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Abstract

We discuss extending global surface wave di�raction tomography to accommodate major-arc

dispersion measurements. The introduction of major-arc surface wave dispersion measure-

ments improves path density and resolution in regions poorly covered by minor-arc mea-

surements alone, as occurs in much of the southern hemisphere. The addition of major-arc

measurements to the inversion for dispersion maps does not appreciably degrade the �t to the

minor-arc measurements but signi�cantly improves the �t to the major-arc measurements.

For these reasons, we conclude that the addition of major-arc measurements is worthwhile in

the interim until the broad-band network of ocean bottom or Antarctic stations is improved

in the future.
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1. Introduction

This paper extends current tomographic methods to invert measurements of surface wave

dispersion for maps of the two-dimensional distribution of phase or group speeds regionally or

over the globe. Barmin et al. (2001) previously described a method of surface wave tomogra-

phy based on geometrical ray-theory with largely ad-hoc smoothing constraints. This method

has been used in several studies of earth structure (e.g., Levshin et al., 2001; Ritzwoller et

al., 2001; Shapiro et al., 2002). Ray-theory is a high frequency approximation, however,

which is not justi�ed in the presence of heterogeneities whose length-scale is comparable to

the wavelength of the wave (e.g., Woodhouse, 1974; Wang & Dahlen, 1995). For the ray

approximation to be valid, the �rst Fresnel zone must be smaller than the scale-length of the

heterogeneity, which places limitations on the lateral resolution of seismic models based on

ray-theory. The Born or Rytov approximation for surface wave scattering (e.g., Woodhouse

& Girnius, 1982; Yomogida & Aki, 1987; Snieder & Romanowicz, 1988; Bostock & Kennett,

1992; Friederich et al., 1993, Friederich 1999; Meier et al., 1997; Spetzler et al., 2001, 2002;

Yoshizawa & Kennett, 2002; Snieder, 2002) models the �nite width of the surface wave sen-

sitivity zone. Ritzwoller et al. (2002) discussed the use of this approximation in the context

of global surface wave tomography, calling the resulting method global di�raction tomogra-

phy. This method was the basis for a global three-dimensional (3-D) shear velocity model

of the crust and upper mantle (e.g., Levin et al., 2002; Ritzwoller et al., 2003a, 2003b, 2004)

based exclusively on minor-arc group and phase measurements. Some regions of the Earth,

especially in the southern hemisphere, cannot be e�ectively covered by minor-arc paths due

to the sparseness of seismic stations. The use of major-arc data for both the fundamental

mode and overtone data (van Heijst et al., 1999) would signi�cantly improve the spatial and

azimuthal coverage particularly for studies of azimuthal anisotropy. Spetzler et al. (2002)

discuss di�raction tomography for major-arc measurements, but minor and major-arc ob-

servations have been previously used in tomographic studies only under the assumption of

ray-theory (e.g., Trampert & Woodhouse, 2003).

In this paper we follow Spetzler et al. (2002) to extend di�raction tomography by rede�n-

ing the zone of sensitivity and accommodating both minor-arc and major-arc measurements
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using the Born/Rytov approximation. We take the opportunity along the way to consider

several variants of the sensitivity kernels for both major and minor-arc paths. Due to fo-

cusing e�ects at the antipodes of the source and the receiver, the structure of the major-arc

surface wave sensitivity kernel is more complicated than for minor-arc measurements. We

apply this approach to an update of the surface wave phase speed measurements obtained by

Trampert & Woodhouse (1995, 1996) and estimate the improvements in spatial resolution

as well as the reliability of the resulting tomographic maps. We pay special attention to the

southern hemisphere, and, particularly, to parts of the South Paci�c and Antarctica where

coverage by minor-arc paths remains much worse than in most of the northern hemisphere.

