

Z b

0

g(x; y) sin

�
n�x

a

�
sin

�
m�y

b

�
dydx; (37)

where, of course, !nm is given by equation (31).
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