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SUMMARY

We describe a method to invert surface wave dispersion data for a model of shear

velocities with uncertainties in the crust and uppermost mantle. The inversion is a

multi-step process, constrained by a-priori information, that culminates in a Markov-

chain Monte-Carlo sampling of model space to yield an ensemble of acceptable

models at each spatial node. The model is radially anisotropic in the uppermost

mantle to an average depth of about 200 km and is isotropic elsewhere. The method

is applied on a 2�� 2� grid globally to a large data set of fundamental mode surface

wave group and phase velocities (Rayleigh group velocity, 16 - 200 s; Love group

velocity, 16 - 150 s; Rayleigh and Love phase velocity, 40 - 150 s). The middle

of the ensemble (Median Model) de�nes the estimated model and the half-width
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of the corridor of models provides the uncertainty estimate. Uncertainty estimates

allow the identi�cation of the robust features of the model which, typically, persist

only to depths of �250 km. We refer to the features that appear in every member

of the ensemble of acceptable models as \persistent". Persistent features include

sharper images of the variation of oceanic lithosphere and asthenosphere with age,

continental roots, extensional tectonic features in the upper mantle, the shallow

parts of subducted lithosphere, and improved resolution of radial anisotropy. In

particular, we �nd no compelling evidence for \negative anisotropy" (vsv > vsh)

anywhere in the world's lithosphere.

1. Introduction

Even as earth models proliferate, reports of model uncertainties are rare in contemporary

seismic tomography at all scales. There are several reasons for this. First, the construction

of seismic models is typically a nonlinear inverse problem solved using regularized, weighted

linear or iterative regression analysis. Classical error analyses with normally distributed data

errors tend to underestimate model variances. Covariance estimates are similarly suspicious

and are commonly ignored. Problems arise when the forward model and the data are inconsis-

tent, in which case errors are usually not random, let alone normally distributed. In addition,

classical error estimates may not account for an array of choices made by the \tomographer"

during inversion (e.g., arbitrariness of damping, parameterization, etc.) which can strongly

a�ect both the qualitative and quantitative character of the resulting model. These choices

are, in e�ect, a-priori constraints on the model imposed by the tomographer, but their a�ects

on the resulting model are frequently only dimly perceived. Second, the error of a seismic

model is scale dependent. The large scale or average characteristics of the model may be well

known, but uncertainties grow as the scale of the model decreases. A full report of uncertain-

ties, therefore, would include error estimates over a spectrum of length-scales at each spatial

location in the model. This compounds the di�culty of the problem, and seismic tomographers
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commonly respond by reporting their model devoid of meaningful quantitative estimates of

the model's reliability.

This state of a�airs is far from ideal. Model uncertainties are needed to identify features

that are worthy of interpretation and to guide the use of predictions made from the seismic

model (e.g., gravity, heat ow, temperature, travel times, etc.). The predictive capabilities of

seismic models are currently underexploited, in our opinion, not because the predictions are

inaccurate but because the accuracy of the predictions is unknown. All too often, therefore,

seismic models only provide images that evoke the Earth's interior rather than fundamental

information that is used to understand the physics of the Earth's interior. Perhaps most

importantly, without uncertainties, discord between models is di�cult to resolve and scienti�c

progress can be seriously impeded.

Model space sampling methods, such as Monte-Carlo methods (e.g., Mosegaard and Taran-

tola 1995), help to address some of these issues. The basic idea of a Monte-Carlo \inversion" is

to select models randomly and to retain only the subset of models that satis�es acceptability

criteria. These criteria usually include some combination of data �t and a-priori informa-

tion that de�nes a physically plausible model (Figure 1). The outcome of this inversion is

an ensemble of acceptable models whose variability provides some information about model

uncertainty.

There are a number of advantages to Monte-Carlo inversions. First, Monte-Carlo sam-

pling is simple to e�ect and change, involving only model selection and forward modeling.

A-priori constraints typically de�ne the region of model space to be searched and are imposed

explicitly during model selection. Second, the model can be over-parameterized which may

be desired to assess how trade-o�s between di�erent types of structures a�ect the range of

acceptable models. Third, the resulting uncertainties may be what the modeler really wants.

They summarize the range of models that will �t the data and encorporate the modeler's

prejudices.

The major disadvantage of the method is computational expense, and Monte-Carlo meth-

ods work best when the volume of model space searched is small. A second disadvantage

is that the uncertainty estimates depend strongly on the choice of the acceptance criterion

which may be ad hoc. In particular, the a-priori constraints, which largely reect the mod-
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eler's prejudices, strongly inuence the uncertainties. This may be good from the modeler's

perspective but undesirable for the user of the model. Finally, systematic errors in the data

and the a-priori information, as well as inconsistencies between the data and the a-priori in-

formation, may bias the mean of the ensemble of acceptable models in a way that will not be

reected in the uncertainties. It is important then to attempt to identify and, to the maxi-

mum extent possible, eliminate systematic errors and inconsistencies prior to the Monte-Carlo

inversion, as in all inversions. These caveats aside, we �nd that in most cases the ensemble of

acceptable models accurately reects our degree-of-belief in the model and usefully guide the

interpretation of the model, predictions made from the model, as well as comparisons with

other models.

In this paper we discuss the application of a Monte-Carlo method to estimate the shear

velocity structure of the crust and upper mantle world-wide. The study has three key inno-

vations: (1) simultaneous inversion of a large data set of fundamental mode group and phase

velocity (Trampert and Woodhouse 1995; Ekstr�om et al. 1997) dispersion information, (2) the

way in which we introduce a-priori information in the inversion, and (3) the global scale of

the Monte-Carlo inversion. Although Monte-Carlo and related inversions have a long history

and are now common in surface wave seismology (e.g., Levshin et al. 1966; Keilis-Borok and

Yanovskaya 1967; Press 1968; Lomax and Snieder 1994; Shapiro et al. 1997), we are unaware of

previous studies that have applied this method on a global scale. The result is a shear velocity

model on a 2� � 2� grid around the globe with uncertainties everywhere. We present below a

brief discussion of the data set and the method and results of surface wave tomography. Data

processing is more fully discussed by Ritzwoller & Levshin (1998), the tomographic method

is presented by Barmin et al. (2001), and an application of tomography is discussed by Ritz-

woller et al. (2001). The main purpose of this paper is to describe the inversion procedure,

although for completeness we will summarize certain aspects of the model both for isotropic

and radially anisotropic structures.
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2. Data

The data are surface wave group and phase velocities. Although phase (C = !=k) and group

(U = d!=dk) velocities are simply related by

U(!) =
C(!)