2. Sensitivity Kernels for Minor and Major Arc Paths

Under the Born/Rytov approximation, the perturbation to a surface wave travel time for

source i and receiver j is written as an integral over the Earth's surface S:

�tij(n;q)(�) =
Z
S

Kij
(n;q)(r; �)v

�1
q (r; �)m(r; �)dS; (1)
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vq(r; �)
; (2)

(n; q) is an ordered pair with q designating the wave type (Rayleigh or Love) and n specifying

whether the measurement is for a minor-arc (n = 1) or a major-arc (n = 2) path, � is the

wave frequency, �vq(r; �) is the perturbation to phase speed at location r relative to the

reference model vq(r; �), and K
ij
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where H(�; �) = sin� sin(���) and R0 is the Earth's radius. For simplicity of presentation,

we omit the source and receiver indices and use a coordinate system centered on the great-

circle linking the source and receiver (�; �) and the assumption that the great-circle lies

along the equator. In this way, � is measured along the great-circle (0 < � < �) and � is

measured in the transverse direction, along meridians from the equator (��
2
< � < �

2
). In

practice, a measured travel time perturbation depends on a �nite frequency band around the

central frequency of the measurement, �0 � ��, which is included in equation (3). W (�) is

the weight given to a particular frequency within the considered frequency range. We apply

a cosine-taper within the frequency band of measurement:

W (�) = 0:5

"
1 + cos

 
�(� � �0)

��

!#
: (4)

The choice of �� andW (�) is made both to mimic the frequency band of measurement and to

provide a smooth truncation of Kq transverse to the great-circle linking source and receiver

(i.e., as a function of �). Reasonable variations of these quantities do not change the results

of tomography appreciably. All kernels here are computed relative to the 1-D spherically

averaged model PREM (Dziewonski and Anderson, 1981).

The shape of the minor-arc kernel given by equation (3) is shown in Figure 1a, truncated

after the seventh sensitivity zone (which we de�ne below). Without the frequency integral,

the kernel is somewhat more complicated, as Figure 1b illustrates. The spatial complexity of

the kernel has motivated several di�erent simpli�cations. Some researchers have truncated

the kernel at the central lobe of the sensitivity kernel, as seen in Figure 1c. Ritzwoller et al.

(2002) approximated the kernel further as a box-car function within the central lobe, as seen

in Figure 1d. The motivation for the truncation at the central lobe relates to the oscillatory

nature of the sensitivity kernel. Upon area integration, the oscillations in the kernel will

tend to destructively interfere.

Figure 2 illustrates the oscillatory nature of the kernels transverse to the great-circle

linking the source and receiver and clari�es what is meant by the n-th sensitivity zone, Fn.

The n-th sensitivity zone is the region of the sensitivity kernel between the zero-crossings

beginning at the great-circle linking source and receiver. We label the �rst through seventh

sensitivity zones as F1 through F7 in Figure 2, such that F1 is the central lobe of the
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kernel. The frequency integral in equation (3) acts to reduce the amplitude of the sensitivity

kernel for the second and higher zones. The amplitude of the sensitivity kernel beyond the

seventh zone becomes negligible when the frequency integral is applied. If the kernel retains

contributions through the n-th sensitivity zone, we refer to the forward operator as the Fn-

theory. For example, in the F1-theory travel times are computed using only the central

lobe of the sensitivity kernel as shown in Figure 1c and the F7-theory corresponds to Figure

1a. We refer to the box-car kernel con�ned to the central lobe, shown in Figure 1c, as the

F1-theory. This nomenclature also holds for major-arc measurements. We discuss later how

the choice of the forward theory a�ects resolution and the results of tomography.

If � > � (a major-arc path), K(n;q) = K(2;q)(�; �; �; �). The sensitivity kernel decomposes

into three component kernels corresponding to discrete segments of the path: (1) between the

source and the antipode of the receiver, (2) between the antipode of receiver and the antipode

of the source, and (3) between the antipode of the source and the receiver (Spetzler et al.,

2002). Examples of the extent of the �rst and seventh sensitivity zones for a set of periods

are shown in Figure 3a and 3b. The kernel for each segment is weighted proportionally to

the length of the segment as follows:

K(2;q)(�; �; �) =
1

�

h
(�� �)K(1;q)((�� �); �; �; �) (5)

+(2� ��)K(1;q)((2� ��); �; ���+ �; �)(�� �)

+K(1;q)((�� �); �; �� �; �)
i

An example of a major-arc sensitivity kernel is presented in Figure 3c, plotted similarly to

the minor-arc kernels in Figure 1.

