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1. Taylor and Za�ratos, problem 6.8. In (a), in particular show that v = ke2=n�h.

(a) From the angular momentum quantization condition, L = n�h, we get mvr = n�h and,
therefore, v = n�h=mr. Because the radii of the stable Bohr orbits is r = n2aB, this implies
that v = �h=(mnaB). Because aB = �h2=ke2m, this can be rewritten:

v = ke2=n�h: (1)

(b) By equation (1), clearly v is largest when n is smallest (i.e., for n = 1) and v = ke2=�h.
Thus,
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where we used the results from problem #1. This is a small fraction of the speed of light, so
relativistic e�ects can be ignored.
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2. Taylor and Za�ratos, problem 6.10. A series is characterized by a particular value of n0, the
label of the lower level of transition. The longest wavelength (lowest photon energy) is given
by the Rydberg formula with n = n0+1, and the shortest wavelength (highest photon energy)
is found by letting n!1. For the four series in question (n0 = 1; 2; 3; 4) we �nd:

Series n0 �min (nm) �max (nm)
Lyman 1 91 122
Balmer 2 365 656
Paschen 3 820 1875
Brackett 4 1458 4050

In the Lyman series, all wavelengths are less than 400 nm, which means the whole series lies
in the ultraviolet (UV). The Balmer series overlaps the visible and some UV, and the Paschen
series is completely in the infrared (IR). The �rst three series do not overlap one another, but
the long wavelengths of the Paschen series overlap the short wavelengths of the Brackett.

3. Taylor and Za�ratos, problem 6.16.

(a) The n = 1 orbit for the pion orbiting a carbon nucleus (Z = 6) has radius:
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where we used the fact that the Bohr radius is aB = �h2=(ke2me).

(b) This orbit is much larger than the radius of the carbon nucleus, so it is possible.

(c) For the lead nucleus Z = 82, and placing this value of Z into equation (2) we get
r = 2:4� 10�15 m. This value is smaller than the radius that we're given for the lead nucleus
(7�10�15 m), so the orbit of the electron would be within the lead nucleus, which is impossible.

4. Taylor and Za�ratos, problem 6.20.

(a) En = �Z2ER=n
2 and the transition considered is (n! 1) so the energy of the photon

produced by the electron going from level n to 1 is:
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Solving for wavelength we get:
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(b) For uranium the atomic number Z = 92, so 91.2 nm/Z2 � 1:08 � 10�2 nm. The
K�; K�; K transitions are 2 ! 1; 3! 1; 4 ! 1, respectively, so from equation (3) they have
wavelengths:
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4. Taylor and Za�ratos, problem 7.8.

In general, you have to use relativity theory when the kinetic energy of a particle exceeds
it rest mass energy. Here, K = 2 MeV, which exceeds the rest mass energy of an electron,
mc2 = 0:511 MeV. Therefore, we cannot use the nonrelativistic expression for kinetic energy
(K = mv2=2 = p2=2m = h2=2m�2), but rather must use the Pythagorean relation, E2 =
(pc)2 + (mc2)2, where E = mc2 +K = 2:511 MeV. Therefore,

pc =
q
E2 � (mc2)2 =

p
2:5112 � :5112 MeV = 2:46 MeV:

Because p = h=�, � = h=p, so multiplying and dividing by c:
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