1� !
C(!)

dC
d!

� C(!) + !
dC(!)

d!
; (1)

the simultaneous inversion of U and C is substantially better than the use of either alone,

as shown below. There are two reasons for this. First, group velocity measurements typically

extend to much shorter periods than the phase velocities and, therefore, provide unique con-

straints on shallow structures that help to resolve the trade-o� between crustal and mantle

structures in the inversion. Second, phase and group velocities are measured di�erently. Group

velocities are measured on the amplitude of the surface wave-packet and phase velocities on

the phase, so the error processes in the measurements are largely independent.

We measured the group velocities using frequency-time analysis (Levshin et al. 1989)

in which an analyst de�nes the frequency band of measurement for every waveform and

guides the procedure to separate the signal from a variety of noise sources (e.g., overtones,

fundamental modes of di�erent type, other earthquakes, multipaths, scattered arrivals). We

used broadband waveforms following earthquakes that occurred from 1977 - 1999 at stations

from global networks (GDSN, GSN, GEOSCOPE) as well as temporary regional arrays (e.g.,

KNET, Saudi Arabian Network, SKIPPY). The phase velocities were measured at Harvard

University and Utrecht University, separately, and donated to this study. These phase velocity

data sets are described by Ekstr�om et al. (1997) and Trampert & Woodhouse (1995).

We merged all phase velocity measurements into a single data set following the procedure

described by Ritzwoller et al. (2001). A cluster analysis (e.g., Ritzwoller & Levshin 1998) is

applied to both the group and phase velocity measurements to reject out-liers and estimate the

rms-variation in the measurements. The results of this analysis for the southern hemisphere,

presented by Ritzwoller et al. (2001), show that typical measurement errors are 20 - 25 m/s

for group velocities, except for very short periods, and 10 - 15 m/s for phase velocities, except

for long period Love waves. This is a conservative estimate of measurement errors for the

whole Earth because, on average, surface wave excitation is weaker and paths typically longer

in the southern hemisphere.
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The phase velocity data are decimated onto the same discrete grid of periods for both

Rayleigh and Love waves (40, 50, 60, 70, 80, 90, 100, 125, 150 s) , and the group velocity data

are discretized onto a grid from 20 s to 150 s for Love waves (20, 25, 30, 35, 40, 45, 50, 60,

70, 80, 90, 100, 125, 150 s) and four additional periods for Rayleigh waves 16, 18, 175, 200 s).

There are, therefore, 50 measurements for each sourc{receiver path.

Data coverage is highly heterogeneous, being imposed by the distribution of receiving

stations and earthquakes. It is generally better for Rayleigh waves than for Love waves, is

better at intermediate than at very short or very long periods, and is better in the northern

than in the southern hemisphere. Data coverage is most dense in Eurasia and is currently

sparsest across Africa, the central Paci�c, parts of the Indian Ocean, and Antarctica. At

present, the data set consists of more than 100,000 group velocity paths and 50,000 phase

velocity paths. Figure 2 presents examples of Rayleigh wave path density for several periods.

3. Method of Inversion

The relation between surface-wave dispersion and the seismic velocity structure of the earth

is nonlinear. There are two common approaches to resolve this nonlinearity. One is waveform

�tting in which the relation between the model and the seismic waveforms is linearized and

the model is iteratively estimated (e.g., Snieder 1988; Nolet 1990; Marquering et al. 1996).

Our approach, in contrast, is based on direct measurements of surface wave dispersion rather

than �tting waveforms so that the nonlinear inverse problem is divided into two steps: Step

1 is a nearly linear part called surface wave tomography to estimate 2-D dispersion maps

and Step 2 is a nonlinear inversion of the dispersion curves at each geographical point for a

shear velocity model of the crust and upper mantle. (The measurement procedure itself may

also be nonlinear.) In regions of poor data coverage, the tomographic maps and the shear

velocity model will revert to a common reference (the \Initial Model" de�ned below) while

the uncertainties will increase to limits imposed by a-priori constraints.
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3.1 Forward problem

The forward problem, i.e., the prediction of the frequency dependent surface-wave travel times

from the three-dimensional shear-velocity model, is similarly divided into two steps, mirroring

the steps in the inverse problem. The �rst step is the prediction of the Rayleigh and Love

wave dispersion curves from a three dimensional (3-D) model at each geographical point. The

second step is the prediction of surface-wave travel times for di�erent source-receiver pairs.

We follow tradition here by using geometrical ray theory in the latter step. The limitations

and e�ects of this approximation are discussed further by Ritzwoller et al. (2002a).

At each geographical point (�; �), the Rayleigh and Love wave dispersion curves extracted

from the 2-D tomographic maps compose the data vector:

d =
h
UR(!); CR(!); UL(!); CL(!)

iT
(2)

where ! is frequency, C is the phase velocity, U is the group velocity, and T denotes transpose.

The indices R and L refer to Rayleigh and Love waves, respectively.

The dispersion curves are assumed to result from the 3-D earth model at (�; �),

m = [cijkl(z); �(z); Q(z)]
T (3)

where z is depth, cijkl(z) is the elastic tensor, �(z) is density, and Q(z) is the shear quality

factor. The forward problem can then be written schematically as:

d = F(m) (4)

which can be solved with a number of algorithms. We use the method and computer code

of Woodhouse (1988) which operates on a radially anisotropic earth model. A radially

anisotropic (or transversely isotropic) medium consists of �ve mutually independent elas-

tic moduli (Smith and Dahlen 1973), A = �v2ph; C = �v2pv; F=(A � 2L) = �; L = �v2sv, and

N = �v2sh, so that

m = [vsh(z); vsv(z); vph(z); vpv(z); �(z); �(z); Q(z)]
T : (5)

For an isotropic solid, A = C = �+ 4�=3; N = L = �; F = �� 2�=3, and � = 1 where � and

� are bulk modulus and rigidity, respectively.
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3.2 Step 1. Surface wave tomography

Surface wave tomography is the inference of maps of surface wave velocities for each wave type

(Rayleigh, Love) and period from surface wave travel times. We use the method described in

detail by Barmin et al. (2001) to construct maps on a 2�� 2� grid world-wide at the discrete

periods identi�ed in section 2. We estimate a total of 50 global tomographic maps. Examples of

tomographic maps using the same method have been published in previous papers for speci�c

regions (e.g., Barmin et al. 2001; Levshin et al. 2001; Ritzwoller et al. 2001; Villase~nor et

al. 2001). These maps typically �t the measured group velocities with rms mis�ts of 40 -

50 m/s and the measured phase velocities to 20 - 40 m/s, or about twice the measurement

error. The few examples shown here in Figure 3 are similar to those presented by Ritzwoller

et al. (2001), although the data set has evolved.