Equation (3) for the minor-arc kernel, K1q, is not valid near the source (� � 0) or receiver

(�� � � 0), where H � 0. There are corresponding singularities in the major-arc kernel at

four points; near the source and receiver and their antipodes. To avoid the singularities, we

approximate the sensitivity kernels within a circle centered on each singularity with radius

�(�0)=4, where � = vq(�0)=�0 is the wavelength. Within this region, the sensitivity kernel is

simply replaced by its pro�le in � at a distance of �(�0)=4 from the singularity. Finally, the
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kernel is normalized by the condition

Z
S

Kq(r; T )dS = �R0: (6)

The kernels shown in Figures 1 - 3 have been constructed in this way.

The major-arc sensitivity kernels change systematically with both period and epicentral

distance. The widening of the kernel with period is seen in Figure 3. The e�ect of distance

is illustrated in Figure 4. As Figure 5 shows, because of the pinching of the sensitivity kernel

near the antipodes of the source and the receiver, the maximum width of the sensitivity kernel

does not increase continuously with distance for major-arc measurements. The sensitivity

kernel does widen monotonically for minor-arc measurements, achieving a maximum for

receivers near the antipode of the source (i.e., � � 180�). At epicentral distances between

210� and 330�, however, the maximum width of the major-arc sensitivity kernel is identical

to the minor-arc kernel from 90� to 150�. There are a number of good reasons to prefer

minor-arc travel time measurements to major-arc measurements (e.g., higher signal-to-noise,

reduced e�ect of anelastic attenuation, smaller scattering area, narrower sensitivity zones

for epicentral distances less than 90�), but it is worth remembering that the width of the

sensitivity zone for major-arc measurements relative to minor-arc measurements at distances

greater than 90� is not one of them.

The extension of the sensitivity kernels to major-arc measurements allows us to combine

minor- and major-arc data for a joint tomographic inversion of phase speed measurements.

3. Tomographic Method, Path Density, Resolution

3.1. Inversion method

The joint inversion of minor-arc and major-arc measurements to estimate a two-dimensional

map of surface wave speeds follows the tomographic method of Barmin et al. (2001) which

is based on ray-theory with ad-hoc smoothing and model-norm constraints to regularize the

inversion on a discrete grid at regional or global scales. Ritzwoller et al. (2002) discussed
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the extension of the method to incorporate extended sensitivity kernels through the �rst

sensitivity zone and the method generalizes naturally for sensitivity kernels past the �rst

zone. If G is the forward operator that computes travel time from a map using equation (1),

the discretized form of the forward problem is

�t = d = Gm: (7)

The penalty function is a linear combination of weighted data mis�t (�2), model roughness,

and the amplitude of the perturbation relative to a reference map which when discretized is

as follows:

(Gm� d)TC�1(Gm� d) +mTQm; (8)

where d is the data vector whose components are the observed travel time residuals relative

to the reference map and C is the data covariance matrix or matrix of data weights. Barmin

et al. (2001) discuss the form ofm for both isotropic and azimuthally anisotropic inversions.

The matrix Q represents the e�ect of a Gaussian spatial smoothing operator with standard

deviation � (in km) as well as an operator that penalizes the norm of the model in regions

of poor path coverage. The choice of the trade-o� (or regularization) parameters in Q and

the smoothing width � is ad hoc. We typically apply spatial smoothing widths from 150 to

300 km. Even though extended spatial sensitivity kernels naturally regularize the inversion,

additional regularization is still needed.

Here, the inverse problem is discretized onto a global 2��2� grid (i.e., 222 km � 222 km).

In practice, the sensitivity kernel is constructed along the equator, as described above, and

is translated and rotated into each source-receiver con�guration. For the forward problem,

the kernel is constructed on a 1� � 1� grid.

As discussed in the following sections, details of the results for path density, resolution,

and the tomographic maps will depend on the nature and truncation level of the sensitivity

kernels (e.g., F1, F7, etc.), as di�erent kernels will produce di�erent travel times. The

magnitude of the di�erence in travel times as a function of epicentral distance can be seen in

Figure 6, which is based on the station and event pairs from the cleaned data set discussed in

section 4. The di�erence in travel times computed with the central lobe forward theories F1
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(Fig. 1c) and F1 (Fig. 1d) is negligible. Interestingly, travel times computed with forward

theory F7 (Fig. 1a) are more similar to ray theoretic travel times than they are to travel times

computed with theory F1. In addition, the agreement between travel times computed with

theory F1 and ray theory, on average, is not as good as comparison between theory F7 and ray

theory. The addition of sensitivity zones past the �rst, therefore, moves the computed travel

times back towards those computed with ray theory. This is due to destructive interference

between the side-lobes and the principal lobe of the sensitivity kernel with forward theory

F7. This will be discussed further as the paper progresses.

