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S U M M A R Y
Ambient noise tomography is a rapidly emerging field of seismological research. This paper
presents the current status of ambient noise data processing as it has developed over the past
several years and is intended to explain and justify this development through salient examples.
The ambient noise data processing procedure divides into four principal phases: (1) single
station data preparation, (2) cross-correlation and temporal stacking, (3) measurement of dis-
persion curves (performed with frequency–time analysis for both group and phase speeds) and
(4) quality control, including error analysis and selection of the acceptable measurements. The
procedures that are described herein have been designed not only to deliver reliable measure-
ments, but to be flexible, applicable to a wide variety of observational settings, as well as being
fully automated. For an automated data processing procedure, data quality control measures are
particularly important to identify and reject bad measurements and compute quality assurance
statistics for the accepted measurements. The principal metric on which to base a judgment
of quality is stability, the robustness of the measurement to perturbations in the conditions
under which it is obtained. Temporal repeatability, in particular, is a significant indicator of
reliability and is elevated to a high position in our assessment, as we equate seasonal repeata-
bility with measurement uncertainty. Proxy curves relating observed signal-to-noise ratios to
average measurement uncertainties show promise to provide useful expected measurement
error estimates in the absence of the long time-series needed for temporal subsetting.

Key words: seismic noise, seismic processing, surface waves, tomography.

1 I N T RO D U C T I O N

Theoretical studies have shown that the cross-correlation of diffuse

wavefields (e.g. ambient noise, scattered coda waves) can provide an

estimate of the Green function between the stations (e.g. Weaver &

Lobkis 2001a,b, 2004; Derode et al. 2003; Snieder 2004; Wapenaar

2004; Larose et al. 2005). Seismic observations based on cross-

correlations between pairs of stations have confirmed the theory for

surface waves using both coda waves (Campillo & Paul 2003; Paul

et al. 2005) and long ambient noise sequences (Shapiro & Campillo

2004; Sabra et al. 2005a) and for crustal body waves using ambient

noise (Roux et al. 2005). Oceanic applications are also feasible (Lin

et al. 2006). An example of a year-long cross-correlation between

a pair of Global Seismic Network (GSN) stations in the US filtered

into several subbands is shown in Fig. 1.

The first attempts to use ambient noise for surface wave tomog-

raphy, called ambient noise surface wave tomography, were applied

to stations in Southern California (Shapiro et al. 2005; Sabra et al.
2005b). These studies resulted in group speed maps at short periods

(7.5–15 s) that displayed a striking correlation with the principal ge-

ological units in California with low-speed anomalies corresponding

to the major sedimentary basins and high-speed anomalies corre-

sponding to the igneous cores of the main mountain ranges.

Ambient noise tomography is now expanding rapidly. Recent ap-

plications have arisen across all of California and the Pacific North-

west (Moschetti et al. 2007), in South Korea (Cho et al. 2006), in

Tibet (Yao et al. 2006), in Europe (Yang et al. 2007), across New

Zealand (Lin et al. 2007), as well as elsewhere in the world. Most

of the studies, to date, like the earlier work of Shapiro et al. (2005),

have been performed in the microseism band below 20 s period.

Broad-band applications extending to considerably longer periods

are now emerging (e.g. Bensen et al. 2005; Yao et al. 2006; Yang

et al. 2007) and the method is also being applied to increasingly

large areas such as Europe (Yang et al. 2007). In spite of these de-

velopments, the data processing procedures that underlie ambient

noise tomography remain poorly documented, even as they have

become increasingly refined. The purpose of this paper is to sum-

marize the state of data processing as it has developed since the first
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Figure 1. Example of a broad-band symmetric-component cross-correlation using 12-months of data from stations ANMO (Albuquerque, NM, USA) and

HRV (Harvard, MA, USA). The broad-band signal (7–150 s passband) is shown at top and successively longer period passbands are presented lower in the

figure. (The symmetric component is the average of the cross-correlation at positive and negative lags.)

papers on the use of ambient noise to obtain surface wave dispersion

measurements (Shapiro & Campillo 2004).

In its current state, the ambient noise data processing procedure

divides into four principal phases that are applied roughly in order:

(1) single station data preparation, (2) cross-correlation and tempo-

ral stacking, (3) measurement of dispersion curves and (4) quality

control, including error analysis and selection of the acceptable mea-

surements. These steps are presented schematically in Fig. 2. After

data processing is complete, tomography for group or phase speed

maps (e.g. Yang et al. 2007) and inversion for a V s model (e.g. Cho

et al. 2006; Lin et al. 2007) may follow, but discussion of these

steps is beyond the scope of the present paper. The procedures in

this paper are exclusively applied to Rayleigh waves, but Love wave

studies have also begun to emerge (e.g. Cho et al. 2006).

In judging between candidate components of the data processing

procedure, we have assigned significant weight to flexibility and the

applicability to a wide variety of observational situations. The pro-

cedures described here, therefore, are designed to be applied over

a broad range of periods, interstation distances and geographical

scales. Examples are shown in this paper from regional to continental

scales, from very short to long periods, and are drawn from Europe,

North America and New Zealand. Applications are, however, taken

exclusively from continental or ocean island stations. Most are,

in fact, taken from GSN stations within the US. As discussed by

Lin et al. (2006), broad-band cross-correlations of ambient noise

obtained at ocean bottom or subbottom seismometers (OBS) are

contaminated at long periods (above ∼25 s) by tilting under fluid

flow and seafloor deformation under gravity waves. Crawford et al.
(2006) argue that these effects can be mitigated on the vertical com-

ponent using horizontal component data and a co-located differential

seafloor pressure gauge. The success of this process will be needed

for broad-band ambient noise measurements to be obtained from

OBS data. We are unaware of research that has tested this idea in

the context of ambient noise measurements, however.