We assume that surface waves propagate along great-circle paths, which linearizes surface

wave tomography. The lateral resolution of the shear velocity model will be determined by the

damping and regularization of the tomographic maps, which is e�ected through a Gaussian

smoothing condition applied to the model m(r) in the inner product matrix

m(r) �
Z
S

S(r; r0)m(r0)dr0 ; (6)

where

S(r; r0) = K exp

 
�jr� r

0j2
2�2

!
(7)

Z
S

S(r; r0)dr0 = 1; (8)

where m is a dispersion map, r is the position vector in 2-D, and K is a normalization

constant. This regularization procedure is similar to the use of \fat rays" in 2-D with a

Gaussian cross-section of standard deviation
p
2�, but is done more to reduce artifacts that

would otherwise contaminate the maps than to model the spatial sensitivity of the data.

Ritzwoller et al. (2002a) show that better sensitivity kernels are more likely to a�ect estimates

of resolution than the tomographic maps themselves. Ritzwoller et al. (2002a) provide more

meaningful globally averaged resolution estimates based on \di�raction tomography": for

Rayleigh wave group velocities resolution increases with period from about 350 km for the
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shortest periods to 700 km at long periods, and from about 500 km to more than 1000 km

for Love wave group velocities. We argue, therefore, that the model is resolved to regional or

tectonic length scales even though the model is global in extent. This fact, together with the

improvements in vertical resolution that derive from the simultaneous inversion of group and

phase velocities, have driven the development of the model presented here.

3.3 Step 2. Inversion of dispersion curves

The primary purpose of this paper is to describe the second step of the inversion for a shear

velocity model of the crust and upper mantle. Because F in equation (4) is a non-linear

function, F�1 is not well de�ned. It is common to consider the Taylor series expansion of the

forward solution around a reference model m̂:

d = F(m̂) +
X
i

(@F=@mi) �mi +
1

2

X
i;j

�
@2F=@mi@mj

�
�mi�mj +O(�m3); (9)

where each component of the model vector is mi = m̂i + �mi. If one drops the nonlinear

terms, the �rst partial derivatives form a matrix which can be inverted with regularization

constraints to estimate the perturbations �mi. Because surface wave dispersion is dominantly

a�ected only by vsv and vsh, the quantities Q; �; vpv, and vph are commonly �xed in surface

wave inversions or are set to scale in some way with the estimates of vsv and vsh. Villase~nor

et al. (2001) presents an example of this approach.

We generalize this approach here into three separate stages (Figure 1). The input and

output of each stage are summarized in Table 1. The �rst stage is the linearized inversion,

and has been applied in Central Asia by Villase~nor et al. (2001). The inversion begins with

the Initial Model, denoted m0. In this stage we simply parameterize the estimated model and

call it the Simple Reference Model, m1. The primary aim is to identify the region of model

space for detailed Monte-Carlo sampling and to speed the forward solution. In Stage 2, we

generalize the parameterization of the model and perform simulated annealing to construct

the Best Fit Model (m2) on which the Monte-Carlo acceptance criterion is based. In Stage

3, we randomly sample model space in the volume surrounding m2 using a Markov-chain

(random-walk) algorithm (Gilks et al. 1996) to construct the ensemble of models that are
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judged to be acceptable, m3. We summarize the ensemble with the \Median Model" m3. The

half-width of the corridor of models de�ned by the ensemble speci�es the model uncertainties.

Lateral smoothing constraints are applied in Step 1, the surface wave tomography. Lateral

smoothing is not additionally applied in Step 2, but vertical smoothness constraints are ap-

plied. The �nal model retains much of the lateral smoothness of the tomographic maps that

are input into Step 2 of the inversion, but some of the smoothness is lost.

3.3.1 Initial Model m0

The Initial Model is based on a variety of sources of global information, including the sediment

model of Laske & Masters (1997), the crustal model CRUST5.1 of Mooney et al. (1998), and

the shear-wave velocity model of the upper mantle S20A of Ekstr�om & Dziewonski (1998).

In Eurasia, we introduced regional information, including maps of sediment and crustal thick-

nesses constructed by the Russian Institute of Physics of the Earth which was converted to

digital form by the Cornell Digital Earth project (Seber et al. 1997) and a recent model of

crustal thickness over part of Eurasia based on seismic pro�les, which was compiled by G.

Laske (personal communication). The result is a model of the crust and upper mantle that

includes a water layer where appropriate, topography on the solid surface and Moho, and

3-D variations in vs and vp in the sediments and crystalline crust. Shear velocities in the

mantle are from the isotropic part of the model S20A modi�ed with radial anisotropy from

PREM (Dziewonski & Anderson 1981). The average of the shear velocity model has been

replaced with the 1-D model ak135 (Kennett et al. 1995) in order to remove the discontinuity

at 220 km in PREM. Density and isotropic compressional velocity in the mantle scale with

variations in vs using d ln vp=d ln vs = 0:5; d ln �=d ln vs = 0:25. Radial anistropy is introduced

into the P -wave velocities by analogy with PREM and � is set to the PREM value without

reintroducing the 220 km discontinuity. The Q model is also from PREM.

3.3.2 Parameterization and a-priori constraints

Model parameterization strongly a�ects the Median Model and the uncertainties, which both

depend on the size of the model subspaces considered in the inversion. If, for example, the
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inversion is too weakly constrained, there will be a broad subset of models that will �t the

data and large uncertainties will result at each depth. Much tighter constraints on the model

space reduce the uncertainty in the estimated parameters, but the model will be increasingly

subject to systematic errors. Our approach is to attempt to over-parameterize but then to

apply physically motivated constraints on each model parameter. The e�ect is to mitigate

against considering grossly aphysical models, but to allow physically realistic components

from the null-space into the space of models considered.

We use a uniform parameterization over the whole globe. In Stage 1, we follow Villase~nor

et al. (2001) and use eight parameters in the crust and upper mantle of which we can estimate

4-5 linear combinations. We generalize the model in Stages 2 and 3 to 14 parameters, seven

coe�cients in the crust and seven in the mantle as shown in Figure 4. Isotropic P - and

S-velocities in three crustal layers and crustal thickness are changed during the inversion.

Isotropic mantle S-wave velocity structure is parameterized with four cubic B-splines. The

remaining three coe�cients parameterize the radially anisotropic part of the upper mantle

with two di�erent shear velocities, vsh and vsv. We use a simple parameterization for radial

anisotropy similar to PREM in which two of the three coe�cients are the values of vsh and vsv

in the uppermost mantle directly beneath the crust and the third coe�cient is the thickness of

the anisotropic layer. The strength of anisotropy reduces monotonically with depth from the

Moho to the base of the anisotropic layer. Because of the relatively large number of crustal

parameters, this parameterization is tuned more for continental than oceanic areas.