3.2. Pseudo-path-density and resolution

Aspects of the improvement expected in the tomographic maps by introducing major-arc

measurements can be summarized by path density and resolution. For \Gaussian tomogra-

phy" (i.e., ray theory with ad-hoc smoothing), Barmin et al. (2001) de�ned path density

�(r) as the number of paths intersecting a square cell centered at point r with a �xed area of

2� � 2� (�50,000 km2). For di�raction tomography based on spatially extended sensitivity

kernels, this de�nition is not appropriate because each path is not a linear object. For this

reason, we introduce the notion of pseudo-path-density, �D(r; T ), by means of the formula:

�D(r; T ) =
X
n

~Kn
q ; (9)

where ~Kn
q is the smoothed envelope of the sensitivity kernel from equation (1) evaluated at

position r for measurement n, renormalized by equation (6). Summation is made over all n

measurements for which r is inside the sensitivity kernel. With this de�nition, pseudo-path-

density is similar to ray-theoretic path density in regions of many crossing paths, but the

two measures of path density di�er is regions of relatively poor path coverage.

The estimator based on equation (7) describing an isotropic map of velocity perturbations

is

m̂ = GyC�1�t =
�
GyC�1G

�
m = Rm (10)
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where Gy is the inverse operator

Gy =
�
GTC�1G+Q

��1
GT ; (11)

and the resolution matrix R is

R =
�
GTC�1G+Q

��1
GTC�1G: (12)

In this application, each row of R is a resolution map de�ning the resolution at one spatial

node. The resolution matrix is consequently very large and the information it contains is

somewhat di�cult to utilize. We summarize the information in each resolution map by

estimating a scalar quantity, which we call the spatial resolution at each point of the grid.

The spatial resolution is determined here in a slightly di�erent manner than in Barmin et al.

(2001). To estimate resolution, we �t a cone near the target node to each resolution map.

This cone approximates the response of the tomographic procedure to a �-like perturbation at

the target node. The radius of the base of the cone was taken by Barmin et al. (2001) as the

value of the spatial resolution. In many cases, however, the shape of the response more closely

resembles a 2-D spatial Gaussian function, and the cone-based estimate is biased to large

values. To reduce this bias, we introduce a new estimate of the spatial resolution summarized

by the 
-parameter, the standard deviation of the 2-D symmetric spatial Gaussian function

that best-�ts the resolution map in the neighborhood of the target node:

A exp

 
�
jrj2

2
2

!
: (13)

Here, A is the amplitude of the �t-Gaussian at the target node. As a practical matter, to

construct the optimal Gaussian function, we take the absolute value of the resolution map

and discard as random noise all points of the map with amplitude less than about A=10.

Fitting is done within one resolution length de�ned by the �t-cone method.

4. Data

4.1. Input data and data handling

An expanded set of surface wave phase speed measurements, originally described by Tram-

pert & Woodhouse (1995), was used in the tomographic inversion. We limited ourselves to
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two periods, 50 sec and 100 sec, and analyzed only Rayleigh wave data at these periods.

In what follows, we will refer to the minor-arc Rayleigh wave observations as R1 and the

major-arc observations as R2. The number of paths for the raw data set (R1, R2) is given

in Table 1 (column 3). We identify outliers with a two-stage process. In the �rst stage, we

computed synthetic travel times using equation (1) with forward theory F7 (Fig. 1a) using

the 3-D model of Shapiro & Ritzwoller (2002) for all paths contained in the raw data. Fig-

ure 7 shows the rms relative travel time residuals [(observed - predicted)/observed] for the

raw data as a function of distance. The mean values and �2:5� rms in the window sliding

along epicentral distance are presented as well. The gaps in the data at epicentral distances

from 160� - 200� and 340�� 360� re
ect interference between minor-arc and major-arc wave

trains near the epicenter and its antipode. The corresponding values of rms for phase speed

residuals averaged over epicentral distance are given in the Table 1 (column 4). Only mea-

surements with a relative residual between �2:5� rms are selected for further analysis. The

numbers of selected paths are presented in Table 1 (column 5).