Our principal purpose, therefore, is to summarize the status of

the ambient noise data processing procedure that we have devel-

oped over the past several years. The paper is intended to explain,

justify, and present salient examples of this development. It is also

intended to act as a primer to help provide guidance and act as a basis

for future efforts in surface wave studies based on ambient seismic

noise. Each of the four following sections presents a discussion of

one phase of the data processing procedure, which ranges from pro-

cessing data from a single station (Section 2), cross-correlating and

stacking data from station-pairs (Section 3), measuring surface wave

dispersion (Section 4) and applying data quality control measures,

particularly estimating uncertainties and selecting reliable measure-

ments (Section 5).

2 S I N G L E S TAT I O N DATA

P R E PA R AT I O N

The first phase of data processing consists of preparing waveform

data from each station individually. The purpose of this phase is

to accentuate broad-band ambient noise by attempting to remove
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Figure 2. Schematic representation of the data processing scheme. Phase 1 (described in Section 2 of the paper) shows the steps involved in preparing

single-station data prior to cross-correlation. Phase 2 (Section 3) outlines the cross-correlation procedure and stacking, Phase 3 (Section 4) includes dispersion

measurement and Phase 4 (Section 5) is the error analysis and data selection process.

earthquake signals and instrumental irregularities that tend to ob-

scure ambient noise. Obscuration by earthquakes is most severe

above about 15 s period, so this step of the data processing is most

important at periods longer than the microseism band (∼5 to ∼17 s

period). In addition, because the spectral amplitude of ambient noise

peaks in the microseism band, methods have to be devised to ex-

tract the longer period ambient noise from seismic records. Fig. 2

shows the steps that compose Phase 1 of data processing: removal

of the instrument response, de-meaning, de-trending and bandpass

filtering the seismogram, time-domain normalization and spectral

whitening. This procedure is typically applied to a single day of data.

Day data with less than 80 per cent ‘on-time’ are currently rejected,

but this may be modified at the user’s discretion. Some of the steps,

such as the temporal normalization and spectral whitening, impose

non-linear modifications to the waveforms, so the order of opera-

tions is significant. Because this phase of data processing is applied

to single stations, rather than to station-pairs, it is much less time

consuming and computationally intensive than subsequent cross-

correlation, stacking and measurement phases that are discussed in

later sections of the paper. Our current applications involve from

several dozen (e.g. 41 stations across New Zealand) to several hun-

dred (e.g. 110 stations across Europe, ∼250 stations across North

America) stations.

2.1 Temporal normalization

The most important step in single-station data preparation is what

we call ‘time-domain’ or ‘temporal normalization’. Time-domain

normalization is a procedure for reducing the effect on the cross-

correlations of earthquakes, instrumental irregularities and non-

stationary noise sources near to stations. Earthquakes are among the

most significant impediments to automated data processing. They

occur irregularly and, although the approximate times and locations

of large earthquakes can be found in earthquake catalogs, small

earthquakes over much of the globe are missing from global cata-

logs. In addition, the time of arrival of surface wave phases at short

periods is not well known. Thus, removal of earthquake signals must

be data-adaptive, rather than prescribed from a catalogue.
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Figure 3. Waveforms displaying examples of the five types of time-domain normalization tested. The examples are bandpass filtered between 20 and 100 s

period to clarify the contamination by the earthquake signal. (a) Raw data showing ∼3 h of data windowed around a large earthquake (M s = 7.2, Afghanistan-

Tajikistan border region) recorded at station ANMO. (b) One-bit normalized waveform, whereby the signal is set to ±1 depending on the sign of the original

waveform. (c) Clipped waveform, where the clipping threshold is equal to the rms amplitude of the signal for the given day. (d) Automated event detection and

removal. If the amplitude of the waveform is above a certain threshold, the next 30 min of it are set to zero. (e) Running absolute mean normalization whereby

the waveform is normalized by a running average of its absolute value. (f) ‘Water level normalization’ whereby any amplitude above a certain multiple of the

daily rms amplitude is down-weighted. It is run iteratively until the entire waveform is nearly homogeneous in amplitude.

We have considered five different methods to identify and re-

move earthquakes and other contaminants automatically from seis-

mic waveform data. An illustrative example is shown in Fig. 3. The

first and most aggressive method is called ‘one-bit’ normalization

(Fig. 3b), which retains only the sign of the raw signal by replacing all

positive amplitudes with a 1 and all negative amplitudes with a −1.

This method has been shown to increase signal-to-noise ratio (SNR)

when employed in acoustic experiments in the laboratory (Larose

et al. 2004) and has been used in a number of early seismic studies

of coda waves and ambient noise (Campillo & Paul 2003; Shapiro

& Campillo 2004; Shapiro et al. 2005; Yao et al. 2006). The second

method, employed for example by Sabra et al. (2005a), involves the

application of a clipping threshold equal to the rms amplitude of the

signal for the given day. An example is shown in Fig. 3(c). The third

method, illustrated by Fig. 3(d), involves automated event detection

and removal in which 30 min of the waveform are set to zero if the

amplitude of the waveform is above a critical threshold. This thresh-

old is arbitrary and its choice is made difficult by varying amplitudes

at different stations. The fourth method is running-absolute-mean

normalization, which is the method of time normalization that we

promote here. This method computes the running average of the

absolute value of the waveform in a normalization time window of

fixed length and weights the waveform at the centre of the window

by the inverse of this average. That is, given a discrete time-series

dj, we compute the normalization weight for time point n as:

wn = 1

2N + 1

n+N∑
j=n−N

|d j |, (1)

so that the normalized datum becomes d̃n = dn/wn . The width of the

normalization window (2N + 1) determines how much amplitude

information is retained. A one-sample window (N = 0) is equivalent

to one-bit normalization, while a very long window will approach

a re-scaled original signal as N → ∞. After testing various time

window widths, we find that about half the maximum period of

the passband filter works well and that this length can be varied

considerably and still produce similar results. An example result of

the application of this method is shown in Fig. 3(e). This method is

not without its faults, however. For example, it does not surgically

remove narrow data glitches, as it will inevitably down-weight a

broad time interval around the glitch. One-bit normalization does not

suffer from this shortcoming. Finally, there is a method that we call

iterative ‘water-level’ normalization in which any amplitude above

a specified multiple of the daily rms amplitude is down-weighted.