Because Rayleigh waves are predominantly sensitive to vsv and Love waves to vsh, we have

constraints on only two of the �ve elastic moduli that compose a radially anisotropic model.

The model needs to be completed in order to solve the forward problem, however. For want

of a better solution, we set � to the PREM value at each depth and compute vpv and vph

using a logarithmic scaling relation from vsv and vsh; d ln vph=d ln vsh = d ln vpv=d ln vsv = 0:5.

Because the surface wave velocities are only weakly dependent on compressional velocities

and � in the mantle, the arbitrariness of this procedure has little a�ect on the results of the

inversion for vsh and vsv. As in the Initial Model, density scales with vs and Q remains �xed

at the PREM value.

We impose two types of constraints. First, we limit the range of perturbations for some of
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the parameters; i.e., �mmin
i < �mi < �mmax

i . This type of constraint is illustrated in Figure

1 which shows that we search only a subspace of the model space around a reference model.

For example, we constrain the depth of the Moho to be varied within �5 km of the Initial

Model. This constraint on the Moho depth reduces the trade-o� between the crustal and

upper-mantle velocities. Second, we impose monotonicity constraints on the velocities in the

crust; i.e., crustal velocities must satisfy mi < mi+1 wheremi is the velocity of a layer directly

over a layer with velocity mi+1. The explicit constraints are listed in Table 2. We constrain

the crustal velocities and the depths of Moho and the bottom of the anisotropic mantle. There

is no explicit constraint on perturbations to the mantle velocities, but these perturbations are

implicitly constrained by the selected parameterization; i.e., the use of cubic B-splines imposes

a degree of vertical smoothness.

We have applied these a-priori constraints uniformly over the whole globe. The inversion

method, however, allows regional tuning. In particular, because the oceanic crust is younger

and more homogeneous than the continental crust, it may be useful to apply stronger con-

straints on the crustal parameters in the oceans. In contrast, for poorly known continental

regions, like Africa or Antarctica, larger allowed variations in crustal thickness and velocities

may be bene�cial.

3.3.3 Stage 1. Preliminary linearized inversion for model m1

This preliminary inversion is used to improve the Initial Model in order to accelerate the

forward problem, as discussed further below. The linearized inversion also helps to de�ne the

region of model space for Monte-Carlo sampling. At this stage, we use the iterative linearized

inversion described by Villase~nor et al. (2001). On each iteration, partial derivatives are

calculated as the di�erence between the dispersion curves computed for the reference and

perturbed models. The inversion typically converges in 5-8 iterations.

3.3.4 Stages 2 and 3. Simulated annealing (m2) and Monte-Carlo (m3) inversion

Model space sampling methods, such as simulated annealing and Monte-Carlo, require a fast

solution to the forward problem to sample model space adequately. The forward problem is
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accelerated if we replace the exact solution by its truncated Taylor series expansion. James &

Ritzwoller (1999) suggest retaining at least selected second and third-order terms in equation

(9). They assumed, however, that the reference model m̂ would be a poor approximation to

local structure. As Figure 5 shows, the use of the Simple Reference Model for m̂ produces

su�cient accuracy with only second order terms in the Taylor series expansion. The Simple

Reference Model is used to calculate all partial derivatives up to second order for all 14 model

parameters used in equation (9).

In Stage 2, we apply a simulated annealing (SA) inversion which uses a random sampling

of the model space based on an analogy with the annealing of solids (e.g., Metropolis et al.

1953; Kirkpatrick et al. 1983), in which allowed perturbations are subjected to the a-priori

constraints (Table 2). In SA, each model realization is generated as a random perturbation

to a previous model. The probability distribution of the perturbation is modi�ed during the

inversion by slowly reducing its amplitude, analogous to the annealing of solids where the

temperature of a solid is slowly reduced to reach a state with minimum internal energy. In SA

optimization, the 'statistical temperature' is slowly reduced to �nd a model realization with

minimal cost function. Therefore, the cost function E is analogous to the physical energy and

the `statistical temperature' T is a parameter that controls the amplitude of the random model

perturbation. More exactly, the SA method consists of three functional relations: (1) g(m), the

probability density of the model space which is used to generate a new model realization, (2)

h(E), the probability of the acceptance of the generated model based on the new and old values

of the cost-function, and (3) T (k), the schedule of 'annealing' the 'statistical temperature' on

step k. We use Boltzmann annealing (e.g., Ingber 1989) in which:

g(mk) = (2�T )�
D

2 exp(�jmk �mk�1j2=(2T )) (10)

h(E) = 1=(1 + exp((Ek �Ek�1)=T ) (11)

T (k) = T0= ln(k); (12)

where mk and Ek are the model realization under test and its cost function, respectively, and

D is dimension of model space (D = 14 in our case). It has been proven (e.g., Ingber 1989)

that the sampling of model space controlled by equations (10) - (12) converges to a global
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minimum when k goes to in�nity. However, we stop the sampling after the cost function E

drops below some threshold; an average mis�t of �30 m/s.

In Stage 3, we perform a random, Monte-Carlo (MC) sampling of the model space using

an algorithm described by Shapiro et al. (1997). The MC inversion begins with the Best Fit

Model, m2, which is also used as the reference model for the second-order truncated solution

of the forward problem. The MC steps de�ne a Markov-chain in which the current model is

randomly perturbed to �nd the next model which is tested for acceptability. In the following

step, the random search is reinitiated in the vicinity of the new acceptable model. As a result,

the sampling walks randomly through model space subjected to the a-priori constraints (Table

2) forming a Markov-chain similar to Brownian motion, as shown in Figure 1. Therefore, we

refer to this algorithm as Markov-chain sampling. It combines speed with e�ciency in sampling

the model space.