In the second stage of data selection, we apply a consistency test to the measurements

that pass the �rst stage of selection. This test has been described by Ritzwoller & Levshin

(1998), and is referred to as a cluster or summary-ray analysis. The procedure compares

measured travel times along paths with end-points that lie within the same 110 km � 110

km cell. We delete duplicates and reject inconsistent measurements. After this test, the

number of selected paths is reduced substantially as can be seen in Table 1 (column 6). This

procedure also allows us to estimate the inherent errors in the measurements. The average

rms value for the whole set of close paths with consistent travel times is given in column

7 of Table 1. The relative rms-mis�t for the R2 phase velocities are slightly lower than for

R1 due to the greater lengths of the wave paths, although the absolute travel time mis�t

grows with epicentral distance, as Figure 8 shows, except at distances between about 125�

and 225� where there is signi�cant growth of rms. This may indicate di�culty in measuring

phase speeds accurately due to interference between R1 and R2 waves or interference with

Love waves. The general increase of the travel time residuals with distance may be partly

due to the systematic decrease of the signal-to-noise ratio. One way to reduce the e�ect
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of noise is to introduce data weighting inversely proportional to some power of distance in

the inversion procedure. We prefer here not to apply this weighting as there is the evident

danger of losing the R2 signal.

4.2. Pseudo-path-density and resolution

The Paci�c Ocean and Antarctic regions are relatively poorly covered by minor-arc obser-

vations due to a coarse network of observing stations in these regions. Adding major-arc

observations is particularly important for these regions. The left side of Figure 9 shows sev-

eral views of the pseudo-path-density for the 50 sec Rayleigh wave with only minor-arc data.

The right side of the same �gure demonstrates the path density for major-arc data. The

two distributions are complementary, particularly across the Paci�c. Addition of major-arc

measurements is expected to have the biggest e�ect in the South Paci�c, Antarctica, Africa,

and the Indian Ocean. Path densities for 100 sec surface waves have a similar pattern.

Figure 10 presents several views of the spatial resolution obtained with minor-arc data

alone and contrasts the result with the resolution obtained with a combination of minor-arc

and major-arc data for 50 sec surface waves. The addition of the major-arc measurements

signi�cantly improves the resolution across the Paci�c and Antarctica. In regions such as

Eurasia and North America that are well covered by minor-arc measurements, little change in

resolution results from the addtion of major-arc measurements. A similar pattern is obtained

for the 100 sec surface waves.

5. Results of Tomographic Inversion

The results of the tomographic inversion of the combined minor-arc and major-arc data

[R1+R2] for Rayleigh waves at periods of 50 and 100 sec are shown in Figures 11 and 12.

For comparison, the results based on the minor-arc data alone are also presented. The

absolute value of the di�erence between these maps is shown in Figure 12. As expected, the

changes are small in the northern hemisphere where path coverage with minor-arc data is

relatively good. Both the amplitudes and the length-scales of the di�erences are small. There
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is no large scale systematic pattern of di�erence. Larger amplitude and more systematic

di�erences are observed across much of the southern hemisphere. To quantify this north-

south discrepancy further, we compare the maps in the two polar caps: 45�N � 90�N and

45�S�90�S. The northern polar cap is relatively well covered by R1 paths, but much of the

southern cap is poorly covered. Table 2 shows the correlation between the maps constructed

with major-arc and minor-arc data (R1 + R2) with those constructed with minor-arc data

alone (R1) at periods of 50 and 100 sec in these two regions. For the northern polar cap,

the correlation between the maps produced with the two data sets is much better than in

the southern cap and the rms of the absolute di�erence between the two maps is about 2/3

of the di�erence in the southern polar cap.

We have shown, therefore, that the introduction of major-arc measurements improves

data coverage and resolution across much of the southern hemisphere and also substantially

a�ects the tomographic maps themselves. There is little e�ect in regions that are well covered

by minor-arc data. But are the maps that result from the simultaneous inversion of major-

arc and minor-arc data improved relative to maps derived from the minor-arc data alone?