The method is run repeatedly until the entire waveform is below the

water-level, which is six times the daily rms level in the example

shown in Fig. 3f. This method of time-domain normalization is the

most time intensive of the candidates considered here.
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Figure 4. Twelve-month cross-correlations between the station-pair ANMO and HRV for the time-domain normalization methods shown in Fig. 3. The passband

is 20–100 s period. The panels of the Figs (a)–(f) correspond to those in Fig. 3.

Fig. 4 presents examples of year-long cross-correlations, band-

pass filtered between 20 s and 100 s period, using each of these

methods of time-domain normalization. The raw data (Fig. 4a), the

clipped waveform method (Fig. 4c), and the automated event detec-

tion method (Fig. 4d) produce noisy cross-correlations in this period

band. The one-bit normalization (Fig. 4b), the running-absolute-

mean normalization (Fig. 4e), and the water-level normalization

(Fig. 4f) methods produce relatively high SNR waveforms display-

ing signals that arrive at nearly the same time. In this example, the

one-bit and the running-absolute-mean normalizations are nearly

identical. A systematic test has been performed using 15 GSN sta-

tions in North America using the observed spectral SNR (defined

in Section 3) at 20 s period to compare the methods at five periods.

The resulting SNR values are similar for one-bit normalization and

the running-absolute-mean normalization. The water-level normal-

ization method also allows meaningful results to be recovered. The

running-absolute-mean method provides a small enhancement to

SNR values above one-bit normalization at all periods and a more

significant improvement over the water-level normalization.

The principal reason we prefer running-absolute-mean normal-

ization over the water-level or one-bit normalization methods is

its greater flexibility and adaptability to the data. For example, in

areas with high regional seismicity it is desirable to tune the time-

domain normalization to the frequency content of the seismicity.

Fig. 5 shows that if the temporal weights of the running-absolute-

mean normalization are computed on the raw waveform data, small

earthquakes can get through the procedure because they exist in the

raw waveform near the background noise level. Earthquakes are re-

vealed by a low-pass filter both in the raw waveform (Fig. 5b) and

the temporally normalized waveform (Fig. 5d). Alternately, the tem-

poral weights of the running-absolute-mean normalization can be

computed on the waveform filtered in the earthquake band (Fig. 5b).

In this case, if dj is the raw seismogram and d̂ j is the seismogram

bandpass filtered in the earthquake band, we define new temporal

weights calibrated to the regional seismicity

ŵn = 1

2N + 1

n+N∑
j=n−N

|d̂ j |. (2)

These weights are then applied to the raw data as before (d̃n =
dn/ŵn). This procedure severely down-weights time-series during

earthquakes (Fig. 5e), which more effectively removes them from

low-pass filtered seismograms (Fig. 5f). Contamination by earth-

quakes of the cross-correlations, therefore, should be ameliorated.

Earthquake signals that pass through the temporal normalization

tend to appear on cross-correlations as spurious precursory arrivals,

such as the high amplitude arrivals appearing between 0 and 100 s

in the 12-month cross-correlation shown in Fig. 6(a). Defining the

temporal normalization weights in the earthquake band, however,

reduces the amplitude of the precursors, as Fig. 6(b) illustrates. This

process will be most important in regions with significant regional

seismicity. The example shown in Fig. 6 is from New Zealand where,

because of high levels of seismicity in the Fiji and Tonga–Kermadec

regions, the process is recommended strongly (Lin et al. 2007).
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Figure 5. Example of the effect of tuning time-domain normalization to earthquake signals for data from GeoNet station CRLZ in New Zealand. (a) Raw

broad-band data from Oct. 14, 2005 showing two earthquakes barely emerging above background noise. (b) Data from (a) bandpass filtered between 15 and 50 s

period, more clearly showing the two earthquake signals (first: S. Fiji, mb = 5.4; second: S. of Kermadec, mb = 5.1). (c) Data after temporal normalization using

the running-absolute-mean method in which the weights are defined on the raw (unfiltered) data in (a). (d) Data from (c) bandpass filtered between 15 and 50 s

period, showing that the earthquake signals have not been removed by temporal normalization defined on the raw data. (e) Data after temporal normalization

using the running-absolute-mean method in which the weights are defined on the bandpass filtered data in (b). (f) Data from (e) bandpass filtered between 15

and 50 s period, showing that the earthquake signals have been removed by temporal normalization defined on the bandpass filtered data.
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Figure 6. Example of the effect of tuning time-domain normalization to earthquake signals on cross-correlations computed between GeoNet stations CRLZ

and HIZ in New Zealand. (a) Year-long cross-correlation in which the temporal normalization is defined on the raw data. (b) Year-long cross-correlation in

which the temporal normalization is defined on data bandpass filtered between 15 and 50 s period. Spurious precursory arrivals are substantially reduced in (b)

relative to (a). Waveforms are bandpass filtered between 5 and 50 s period.

2.2 Spectral normalization or whitening

Ambient noise is not flat in the frequency domain (i.e. is not spec-

trally white), but is peaked near the primary (around 15 s period)

and secondary (around 7.5 s period) microseisms and rises at very

long periods above 50 s to form a signal now referred to as Earth

‘hum’ (e.g. Rhie & Romanowicz 2004). Fig. 7(a) presents an exam-

ple of an amplitude spectrum for a day long time-series obtained

after temporal normalization. Primary and secondary microseisms
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Figure 7. (a) Raw and (b) spectrally whitened amplitude spectra for 1 sample per second vertical component data at station HRV for July 5, 2004. The shaded

box indicates the location of the 26 s period signal originating from the Gulf of Guinea. The taper seen at both ends of the spectra is largely attributable to a

7–150 s bandpass filter.

as well as Earth hum signatures can be seen clearly on this record

which was bandpass filtered between 7 and 150 s period. In addition

to these signals, there is a smaller peak near 26 s that is caused by a

persistent narrow-band noise source in the Gulf of Guinea (Shapiro

et al. 2006). Without the temporal normalization, which reduces the

effect of earthquakes, the 26 s resonance typically is not seen. Am-

bient noise is minimum in the period range from about 30 to 70 s.