In both the SA and MC inversions, we use a cost-function de�ned as follows:

E =
X
i

WUR
i

jUR
obs(!i)� UR

pred(!i)j
�R;Ui

+
X
j

WUL
j

jUL
obs(!j)� UL

pred(!j)j
�L;Uj

+

X
k

WCR
k

jCR
obs(!k)� CR

pred(!k)j
�R;Ck

+
X
l

WCL
l

jCL
obs(!l)� CL

pred(!l)j
�L;Cl

(13)

where � denotes the estimated uncertainties in the dispersion maps and obs and pred refer

to observed and predicted velocities, respectively. The L1-norm is used for robustness to out-

liers. The uncertainties in the dispersion maps are equated with the rms-mis�t between the

predicted and observed velocities averaged world-wide and are shown in Figure 6a. W denotes

additional location-dependent weights that summarize the local quality of the dispersion maps

relative to the global average. At the beginning of Stage 2, this estimate is based exclusively

on the local path density of each map. However, after 5,000 steps of the SA inversion, if the

cost function remains higher than an established threshold value, we modify the weight by

using information about the ability to �t each datum. So, W=� � 1 for a particular datum

if path density is good and if the SA is able to �nd a model that �ts that datum. An ideal

case is shown in Figure 6b. If either condition is not met, however, the weight is reduced as

Figures 6b-d show. In regions of poor data coverage, the path density weights vanish and the
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Median Model will revert to the Initial Model and the uncertainty will grow to limits imposed

by the a-priori constraints.

In both Stages 2 and 3, the a-priori constraints are applied to ensure that the selected

models are physically plausible. In Stage 3, a model is considered acceptable on the value of

the cost-function for the Best Fitting Model, E2. Typically, the acceptance criterion is 1.2E2;

that is, we accept a model if its cost (or �t) is no worse than 20% higher than the Best Fit

Model. At each geographical point we test about 20,000 realizations to �nd an ensemble of

2,000 acceptable models. This ensemble characterizes the average properties of the structure

and the uncertainty of the model.

3.3.5 Summarizing the ensemble of acceptable models

An example of the Monte-Carlo inversion is shown in Figure 7 in which the ensemble of

acceptable models forms a corridor of models. The middle of this corridor at each depth de�nes

the Median Model. Features in the Median Model are characterized in terms of perturbations

to a reference model. A perturbation is considered to be \persistent" if it appears in every

member of the ensemble. In particular, the perturbation at a particular depth is persistent if

its value is larger than the half-width of the corridor. The model ak135 (Kennett et al. 1995)

is used here as the reference model here.

The statistical properties of the ensemble of acceptable models at a point in the East

European Platform (54N 30E) are shown in Figure 8. The velocity distribution of the ensemble

at each depth is approximately Gaussian (Figure 8b), but the characteristics of the Gaussian

are not simply related to the uncertainty of the model. In particular, the standard deviation

of the distribution at each depth underestimates the model uncertainty. We use a conservative

estimate of uncertainty given by the half-width of the corridor of acceptable values which, as

Figure 8c shows, turns out to be about three times larger than the standard deviation of the

ensemble.
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3.3.6 Importance of a-priori constraints

A-priori constraints on the models selected by Monte-Carlo sampling during Stages 2 and 3

are important not only to speed the inversion by limiting the volume of model space searched,

but also de�ne what we judge to be physically reasonable or plausible candidate models. There

are a number of noteworthy examples of the importance of these physical constraints. One

involves the way in which vp in the crust trades-o� with radial anisotropy in the mantle. Love

waves are insensitive to vp while the Rayleigh waves have some sensitivity to vp down up to

about one eighth of a wavelength (e.g., Dahlen & Tromp 1998), which is typically in the

crust. Thus, vp variations in the crust a�ect long period Rayleigh waves but not Love waves.

This is illustrated in Figure 9 which shows the results of two Monte-Carlo inversions at

the same location. The normal inversion is shown in Figure 9a, where the results for vp in the

crust are included. The Rayleigh-Love discrepancy is resolved mostly by radial anisotropy in

the upper mantle. In the second inversion (Figure 9b), we modi�ed the a-priori constraint on

vp in the crust and allowed much lower P-velocities. As a result, we are able to reduce the

Rayleigh wave phase and group velocities without a�ecting the Love wave velocities, and the

estimated model is nearly isotropic. It is possible to resolve the Rayleigh-Love discrepancy in

this way without introducing radial anisotropy in the upper mantle. To do so, however, requires

reducing middle and lower crustal P velocities to 5.4 - 6.5 km/s. Because the Rayleigh/Love

discrepancy is ubiquitous, this solution would require these velocities as averages in continental

regions world-wide. Studies of local and regional body wave travel times show clearly, however,

that these velocities are much too low on average (e.g., Ritzwoller et al. 2002b). Therefore,

models such as that in Figure 9b are physically implausible, on average, and crustal P -wave

velocities must be tightly constrained in the inversion. The allowed variations in crustal P -

wave speeds trade-o� with the strength of radial anisotropy in the upper mantle and increase

the estimated uncertainties in upper mantle anisotropy.

3.3.7 Potential problems

The inversion method described above produces a global shear-velocity model of the crust and

upper mantle with estimated point-wise uncertainties. The uncertainties, however, reect only
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part of the possible errors in the model, not accounting, for example, for bias in the dispersion

maps caused by unmodeled wave-propagation e�ects such as o�-great-circle propagation or

scattering (e.g., Wielandt 1987; Laske 1995; Nolet & Dahlen 2000; Spetzler et al. 2001),

inconsistencies that may arise from di�erences in the resolution of di�erent data, errors in

a-priori information, or inadequacies in the parameterization. A particular concern is that

the resolution of Rayleigh and Love waves may signi�cantly di�er in strongly heterogeneous

regions, such as near continent-ocean transitions. Dispersionmaps at di�erent periods may also

be inconsistent. At long periods, which provide sensitivity to deep structures, Fresnel zones

are larger than at short periods and the spatial resolution is worse. Therefore, the resolution

of the shear-velocity model tends to degrade with depth. Our method of inversion does not

account for these di�erences in resolution with dept, and small-scale artifacts may appear in

the deep structures, particularly where there are small-scale, large amplitude structures in the

shallowest mantle (e.g., near mid-oceanic ridges).

3.3.8 Computation time

The entire inversion at one geographical point requires a few hundred exact solutions of the

forward problem to compute the partial derivatives and about 50,000 solutions based on

the truncated approximation (simulated annealing, Monte-Carlo sampling). The number of

iterations during the linearized inversion and the number of model realizations tested during

the Monte-Carlo sampling varies, but, on average, the inversion at a single location takes

about 3 minutes of CPU time on a current generation scienti�c workstation. Running the

inversion for the whole Earth on a 2� � 2� grid, therefore, requires about a month on a single

processor. The inversion can be run concurrently on several processors and completed in a few

days. In contrast, if the full forward solution were used rather than the second-order truncated

Taylor series approximation (James & Ritzwoller 1999), the inversion would require several

years on a single processor.
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4. Overview of Results of Inversion

The inversion produces an ensemble of acceptable models at each spatial node on a 2��2� grid
world-wide. We summarize this ensemble of models with the \Median Model", which is the

center of the corridor de�ned by the ensemble, and the uncertainties, which are identi�ed with

the half-width of the corridor at each depth. Global averages of the Median Model beneath

continents and oceans are shown in Figure 10. The features of the model that are worthy

of interpretation are the \persistent" features that appear in every member of the ensemble

of acceptable models. An exhaustive discussion of the persistent features of the model is

beyond the scope of this paper, but we will highlight some of the isotropic and anisotropic

characteristics of the model and the uncertainties while concentrating discussion on the mantle

part of the model.