By improvement, we mean more accurate and with more detailed information on the phase

speed distribution across the globe. Speci�cally, because the major-arc measurements are

noisier than the minor-arc measurements, does their inclusion merely increase the noise in

the estimated maps?

One way to address this question is to examine the di�erence between the �t to the

minor-arc data both from maps obtained from the minor-arc data alone and from maps

based on both major-arc and minor-arc measurements. If major-arc data can be introduced

without appreciably degrading the �t to the minor-arc measurements, then there is good

reason to include the major-arc data. If the �t to the minor-arc measurements is degraded

strongly, then one may wish not to take on the risk of introducing the more noisy major-arc

measurements.

Table 3 contains information about mis�t between observed and predicted travel times

and phase speeds for di�erent combinations of Rayleigh wave maps and data sets across the

whole Earth. The 50 sec Rayleigh wave phase speed map produced from the combination
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of minor-arc and major-arc data (R1 + R2) only slightly decreases the �t to observations

of the minor-arc data, from 9.5 to 10.3 sec. The �t to the major-arc measurements with

the R1 + R2 map, however, is considerably better than the �t to these measurements with

the map constructed with minor-arc data alone (R1): 20.9 sec versus 27.6 sec. A similar

result holds at 100 sec period. This indicates that the addition of major-arc data does not

signi�cantly degrade the map in regions where minor-arc data exist. Elimination of these

data, however, ensures that the major-arc measurements will not be well �t by data based

on minor-arc measurements alone.

The tomographic results presented here (Fig. 11 - 13) are for the F7 sensitivity kernels

which extend out through the seventh sensitivity zone (e.g., Fig. 1a). The results are similar

if we had used the F1 sensitivity zone (e.g., Fig. 1c); i.e., if we had truncated the kernel

at the central lobe of the sensitivity kernel. Figure 14 compares the 50 sec Rayleigh wave

phase speed maps estimated with the F1 and F7 sensitivity zones. The rms of the di�erences

globally is about 18 m/sec, or less than 0.5%. The di�erence between the maps estimated

with the two variants of the sensitivity kernels truncated at the central lobe, theories F1

and F1, is even smaller with a global rms di�erences of about 4 m/sec or less than 0:1%.

Di�erences between maps derived from theories F1 and F1 are smaller than di�erences that

arise from arbitrary changes in the damping parameters that drive the inversion and are,

therefore, negligible. Although the e�ective di�erence between theories F1 and F7 is also

small, for reasons we discuss in section 6 we prefer and advise the use of theory F7 over

theories F1 or F1 unless epicentral distances are well less than 90�.

6. Discussion and Conclusions

We have shown that the introduction of major-arc surface wave dispersion measurements

improves path density and resolution in regions poorly covered by minor-arc measurements

alone, as occurs in much of the southern hemisphere. In addition, we showed that major-

arc measurements can be added to the inversion for dispersion maps without appreciably

degrading the �t to the minor-arc measurements but signi�cantly improving the �t to the
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major-arc measurements. For these reasons, we conclude that the addition of major-arc

measurements is worthwhile as an interim solution until the broad-band network of ocean

bottom or Antarctic stations is improved in the future.

The addition of major-arc measurements comes with a cost, however. The measurements

are noisier than minor-arc measurements and major-arc sensitivity kernels are broad, compli-

cated spatial functions. Analysis of mis�t implies that the reduction of signal-to-noise in the

major-arc measurements does not mitigate against their inclusion in the inversion. Although

ray theoretic travel times may be su�ciently accurate for epicentral distances less than 60�

- 90�, the ray theoretic approximation degrades rapidly for longer minor-arc distances and

for major-arc measurements.

Although we advocate using sensitivity kernels beyond the central lobe, computational

expedience may dictate a more approximate method to compute travel times and sensitivity.