Inversely weighting the complex spectrum by a smoothed version

of the amplitude spectrum produces the normalized or whitened

spectrum shown in Fig. 7(b). Spectral normalization acts to broaden

the band of the ambient noise signal in cross-correlations and also

combats degradation caused by persistent monochromatic sources

such as the Gulf of Guinea source.

First, regarding the problem of an isolated, persistent nearly

monochromatic noise source, the grey box in Fig. 7(a) highlights

the noise peak at 26 s period as observed at the station HRV on

a northern summer day. As documented by Holcomb (1998), this

signal is seasonal, being much stronger in the northern summer than

in the winter. Fig. 8(a) shows a 12-month cross-correlation between

GSN stations ANMO and CCM in which spectral normalization has

not been applied. The 26 s resonance appears as a broad envelope

in the time domain and corrupts the cross-correlation at positive

correlation lag. Shapiro et al. (2006) used the apparent arrival time

of the 26 s signal observed at stations in North America, Europe,

Africa and Asia to locate the source in the Gulf of Guinea. The

amplitude spectrum of this cross-correlation displays the prominent

peak at ∼26 s period (∼0.038 Hz) as seen in Fig. 8(b). In contrast,

Figs 8(c) and (d) show the cross-correlation and its amplitude spec-

trum where spectral normalization has been applied. The effect of

the 26 s resonance is greatly reduced. Shapiro et al. (2006) recom-

mend eradicating this problem by applying a narrow band reject filter

centred around 26 s period. Figs 8(e) and (f) show the effect of this

filter. The cross-correlation is largely unchanged compared to spec-

tral whitening. In many cases, therefore, the more gentle approach

of spectral whitening is sufficient to eliminate the 26 s problem from

the cross-correlations. The band-reject filter also creates problems

for automated dispersion measurement in a later stage of process-

ing, so spectral whitening is preferable if it suffices to ameliorate

the effect of the 26 s microseism.

Second, spectral normalization seeks to reduce broad imbalances

in single-station spectra to aid in the production of a broad-band

dispersion measurement. Figs 9(a) and (b) show a one-month broad-

band cross-correlation between stations CCM (Cathedral Cave, MO,

USA) and SSPA (Standing Stone, PA, USA) for spectrally un-

whitened and whitened data taken during the northern spring (when

the 26 s resonance is weak). Figs 9(c) and (d) display the ampli-

tude spectra of the unwhitened and whitened cross-correlations, re-

spectively. Without the whitening, Fig. 9(c) shows that the resulting
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Figure 8. Effect of the 26 s microseism on cross-correlations and attempts to remove it. (a) Twelve-month cross-correlation between data from stations

ANMO and CCM (Cathedral Cave, MO, USA). The broad, nearly monochromatic 26 signal at positive lag dominates the waveform. (b) Amplitude spectrum

of the cross-correlation in (a) showing the spectral peak at about 26 s period. (c) Cross-correlation between data from the same two stations that have been

spectrally whitened prior to cross-correlation. (d) Amplitude spectrum of the cross-correlation in (c) showing that the 26 s spectral peak is largely missing. (e)

Cross-correlation between the data that have been spectrally whitened prior to cross-correlation with a notch filter applied around 26 s period. (f) Amplitude

spectrum of the cross-correlation in (e). Application of the notch filter changes the cross-correlation only minimally.
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Figure 9. Comparison of cross-correlations with and without spectral whitening. Cross-correlation are for the month April, 2004 for data from stations CCM

and SSPA (Standing Stone, PA, USA) bandpass filtered from 7 to 150 s period. (a) Cross-correlation without spectral whitening. (b) Cross-correlation with

spectral whitening. (c) Amplitude spectrum of the unwhitened waveform in (a). The primary and secondary microseisms dominate the spectrum. (d) Amplitude

spectrum of the pre-whitened waveform in (b).

cross-correlation is dominated by signals in the microseism band,

predominantly from 15 to 17 s and from the 6 to 9 s period. Not

surprisingly, spectral whitening produces a broader-band signal. In

many cases, the cross-correlation amplitude spectrum is shaped with

the longer periods having higher amplitudes than the shorter periods,

as in Fig. 9(d). This is apparently because the longer period ambi-

ent noise, although naturally lower in amplitude than microseismic

noise, propagates more coherently over long distances. Additional

whitening of the cross-correlation prior to dispersion measurement

is an added option.

3 C RO S S - C O R R E L AT I O N, S TA C K I N G

A N D S I G N A L E M E RG E N C E

After the preparation of the daily time-series described in Section 2,

the next step in the data processing scheme (Phase 2) is cross-

correlation and stacking. Although some interstation distances may

be either too short or too long to obtain reliable measurements, we

perform cross-correlations between all possible station pairs and

perform data selection later. This yields a total of n(n − 1)/2 possi-

ble station pairs, where n is the number of stations. Obtaining tens

of thousands of cross-correlations is common when ambient noise
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data processing is performed over large spatial scales such as Europe

(e.g. Yang et al. 2007) or North America (e.g. Bensen et al. 2005).

Cross-correlation is performed daily in the frequency domain.

After the daily cross-correlations are returned to the time domain

they are added to one another, or ‘stacked’, to correspond to longer

time-series. Alternately, stacking can be done in the frequency do-

main which would save the inverse transform. We prefer the organi-

zation that emerges from having daily raw time-series and cross-

correlations that are then stacked further into weekly, monthly,

yearly, etc. time-series. In any event, the linearity of the cross-

correlation procedure guarantees that this method will produce the

same result as cross-correlation applied to the longer time-series.