4.1 Isotropic structure

Although we concentrate discussion on the mantle part of the model, Table 3 presents the

uncertainty of estimated crustal parameters averaged over the globe. This uncertainty is the

average of the half-width of the corridor of acceptable models, which should be interpreted in

terms of the allowed perturbations for each parameter, presented in Table 2. For example, the

average uncertainty for Moho depth is about 2.8 km although 5 km is allowed in the inversion.

This means that, on average, only a sub-range of allowed Moho depths �ts the data. Crustal

velocities, particularly P -wave speeds, are more poorly estimated than Moho depth in that

their uncertainties are a larger fraction of the allowed range of values.

Figure 11 presents horizontal slices of the Median Model at several mantle depths. The

large-scale anomalies are well known from previous global tomographic studies (e.g., Wood-

house & Dziewonski 1984; Nataf et al. 1986; Montagner & Tanimoto 1991; Zhang & Tanimoto

1992, 1993; Masters et al. 1996; Ekstr�om & Dziewonski 1998; M�egnin & Romanowicz 2000).

High-velocities appear beneath all shields. Continental low-velocities appear in tectonically de-

formed regions such as the Red Sea rift and in back-arc regions adjacent to subduction zones.

Age dependent lithospheric thickening and asthenospheric thinning is also evident beneath

oceans.



Monte-Carlo inversion 19

A more detailed inspection of the model (e.g., Figure 12a) reveals smaller scale features

that are not apparent in previous global tomographic models. Some of these features at high

southern latitudes are discussed by Ritzwoller et al. (2001) and in Central Asia by Villase~nor

et al. (2001). Prior to interpretation, however, it must be determined if these anomalies

are persistent, are mere accidents, or are artifacts of the inversion. We plot in Figure 12b

the corresponding uncertainties in the estimated S-wave velocities. At a depth of 80 km

the uncertainties are smaller than the amplitudes of most of the anomalies so that most

of the anomalies are persistent and worthy of interpretation. Figure 13 presents the world-

wide average of uncertainties together with the rms-amplitude of vs as a function of depth.

Typically, uncertainties grow with depth in the mantle whereas anomalies decrease, so most

of the features worthy of interpretation are above a depth of about 250 km.

This can also be seen clearly in Figure 14 where we present several vertical slices of

isotropic upper mantle vs. Figure 14b shows the average velocity perturbations for pro�le

A � A0 crossing India, Tibet, the Tarim Basin, the Tien-Shan, Kazakhstan, and Southern

Siberia. At depths less than 200 km, there is a high-velocity zone corresponding to thickened

lithosphere that is especially well developed beneath India and Tibet. A strong low-velocity

zone can be seen beneath India at depths larger than 200 km. The shallow low-velocity zone

underlying northern Tibet is also apparent on the 80 km depth slice (Fig 12a). Figure 14c

presents the uncertainties of the velocities along pro�le A�A0. Consistent with the world-wide

average, the amplitude of the uncertainty increases from �1% at the top of the mantle to more

than 3% at 400 km, but the amplitude of velocity anomalies decreases with depth. The solid

black contours on the vertical slices (Figures 14b, d, e) encloses the persistent model features;

i.e., those features with amplitudes larger than the uncertainty. Few model features below 250

km are persistent.

Figures 14d and 14e show two other vertical slices, one across northern Eurasia and the

other across the northern Paci�c. The northern Eurasian pro�le crosses two major shields, the

European platform and the Siberian shield, and shows high-velocity lithosphere beneath both

shields. The thickness of the lithosphere varies along the pro�le and at some points appears

to reach �250 km. The structure below the lithosphere is not resolved. The northern Paci�c

slice reveals a number of persistent features, including: (1) a low velocity zone beneath the
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western United States, (2) a high-velocity oceanic lithosphere with systematically increasing

thickness with age underlain by a low-velocity asthenosphere, (3) a high-velocity anomaly

corresponding to the lithosphere subducting beneath Japan, and (4) a back-arc low-velocity

zone beneath the Sea of Japan. Figure 10b shows how average lithospheric and asthenospheric

shear velocities vary across the Paci�c as a function of age (Mueller et al. 1997). Although the

model parameterization has been tuned for continents, oceanic lithosphere and asthenosphere

appear prominently.

4.2 Radial anisotropy

Over most of the Earth, long period Rayleigh and Love wave dispersion curves are `incon-

sistent' in the sense that they cannot be �t simultaneously using a simple isotropic model.

Similar to many previous studies (e.g., McEvilly 1964; Dziewonski & Anderson 1981; Ga-

herty & Jordan 1995; Montagner & Jobert 1988; Montagner & Tanimoto 1991; Ekstr�om &

Dziewonski 1998; Villase~nor et al. 2001) we resolve this Rayligh-Love discrepancy by intro-

ducing radial anisotropy in the upper mantle. It is true that this discrepancy can be resolved

either by introducing very low P -wave speeds in the crust (e.g., Figure 9) or by allowing

�ne-scale oscillations in S-wave speed in the uppermost mantle (e.g., Mitchell 1984). We do

not consider either alternative to be physically plausible, �rst, because they would have to

be ubiquitous features of the upper mantle and, second, because independent evidence for

anisotropy in the upper mantle is now strong (e.g., from receiver function amplitudes versus

azimuth and shear wave splitting). In addition, while an oscillatory upper mantle can be suc-

cessful in some locations, it cannot produce a satisfactory model everywhere. In particular,

in tectonically deformed regions the inversion with the isotropic parameterization produces a

high-velocity subcrustal lid with an extremely high Sn velocity (> 5 km/s) that is inconsistent

with recent models of Sn velocities (Ritzwoller et al. 2002b).

In Figure 15a we show the distribution of the strength of radial anisotropy in the Median

Model, described by parameter � de�ned as:

� =
vsh � vsv

vsv
; (14)

where vsv and vsh are taken at the top of the radially anisotropic upper mantle (Smith &
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Dahlen 1973). In most regions, � � 4% near the top of the mantle, which is similar to the

value in PREM. There is no signi�cant anomaly with negative radial anisotropy (vsv > vsh).