The use of all or some fraction of the central lobe is popular (e.g., Yoshizawa and Kennett,

2002, Ritzwoller et al., 2002). The central lobe of the sensitivity kernel is commonly identi�ed

as the �rst Fresnel zone, which is an ellipse on a sphere given by the the equation

j�� (�1 +�2)j = �=N; (14)

as shown in Figure 15, where � is the wavelength of the wave of interest determined from

PREM here. By comparing the maximum width of the central lobe of the sensitivity kernel

to the width of the �rst Fresnel zone, Spetzler et al. (2002) showed that N = 8=3. Ritzwoller

et al. (2002) used this value of N to perform global tomography in which the sensitivity

kernel was con�ned to the central lobe and shaped like a box-car (i.e., theory F1 shown in

Fig. 1d). Yoshizawa and Kennett (2002) argue that the \zone of in
uence" about surface

wave paths over which the surface waves are coherent in phase is considerably narrower than

the �rst Fresnel zone, being only about one-third of the width of the �rst Fresnel zone and,

consistent with this, a better choice for N in equation (14) is N = 18.

Aspects of the results presented here corroborate the arguments of Yoshizawa and Ken-

nett (2002). For example, Figure 6 shows that except near the source antipode, ray theoretic

travel times agree better with F7-theory (i.e., in which the sensitivity kernel extends through

14



the seventh sensitivity zone) than the agreement between F1-theory with F7-theory. This

is because of destructive interference among the side-lobes and with the central lobe of the

sensitivity kernel. Similarly, the resolution of tomography produced with F7-theory is better

than that with F1-theory as shown in Figure 16. This is on �rst sight counter-intuitive, that

a spatially broader sensitivity kernel would improve resolution. But, again, it is because of

destructive interference between the side-lobes and the central lobe. The result is to produce

a sensitivity kernel that, in e�ect, is narrower than the �rst Fresnel zone. If one wishes to

utilize a sensitivity kernel that includes only the central lobe, our results suggest to narrow

the central lobe as Yoshizawa and Kennett argue.
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Table 1. Number of measurements before and after each of the two stages of the data

selection procedure.

Period Wave Number of Rms, Ph. Vel. Number of Selected Number of Selected Rms, Ph. Vel.

sec Type Input Paths Res., m/s Paths (1st Stage) Paths (2nd Stage) Errors, m/s

50 R1 54168 22 48192 27310 19

50 R2 21347 27 17476 12654 15

100 R1 54168 26 49888 26852 21

100 R2 21347 30 17477 13631 12

Table 2. Comparison between tomographic maps for the north and south polar caps

obtained with minor-arc (R1) and major-arc plus minor-arc (R1 + R2) data sets.

Region Period Correlation Rms of di�erence

s Coe�cient m/s

45� � 90�N 50 0.969 20

45� � 90�N 100 0.966 20

45� � 90�S 50 0.938 28

45� � 90�S 100 0.893 29
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Table 3. Mis�t between predicted and observed travel times and phase speeds for data

from the whole Earth.

Period Map Type of Data Number Rms (travel time) Variancey Rms (phase

s of Paths s Reduction,% velocity), m/s

50 R1+R2 R1+R2 39964 14.5 42.4 16.3

50 R1+R2 R1 27310 10.3 13.8 18.3

50 R1+R2 R2 12654 20.9 51.0 10.8

50 R1 R1 27310 9.5 28.0 16.6

50 R1 R2 12654 27.6 18.2 14.0

100 R1+R2 R1+R2 40483 12.5 32.4 17.4

100 R1+R2 R1 26852 9.4 10.9 20.3

100 R1+R2 R2 13631 17.0 40.9 9.3

100 R1 R1 26852 8.8 22.8 19.0

100 R1 R2 13631 23.3 -10.6 12.9

y Variance reduction is relative to predicted velocities from Shapiro & Ritzwoller (2002).
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Figure 1: Minor-arc sensitivity kernels for the 50 sec Rayleigh wave phase speed between

a source and receiver at coordinates (�; �) of (0,0) and (0,120); i.e., an epicentral distance

� = 120�. (a) The kernel de�ned by equation (3) is shown, including the frequency integral,

truncated after sensitivity zone F7. Referred to as forward theory F7. (b) The same as (a),

but the frequency integral has not been performed. (c) The sensitivity kernel truncated at

the central lobe of the sensitivity kernel, F1, referred to as forward theory F1. (d) Box-car

shaped kernel truncated at the central lobe of the sensitivity kernel (e.g., Ritzwoller et al.,