The resulting cross-correlations are two-sided time functions with

both positive and negative time coordinates, i.e. both positive and

negative correlation lags. We typically store the correlations from

−5000 to 5000 s, but the length of the time-series needed will de-

pend on the group speeds of the waves and the longest interstation

distance.

The positive lag part of the cross-correlation is sometimes called

the ‘causal’ signal and the negative lag part the ‘acausal’ signal.
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Figure 10. Example of the emergence of the Rayleigh waves for increasingly long time-series. (a) Cross-correlations at the specified time-series lengths for

the station pair ANMO and DWPF (Disney Wilderness Preserve, FL, USA) bandpassed between 5 and 40 s period. (b) Same as (a), but for a passband between

40 and 100 s period. (c) Spectral SNR for the 24-month ANMO-DWPF cross-correlation shown with a dashed line, and the spectral SNR averaged over all

cross-correlations between GSN stations in the US shown with a solid line. (d) Spectral SNR averaged over all cross-correlations between GSN stations in the

US for different time-series lengths of 1, 3, 6, 12 and 24 months.

These waveforms represent waves travelling in opposite directions

between the stations. Several examples of cross-correlations have

been shown earlier in the paper. Figs 4, 8 and 9 display some

two-sided cross-correlations for different time-series lengths. Fig. 1

clearly shows the broad-band content of ambient noise. If sources of

ambient noise are distributed homogeneously in azimuth, the causal

and acausal signals would be identical. However, considerable asym-

metry in amplitude and spectral content is typically observed, which

indicates differences in both the source process and distance to the

source in the directions radially away from the stations. We often

compress the two-sided signal into a one-sided signal by averaging

the causal and acausal parts. We call this the ‘symmetric’ signal or

component. An example was shown in Figs 1 and 6.

Stacking over increasingly long time-series, on average, improves

SNR ratio. An example is shown in Fig. 10, which displays cross-

correlations of different length time-series from the stations ANMO

and DWPF (Disney Wilderness Preserve, FL, USA). The causal

and acausal signals are seen to emerge as the time-series length

increases in both of the period bands that are displayed in Figs 10(a)

and (b).
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Measurements of the frequency dependence of the SNR are use-

ful to quantify observations of the emergence of the signals with

increasing time-series length. We also use it as part of data selection

in Phase 4 of the data processing procedure. Fig. 11 illustrates one

way in which the frequency dependence of SNR may be measured.

From the 3-D model of Shapiro & Ritzwoller (2002), we predict the

maximum and minimum group arrival times (t min, t max) expected

for the path between the station-pair over the period band of interest

(τ min, τ max). We perform a series of narrow bandpass filters cen-

tred on a discrete grid of frequencies and measure the peak in the

time domain in a signal window (t min − τ max, t max + 2 τ max) shown

with solid vertical lines in Fig. 11. We also measure the rms noise

level in a 500 s noise window (vertical dashed lines) that trails the

end of the signal window by 500 s. This rms level is shown with

dotted lines in Fig. 11 in the noise window. The resulting ratio of

peak signal in the signal window to rms noise in the trailing noise

window on the grid of centre frequencies is the ‘spectral’ SNR mea-

surement. Centre periods and SNR are identified in each panel of

Fig. 11. Note that although we call this a spectral SNR measure-

ment, it is, in fact, a measurement of SNR in the time domain. It is

‘spectral’ only in the sense that the measurements are a function of

frequency.

This spectral SNR, which takes the ratio of signal to trailing

noise, mostly is a measure of the signal level, as the trailing noise

does not strongly depend on signal-generated noise. Alternately, one

could define the ratio of signal to leading noise, which is strongly

dependent on signal-generated noise, as discussed earlier. Although

we do not use signal-to-precursory noise here, it has the advantage

of quantifying precursory noise which interferes with dispersion

measurements more than trailing noise. Further research is needed

to determine if it is a better predictor of the quality of dispersion

measurements than the spectral SNR that we use.

A spectral SNR curve for the 24-month cross-correlations be-

tween stations ANMO and DWPF, shown in Figs 10(a) and (b), is

presented as the dashed line in Fig. 10(c). It is contrasted with the

average SNR over all GSN station pairs within the US. For this ex-

ample, spectral SNR, on average, peaks in the primary microseism

band around 15 s period, minimizes near 40 s period and then is

fairly flat to much longer periods, although it rises slightly. The

details of the curve, however, will vary geographically, with path

length and season. Fig. 10(d) shows how spectral SNR increases

with time-series length. The shapes of the SNR spectra also change

subtly with time-series length.

In general, therefore, as time-series length increases so does SNR,

so the longer the time-series the better. The details of how the signal

emerges from noise depends on frequency, and also on the location

and interstation spacing. Fig. 12 presents an example of how SNR

depends on time-series length computed for the 15 GSN stations in

the US. The emergence of the signal can be fit well with a power

law, and Fig. 12 shows the fit power law rather than the raw data:

SNR = At1/n, where A and n are period dependent. For the periods

shown in Fig. 12, n varies from about 2.55 at 10 s period to 2.88 at

25 s. It attains a maximum of about 3.4 at 50 s and then diminishes

again so that at 100 s period n is about equal to 2.66. Inspection of

Fig. 7, which is a typical daily amplitude spectrum for temporally

normalized data, reveals that n maximizes at intermediate periods

between about 25 and 50 s where ambient noise is generally weakest.

In this period band, the emergence of the signal is slowest. At shorter

and longer periods, in the microseismic and ‘Earth-hum’ bands, n
ranges from about 2.5 to 2.9, and the signal emerges at a faster rate

than at the intermediate periods. As discussed in Section 6 below,

the curves in Fig. 12 are useful in designing experiments based on

ambient noise tomography. Further work, however, is needed to

understand the frequency dependence of the power law behaviour

of the emergence of the signal from ambient noise, as well as its

geographic variability.