The local uncertainty in the strength of the anisotropy is shown in Figure 15b and averages

about 2%. In most places radial anisotropy in the upper mantle is a persistent model feature,

but in a few regions radial anisotropy cannot be resolved. While radial anisotropy is generally

persistent, its uncertainty is relatively large, averaging about 50% of the observed value. This

is clearly seen in Figure 16, which presents the world-wide average of uncertainties together

with the rms-amplitude of � as a function of depth. Very strong anisotropy is found in some

oceanic regions and in some tectonically deformed zones within continents (e.g. Tibet, Iran,

eastern Africa). Consistent with Ekstr�om & Dziewonski (1998), radial anisotropy is very

strong in the central Paci�c. Strong anisotropy may be caused in some places by di�erential

lateral resolution of Rayleigh and Love waves if the Rayleigh waves resolve a low velocity

features but the Love waves do not.

As shown in Figures 15 and 16, positive radial anisotropy (vsh > vsv) is a persistent

feature of the Earth's upper mantle. Radial anisotropy can only be resolved unambiguously

by incorporating short and intermediate period measurements in our whole data-set. This

is illustrated by Figure 17, which shows uncertainties in the strength of radial anisotropy

beneath Eastern Antarctica with di�erent subsets of data. The estimated uncertainty is very

large when we use only long-period data (i.e., phase velocities with periods >70 s) as in Figure

17a) and reduces by almost a factor of three when we use the entire data set of broad-band

group and phase velocity measurements.

In summary, a (PREM-like) parameterization of radial anisotropy in which the strength

of anisotropy decreased monotonically with depth below the Moho is su�cient to �t Rayleigh-

and Love-wave dispersion measurements world-wide and resolve the Rayleigh-Love discrep-

ancy. Even using this simple parameterization, we obtain very large (� 50%) uncertainties in

the strength of radial anisotropy. Increasing the number of parameters describing the radial

anisotropy would increase uncertainties further. Therefore, more complicated vertical patterns

of radial anisotropy cannot be resolved using surface-wave data alone. This appears to be true

also for the unique anisotropy of the central Paci�c suggested by Ekstr�om & Dziewonski

(1998). Support for the more complicated vertical pattern of the strength of radial anisotropy



22 N.M. Shapiro and M.H. Ritzwoller

in this region may come, however, from the other types of data and longer period data em-

ployed by Ekstr�om & Dziewonski (1998).

5. Conclusions

Two main characteristics distinguish the global model that we present here from previous

global models of the crust and upper mantle. First, both vertical and lateral resolution are

improved as a result of inverting a new broad-band data set of group and phase velocities

and using a-priori information to restrict the range of physically plausible models. A novel

characteristic of the data set is the use of a large number of group velocity measurements

for both Rayleigh and Love waves. The group velocity data contain short and intermediate

period information that improves vertical resolution for both isotropic (e.g., Figure 18) and

radially anisotropic (Figure 17) structures. As Figure 18 illustrates, using phase velocities

alone produces large uncertainties in the crust and, consequently, also in the upper mantle.

Inverting group velocities alone produces smaller uncertainties in the crust and uppermost

mantle due to the measurements at periods shorter than 40s, but uncertainties deeper in the

upper mantle are larger. When phase and the group velocities are inverted simultaneously,

however, uncertainties are signi�cantly reduced at all depths. A-priori information is required

because surface wave data alone are insu�cient to resolve all of the model parameters un-

ambiguously. Therefore, we constrain crustal structures in order to help resolve the trade-o�

between crustal and upper mantle velocities and have identi�ed and attempt to resolve other

important trade-o�s, such as that between the strength of radial anisotropy in the upper

mantle and crustal P -wave velocities.

The second important characteristic of the model is that it contains estimates of uncer-

tainties. The model, therefore, is perhaps the �rst global model with meaningful \error bars".

The uncertainty estimates derive from a multi-step inversion procedure that culminates in

a Monte-Carlo sampling of model space to produce an ensemble of acceptable models. The

features that appear in every member of this ensemble are termed \persistent" and only these

features are deemed to be worthy of interpretation. The uncertainty analysis indicates that

our surface wave data resolve upper mantle structures to depths of about 250 km.
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The procedure we describe here, and the data set to which it is applied, open new possi-

bilities for the study of the crust and upper mantle structure. Because of its relatively high

lateral resolution, the model reveals anomalies at scales that are relevant to regional tectonics.

The breadth of the frequency band improves vertical resolution which also is important for

interpretation and use of the model (e.g., Levshin & Ritzwoller 2002). Finally, the uncertainty

analysis allows identi�cation of those features of the model that are worthy of interpretation

in the framework of regional tectonic and geodynamical processes.
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Table 1. Outline of the Shear Velocity Inversion

Substep Input Model Method Output Model(s)

Substep 1 Initial Model (m0) Linearized Inversion Simple Reference Model (m1)

Substep 2 Simple Reference Model (m1) Simulated Annealing Best Fit Model (m2)

Substep 3 Best Fit Model (m2) Monte-Carlo Ensemble of Acceptable Models (m3)

Table 2. A Priori Constraints on Allowed Models

Feature Allowed Range Reference

crustal thickness �5 km CRUST5.1

crustal vs � 300 m/s Simple Reference Model

upper & middle crustal vp � 200 m/s CRUST5.1

lower crustal vp � 300 m/s CRUST5.1

crustal vs monotonic increase -

crustal vp monotonic increase -

vsh & vsv in uppermost mantle �250 m/s Simple Reference Model

bottom of zone of radial anisotropy � 30 km 220 km

mantle isotropic vs velocity unconstrained -
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Table 3. Average Uncertainty of Estimated Crustal Parameters

Feature Uncertainty

crustal thickness 2.76 km

crustal vs, Upper Layer 188 m/s

crustal vs, Middle Layer 198 m/s

crustal vs, Lower Layer 209 m/s

crustal vp, Upper Layer 152 m/s

crustal vp, Middle Layer 162 m/s

crustal vp, Lower Layer 242 m/s
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Figure 1. Schematic representation of the three-step inversion procedure projected onto a 2-D subspace

of model space. Step 1 is the Linearized Inversion, which begins with the Initial Model (m0) and

produces the Simple Reference Model (m1). In Step 2, the Best-Fit Model (m2) is found by simulating

annealing. In Step 3, the inversion procedure culminates with Monte-Carlo resampling of model space

producing an ensemble of acceptable models (m3). This ensemble is used to estimate the Median Model