2002), referred to as forward theory F1.
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1d. The zones of sensitivity are de�ned between the zero crossings of the sensitivity kernel,

denoted as F1 for the central lobe of the kernel through F7 for the seventh zone, as shown.
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Figure 3: Spatial extent and shape of the major-arc sensitivity kernel for Rayleigh wave phase

speeds plotted for several periods at an epicentral distance of 240�. (a) The extent of the central

lobe of the sensitivity kernel, F1, is shown for the 20 sec, 50 sec, 100 sec, and 150 sec Rayleigh

waves. The source location (S), the receiver location (R), the source antipode (SA), and the receiver

antipode (RA) are indicated. The sensitivity zone widens as period increases. (b) Similar to (a),

but this is the extent of the seventh sensitivity zone, F7, plotted for the same periods as in (a). (c)

Major-arc sensitivity kernel plotted similarly to the minor-arc kernels shown in Figure 1 for the 50

sec Rayleigh wave phase speed.
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Figure 4: Spatial extent of the sensitivity kernels plotted for the 50 sec Rayleigh wave phase

speed at several epicentral distances: (a) 60�, (b) 120�, (c) 210�, and (d) 320�. The dashed

lines show the extent of the central lobe of the sensitivity kernel, and the solid lines show the

extent of the seventh sensitivity zone. The locations of the source (S), receiver (R), source

antipode (SR), and receiver antipode (RA) are shown in (c).
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from the �nal, cleaned data set used for tomography. \Ray" denotes ray theoretic travel

times and the notation F7, F1, and F1 refers to the sensitivity kernels illustrated in Figure

1a, 1c, and 1d, respectively.
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Figure 8: Rms of the travel time residuals with respect to predictions from the 3-D model

of Shapiro and Ritzwoller (2002) for the cleaned data set plotted as a function of epicentral

distance for 50 sec (solid line) and 100 sec (dashed line) Rayleigh waves.
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Figure 9: Pseudo-path-density of 50 sec Rayleigh waves: (LEFT) minor-arc data alone,

(RIGHT) major-arc data alone. Pseudo-path-density approximates the number of the rays

in each 2�� 2� cell (� 50; 000km2). Results are based on the F7 sensitivity kernels (Fig. 1a).

29



R1, 50 s

Eurasia

R1+R2, 50 s

Pacific

0˚ 20˚

40˚

60˚
80˚

10
0˚

12
0˚

140˚

160˚
180˚

200˚

220˚

240˚

260˚

28
0˚

30
0˚

320˚
340˚

200 300 400 500 600 700 800

Spatial Resolution, km

Antarctica

0˚ 20˚

40˚

60˚
80˚

10
0˚

12
0˚

140˚

160˚
180˚

200˚

220˚

240˚

260˚

28
0˚

30
0˚

320˚
340˚

Figure 10: Spatial resolution of 50 sec Rayleigh wave tomography: (LEFT) minor-arc data

alone, minor-arc and major-arc data together. Results are based on the F7 sensitivity kernels

(Fig. 1a).
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Figure 11: Tomographic maps for 50 sec Rayleigh wave phase speeds: (LEFT) minor-arc

data alone, (RIGHT) minor-arc and major-arc data combined. Results are based on the F7

sensitivity kernels (Fig. 1a).
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Figure 12: Same as Figure 11, but for the 100 sec Rayleigh wave phase speeds.
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Figure 13: Absolute value of the di�erence between the phase speed maps constructed with

both minor-arc and major-arc data and those constructed with minor-arc data alone: (LEFT)

50 sec Rayleigh wave phase speeds, (RIGHT) 100 sec Rayleigh wave phase speeds. Results

are based on the F7 sensitivity kernels (Fig. 1a).
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Figure 14: Absolute value of the di�erence between the 50 sec phase speed maps constructed

with both minor-arc and major-arc data using the theory F1 (Fig. 1c) and the theory F7

(Fig. 1a). The rms of the di�erence is about 18 m/sec (< 0:5%).
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Figure 15: The �rst Fresnel-zone is an ellipse on a a sphere with the source (star) and receiver

(triangle) at the two foci.
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Figure 16: Di�erence in resolution between tomography performed with theory F1 (Fig. 1c)

and theory F7 (Fig. 1a) for the 50 sec Rayleigh wave phase speed map. Due to destructive

interference among the side-lobes and the central-lobe, the wider sensitivity kernel, F7,

exhibits a better resolution than the narrower kernel, F1, everywhere on the globe.
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