4 D I S P E R S I O N M E A S U R E M E N T

After the daily cross-correlations have been computed and stacked,

the resulting waveform is an estimated Green function. Using the

estimated Green function, the group and phase speeds as a func-

tion of period can be measured by using traditional frequency–time

analysis (FTAN) (e.g. Dziewonski et al. 1969; Levshin et al. 1972,

1992; Herrin & Goforth 1977; Russell et al. 1988; Levshin et al.
1989; Ritzwoller & Levshin 1998; Levshin & Ritzwoller 2001).

This is Phase 3 of the data processing procedure. As with Phases 1

and 2, because the number of interstation pairs can be very large,

the dispersion measurement process needs to be automated. The

method that we promote is based on a version of FTAN described

in detail by Levshin et al. (1989), which obtains measurements on

single waveforms and involves significant analyst interaction. How-

ever, the computational structure of FTAN allows automation and

this is what we describe here. Although FTAN has been applied

dominantly to measure group speeds, phase speed curves are also

measured naturally in the process.

We roughly follow the notation and terminology of Bracewell

(1978), but if s(t) is the waveform of interest its Fourier transform

is defined with a positive exponent as S(ω) = ∫ ∞
−∞ s(t) exp(iωt)dt .

Dispersion measurements are obtained by considering the ‘analytic

signal’, which is defined simply in the frequency domain as

Sa(ω) = S(ω)(1 + sgn(ω)), (3)

and upon inverse Fourier transforming is expressed in the time do-

main as follows:

Sa(t) = s(t) + i H (t) = |A(t)| exp(iφ(t)). (4)

H(t) is the Hilbert transform of s(t). To construct a frequency—time

function, the analytic signal is subjected to a set of narrow bandpass

Gaussian filters with centre frequencies ω0:

Sa(ω, ω0) = S(ω)(1 + sgn(ω))G(ω − ω0), (5)

G(ω − ω0) = e
−α

(
ω−ω0

ω0

)2

. (6)

Inverse transforming each bandpassed function back to the time

domain yields the smooth 2-D envelope function, |A(t , ω0)|, and

phase function, φ(t , ω0). α is a tunable parameter that defines the

complementary resolutions in the frequency and time domains and

is commonly made distance dependent (Levshin et al. 1989). Group

speed is measured using |A(t , ω0)| and phase speed using φ(t , ω0).

In particular, the group arrival time, τ (ω0), as a function of the

centre frequency of the Gaussian filter is determined from the peak

of the envelope function so that the group speed is U (ω0) = r/τ (ω0),

where r is the interstation distance. We follow Bracewell and replace

ω0 with the ‘instantaneous frequency’, defined as the time rate of

change of the phase of the analytic signal at time τ . We, therefore,

replace the centre frequency of the narrow-band filter, ω0, with the

instantaneous frequency, ω = |dφ(t, ω0)/dt |t=τ (ω0). This correction

is most significant when the spectrum of the input waveform is not

flat, in which case, due to spectral leakage, the central frequencies of

the narrow-band filters will not accurately represent the frequency

content of the output of the filters.
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Figure 11. Example of how spectral SNR measurements are obtained on a 12-month cross-correlation between data from stations HRV and PFO (Pinyon Flat,

CA, USA). Vertical solid lines indicate the signal windows and vertical dashed lines the noise windows. Waveforms are centred on the period indicated at

the left-hand side in each panel, and SNR is defined as the ratio of the peak within the signal window and rms noise in the noise window. The noise level is

presented as the horizontal dotted lines in the noise windows. SNR in each band is indicated at right-hand side in each panel.
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Figure 12. Emergence of the signal with time-series length. The power law fit to the average of the measured SNR from cross-correlations between the GSN

stations within the US at each of the five indicated periods is plotted versus variable time-series length (in weeks).

The measurement of dispersion curves divides into eight steps.

We discuss each step and then indicate how the analyst-driven and

the automated FTAN processes differ. This will be done in the con-

text of group velocity measurements in Section 4.1 and then we

will follow with a discussion of how FTAN measures phase speed

curves in Section 4.2. Fig. 13 graphically illustrates the process. In

this figure, all results are for the automated FTAN process.

4.1 Group speed measurements

Fig. 13(a) shows a broad-band signal obtained from a one-year cross-

correlation between stations ANMO and COR in the US. In Step 1

of FTAN, a frequency (period)—time (group speed) or FTAN im-

age is produced by displaying the logarithm of the square of the

envelope of the analytic signal, log |A(t , ω0)|2. Fig. 13(b) shows the

FTAN image of the waveform in Fig. 13(a). The envelope functions

log |A(t , ω0)|2 are arrayed vertically on a grid of different values of

ω0 to produce a matrix that can be displayed as a 2-D image. There

is a similar phase matrix not displayed here. Typically, group speed

replaces time and period replaces filter centre frequency. In Step 2,

the dispersion ridge is tracked as a function of period to obtain a raw

group speed curve. Fig. 13(b) shows this curve and the prediction

from the 3-D model of Shapiro & Ritzwoller (2002). This raw group

speed measurement may be sufficient for many applications.

Steps 3-8 of FTAN involve phase-matched filtering to clean the

waveform of potential contamination and generate an alternative

group speed curve. This measurement may be preferable in some

applications. In Step 3, an anti-dispersion or phase-matched filter

is defined on a chosen period-band. Levshin & Ritzwoller (2001)

discuss the phase-matched filtering method in detail. In Step 4,

this anti-dispersion filter is applied to the waveform in the period

band chosen to produce the undispersed signal. Fig. 13(c) shows the

undispersed or ‘collapsed’ signal. In Step 5, contaminating noise is

identified and removed from the undispersed signal. Typically, for

earthquakes this noise is signal generated, being composed of multi-

pathed signals, seismic coda, body waves, and so forth. An example

cut is shown with the red line in Fig. 13(c). In Step 6, the cleaned

collapsed waveform is redispersed. It is shown as the red line in

Fig. 13(a). In Step 7, the FTAN image of the cleaned waveform is

computed using the same process applied to the raw waveform in

Step 1. Fig. 13(d) shows the FTAN image of the cleaned waveform.