(MM) and the spread of acceptable models, which is interpreted as the model uncertainty.
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Figure 2. Examples of path density for Rayleigh wave group velocities, plotted as the number of paths

intersecting each 2� � 2� cell (� 50; 000 km2).
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Figure 3. Examples of Rayleigh wave group velocity maps at the four indicated periods displayed as

percent perturbation to the PREM velocity.
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Model parameterization: 14 parameters

Crust:
3 Vs
3 Vp

Vsv Vsh
Average mantle Vs:
4 cubic B-splines

1000 km

Moho
depth

Bottom of
anisotropic
mantle

Figure 4. Model parameterization including 14 parameters: (1-3) Crustal S-wave velocities, (4-6)

crustal P -wave velocities, (7) Moho depth, (8) vsv beneath Moho, (9) vsh beneath Moho, (10) depth

of the bottom of the anisotropic mantle, (11-14) cubic B-spline perturbations to the average mantle

S-wave velocity.
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Figure 5.Relative errors in the dispersion curves computed by using the truncated second-order Taylor

series approximation (eqn. 9). (a) Example of errors at a continental point (Arabian Peninsula). Shear

velocities have been perturbed by �5% at all depths, which is larger than perturbations considered

during the simulated annealing and the Monte-Carlo inversions. At all periods the errors are less than

� 1%. (b) Example of errors at an oceanic point (Central Paci�c). Shear velocities have been perturbed

by �5% in the mantle and by �2:5% in the crust. The errors are small except for Love-wave group

velocities at periods less than �25 s, but measurements of short period Love waves are rare in oceanic

areas.
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Figure 6. (a) Measurement uncertainties (�, eqn (13)) de�ned as the average RMS mis�t of the to-

mographic maps to dispersion measurements. (b)-(e) Each plot is divided into upper and lower frames:

(upper) the observed (gray lines) and predicted (black lines) dispersion curves and (lower) correspond-

ing location-speci�c weights,W=�. (b) A point in Kazakhstan exemplifying an ideal situation with high

path density and little inconsistency between di�erent data types. The weights are then controlled only

by � shown in (a). (c) A point in Tibet where the inversion cannot �t all the data simultaneously and,

therefore, weights down certain data types in particular period bands. (d) A point in the Central

Paci�c where the Love-wave group velocities are down-weighted at short and long periods because

of low path density. (e) A point in Antarctica where Rayleigh-wave phase velocities and long-period

Lowe-wave group velocities are down-weighted because of low path density. Love-wave phase velocity

path density is so low that data weights are set to zero at all periods. The short-period Love waves are

down-weighted because the inversion cannot �t the dispersion maps, probably because of inaccuracies

in the a-priori crustal model.
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Figure 7. Example of the inversion for an ensemble of acceptable shear velocity models at a point

in Western Kazakhstan (44 N, 64 E). (a) Four dispersion curves obtained from tomographic velocity

maps (thick black lines) and the predictions from the ensemble of acceptable models (gray lines). (b)

The ensemble of acceptable models where SV and SH velocities are presented with dark and light

gray shades, respectively. The corridor of acceptable values is indicated with the solid black lines. The

S-wave velocity from the global reference model ak135 is plotted as the dashed line.
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Figure 8. (a) Ensemble of acceptable models at a point in the East European Platform (54N 30E).

Only the isotropic part of the model is plotted. (b) Histograms of the velocity perturbations in the

ensemble at two depths: 100 km (solid line) and 350 km (dashed line). (c) Estimates of uncertainty

obtained using the ensemble of acceptable models. The standard deviation of velocity at each depth

is shown with the solid line and the half-width of the corridor of acceptable values is shown with the

dashed line.
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Figure 9. Examples of inversions at a point in Tibet illustrating the trade-o� between the strength

of radial anisotropy and the crustal P -wave speed. (a) The tolerances in Table 2 are applied to crustal

P -wave velocities from CRUST5.1. (b) The same tolerances are applied to a crustal reference model

in which the CRUST5.1 P -wave velocities are reduced by 10%. Reduced P -wave speeds in the crust

can resolve the Rayleigh-Love discrepancy, but produce a nonphysical model.
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Figure 10. (a) Global average of the Median Model under continents compared with the S-wave

velocity from the 1-D model ak135. (ak135 is more similar to tectonic continental structures than

average structures across continents.) (b) Vertical pro�les of isotropic shear velocity averaged as a

function of lithospheric age in the Paci�c Ocean. Five pro�les are shown at ages of 10, 40, 75, 120, and

165 Ma, averaged within an age window of age �page.
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Figure 11. Isotropic S-wave velocities (vs = (vsv + vsh)=2) from the Median Model at three depths

in the upper mantle, presented as percent deviation from model ak135.
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Figure 12. (a) The isotropic S-wave velocity from the Median Model at 80 km presented as percent

deviation from model ak135. (b) Uncertainty in isotropic S-wave velocity at 80 km de�ned as the

half-width of the corridor of acceptable values.
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Figure 13. Global RMS shear-velocity perturbations in isotropic S-wave velocity (solid line) and

global average shear-velocity uncertainty (dashed line) presented as percent deviation from the S-wave

velocities in the 1-D model ak135.
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Figure 14. Vertical slices of S-wave velocity. (a) Map showing the locations of three pro�les. (b),

(d), and (e) Isotropic S-wave velocity (vs = (vsv + vsh)=2) beneath the three pro�les shown in (a),

presented as percent deviation from the S-wave speed in the 1-D model ak135. Black contours outline

the persistent velocity anomalies. (c) Uncertainties in the isotropic S-wave velocity for the pro�le A-A'.

The same color scale is used for estimated velocities and uncertainties. Earthquake locations, shown

as small circles in (b) - (e), are taken from Engdahl et al. (1998).
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Figure 15. (a) Global distribution of the strength of radial anisotropy at the top of the mantle:

� = (vsh � vsv)=vsv . (b) Uncertainty in the strength of radial anisotropy. The same color scale is used

for both (a) and (b).
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Figure 16. Global average strength of radial anisotropy (solid line) and its uncertainty (dashed line)

as functions of depth.
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Figure 17. Strength of radial anisotropy beneath Eastern Antarctica (80 S, 90 E) obtained with

di�erent subsets of data: (a) phase velocities at periods greater than 70 s, (b) phase velocities between

40 s and 150 s, (c) group velocities between 16 s and 200 s, (d) the combined data-set.
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Figure 18. Examples of inversions at a point located in Tibet (34�N, 84�E) illustrating the relative

importance of phase and group velocities: (a) inversion of the phase velocities only, (b) inversion of the

group velocities only, (c) simultaneous inversion of the combined data-set. The corridor of acceptable

vsv velocities is plotted in gray and the vsh velocities with horizontal hatching.