To improve frequency resolution, the Gaussian filters that are ap-

plied during phase-matched filtering are broader than those that are

applied to the raw waveform. For this reason, the time-width of the

FTAN image is broader in Fig. 13(d) than in Fig. 13(b), but this does

not reflect a lower intrinsic temporal resolution because interfering

signals have been removed. Finally, in Step 8, the dispersion ridge

is tracked as a function of period on the cleaned FTAN image to

obtain the cleaned group speed curve. Fig. 13(d) shows this curve

and the predicted curve from the 3-D model.

The traditional analyst-driven FTAN procedure has been applied

to earthquake data by analysts for more than 200 000 individual

paths globally (e.g. Shapiro & Ritzwoller 2002). The analyst, how-

ever, only enters the process in Steps 3 and 5. In Step 3, the analyst

defines the phase-matched filter and the frequency band of inter-

est, which usually depends on the bandwidth of the signal that is

observed. The analyst either can use the group speed curve that is

automatically produced on the raw FTAN image in Step 2 or can

define a curve interactively. The latter approach is usually chosen, as

FTAN images of earthquake data commonly display spectral holes

that vitiate the automated group speed measurement. The automated

group speed measurements are also often tricked by scattered or mul-

tipathed arrivals and, therefore, do not track the dispersion branch of

interest accurately. Multipathing and scattering is a problem mostly

for large epicentral distances. In Step 5, the analyst interacts with

the collapsed signal to remove noise. It is, therefore, only Steps 3

and 5 that require automation beyond the existing method.

To automate Step 3, the group speed measurements that result in

Step 2 must be used to define the phase-matched filter. Therefore,

these measurements must be robust to spectral holes and scattered or

multipathed arrivals. Fortunately, high SNR FTAN images that result
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Figure 13. Graphical representation of FTAN. (a) Raw (blue) and cleaned (red) waveforms for the 12-month stacked cross-correlation between stations ANMO

and COR (Corvallis, OR, USA). (b) Raw FTAN diagram, measured group speed curve as the solid line and prediction from the 3-D model of Shapiro and

Ritzwoller (2002) as the dashed line. (c) Undispersed or collapsed signal (black) and cleaned signal (red dashed). (d) Cleaned FTAN diagram, measured group

speed curve and prediction from the 3-D model of Shapiro and Ritzwoller (2002).

from cross-correlations of ambient noise tend to be much simpler

than those from earthquakes, and spectral holes are rare. Interstation

spacings for ambient noise measurements are also typically shorter

than epicentral distances, so multipathing is not as severe of a prob-

lem. The automated procedure, therefore, only differs from the raw

group velocity procedure applied during interactive FTAN in that

in Step 2 added measures are taken to ensure the continuity of the

dispersion curve by rejecting spurious glitches or jumps in group

times. Formal criteria are set to reject curves with distinctly irreg-

ular behaviour or to interpolate through small glitches by selecting

realistic local instead of absolute maxima. When gaps or jumps are

too large in amplitude or persistent in period, the dispersion curve is

rejected. Spectral whitening (Section 2.2) helps to minimize jumps

in the measured curve as well as the incompleteness of measure-

ments at the long period end of the spectrum. The raw group speed

curve that emerges from Step 2 is one of two alternative curves that

emerge from the automated process.

To automate Step 5, the undispersed signal is selected from the

surrounding noise automatically. Fig. 13(c) illustrates this proce-

dure graphically using the waveform from Fig. 13(a). In an ideal

case, the anti-dispersed signal will collapse into a single narrow

spike. The collapsed waveform, given by the red line in Fig. 13(c),

is then cut from the surrounding time-series and re-dispersed to

give the clean waveform shown with the red line in Fig. 13(a). In

this example the collapsed waveform is more complicated than a

single spike. The principal advantage of this phase-matched filter-

ing method arises when there exists strong neighbouring noise that

can be removed from the undispersed signal. In the case of ambient

noise cross-correlations, spurious precursory arrivals exist in many

cases, particularly at long periods. A good example can be seen in
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Fig. 6(a), and the example in Fig. 13(a) also contains precursory ar-

rivals. Such arrivals tend to interfere with the primary signals and

can make the resulting group velocity curves undulatory. Phase-

matched filtering helps to reduce the effect of precursory arrivals

and smooths the measured group speed curve in general. The FTAN

image after phase-matched filtering is broader in time (Fig. 13d) be-

cause a larger α-value (eq. 6) is applied compared to the raw image

(Fig. 13b) In the example in Fig. 13, however, there is little differ-

ence between the group speed curves that emerge from the raw and

phase-match filtered FTAN images.

A problem occurs with phase-matched filtering, however, when

the waveform of interest is narrow-band. In this case, the undis-

persed signal will possess prominent side lobes that will need to

be included in the cleaned collapsed signal cut from surrounding

noise. If these side lobes extend broadly enough in time, the cutting

procedure may not effectively eliminate contaminating noise. Alter-

nately, if the side lobes are not included in the selected waveform,

the redispersed signal will be biased and the dispersion curve will

often be undulatory at the long period end of the measurement. For

these reasons, phase-matched filtering (i.e. FTAN Steps 3-8) is only

recommended for application to broad-band signals.

4.2 Phase speed measurements

By analyzing the envelope function, |A(t ,ω)|, the group speed curve,

U (ω), is measured. Phase speed cannot be derived directly from

group speed, but the group speed can be computed from phase speed.

To see this, let U = ∂ω/∂k and c = ω/k be group and phase speed,

respectively, s u = U−1 and s c = c−1 be group and phase slowness,

respectively, and k be wavenumber. Then s u = ∂k/∂ω = ∂(ωs c)/∂ω,

which gives the following first-order differential equation relating

the group and phase slownesses at frequency ω:

∂sc

∂ω
+ ω−1sc = ω−1su . (7)

If the phase speed curve c(ω) is known, the group speed curve U (ω)

can be found directly from this equation. If the group speed curve

is known, this differential equation must be solved to find c(ω),

which involves an integration constant that is generally unknown.

The solution is

sc(ω) = ω−1

(∫ ω

ωn

su(ω)dω + ωnsn
c

)
, (8)

where the constant of integration has been written in terms of a

boundary condition that the phase speed curve is known at some

frequency ωn : s c(ωn) = sn
c . This is a condition that will generally

not apply. Nevertheless, knowledge of the group speed can help to

find the phase speed, as we now show.

Measurement of the phase speed curve requires information in

addition to the envelope function on which the group speed has been

measured. This information derives from the phase of the analytic

signal which is approximately composed of a propagation term, an

initial source phase and a phase ambiguity term that will be discussed

further below. At instantaneous frequency ω, this can be written:

φ(t, ω) = k� − ωt − φs − φa, (9)

where t is the traveltime, � is distance (interstation or epicentral),

k is wavenumber, φ s is source phase and φa is the phase ambiguity

term. To proceed, we evaluate the observed phase at the observed

group arrival time, t u = �/U , and let k = ωs c to find the expression

for phase slowness:

sc = su + (ω�)−1(φ(tu) + φs + φa), (10)

where we now suppress the ω notation for simplicity. The group

speed curves, therefore, enter this process by defining the point in

time at which the observed phase is evaluated.

Eq. (10) prescribes the phase slowness (and hence the phase

speed) curve. Its use, however, depends on knowledge of the ini-

tial source phase and the extra phase ambiguity term. In earthquake

seismology, φ s is typically computed from Centroid Moment Ten-

sor (CMT) solutions. One of the traditional advantages of studies of

group speed over phase speed is that source phase plays a secondary

role in group speed (Levshin et al. 1999), particularly at short pe-

riods. Group speeds, therefore, can be measured at short periods

unambiguously using small earthquakes without prior knowledge

of the CMT solution. For cross-correlations of ambient noise, how-

ever, the situation is considerably easier, as the source phase should

be zero: φ s = 0.

For both earthquake and ambient noise studies, the phase ambi-

guity term contains a part derived from the 2π ambiguity inherent

to any phase spectrum: φa = 2π N , where N = 0, ±1, ±2, . . . .

Typically, this ambiguity can be resolved by using a global 3-D

model (e.g. Shapiro & Ritzwoller 2002) or phase velocity maps (e.g.

Trampert & Woodhouse 1995; Ekstrom et al. 1997) to predict phase

speed at long periods. The value of N then is chosen to give the

closest relation between these predictions and observation. If ob-

servations extend to long periods (e.g. greater than 40 s, preferably

longer), a global model or observed phase velocity maps may predict

phase speed well enough to get N right in most cases. As discussed

in Section 5, we recommend making dispersion measurements only

up to a period (in s) equal to �/12, where � is in km. To obtain

a 40 s measurement, therefore, requires an interstation spacing of

about 500 km. If resolution of the phase ambiguity requires 100 s

observations, then an interstation spacing of at least 1200 km is rec-

ommended. For ambient noise cross-correlations, if observations

are limited to short periods or short interstation distances, the phase

ambiguity may not resolve in a straightforward way.

For ambient noise cross-correlations, the phase ambiguity ap-

pears to be exacerbated by another factor. Eq. (23) of Snieder

(2004) shows that the phase of the cross-correlation between dis-

placement waveforms possesses a π/4 term that arises from the

stationary phase integration (effectively over sources) in the di-

rection transverse to the two stations. The sign of the term de-

pends on the component of the seismometer, positive for the

vertical component and negative for the radial component for a

Rayleigh wave. The assumption, however, is that sources are ho-

mogeneously distributed with azimuth. An inhomogeneous distri-

bution may produce a different phase shift and, because this dis-

tribution may vary with frequency, the shift could be frequency

dependent. More theoretical work is needed on this problem, but

an empirical argument made by Lin, in preparation, 2007 demon-

strates that for velocity waveforms the value appears to be −π/4

for the vertical component. Thus, following Lin, in preparation,

2007 for vertical component ambient noise cross-correlations be-

tween velocity waveforms the phase ambiguity term is φa =
2π N − π/4.

In summary, phase-slowness derived from a vertical component

ambient noise cross-correlation can be written

sc = su + (ω�)−1(φ(tu) + 2π N − π/4), (11)

where N = 0, ±1, ±2, . . . . More theoretical work and simulations

are needed to determine the uncertainty in the −π/4 phase shift

as well as the possible dependence on frequency and geographical

location.
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5 Q UA L I T Y C O N T RO L

Because the number of interstation paths grows as the square of the

number of stations, the data processing procedure that is applied to

ambient noise cross-correlations must be designed to require min-

imal human interaction. Erroneous dispersion measurements are

more likely to arise than if analysts were providing guidance at

strategic intervals along the process. Data quality control measures,

therefore, must be devised to identify and reject bad measurements

and compute quality assurance statistics for the accepted measure-

ments.

First, we have found that a reliable dispersion measurement at

period τ requires an interstation spacing (� in km) of at least 3

wavelengths (λ): � > 3λ = 3cτ or τ < �/3c. Because phase speed

c ∼ 4 km s−1, for measurements obtained at an interstation spacing

of �, there is a maximum cut-off period of about τ max = �/12. We

clearly observe the degradation of dispersion measurements at peri-

ods greater than about τ max, at least for group speeds. This imposes

a severe constraint on measurements obtained from small regional

arrays such as PASSCAL experiments. A broad-band network 500

km in extent, for example, can only produce measurements up to

about 40 s period, and that only for the stations across the entire

array which is a small subset of the interstation paths. Interme-

diate and long period measurements most likely will be obtained

from the array to surrounding stations, which indicates the impor-

tance of permanent (back-bone) stations in the context of regional
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Figure 14. Location map for Fig. 15 showing the ray paths between station PFO and the five other stations.

deployments. At present, we have less experience with phase speed

measurements obtained on cross-correlations of ambient noise, so

it is possible that the period cut-off may be able to be relaxed for

phase speeds.

Second, we need the means to determine the reliability of dis-

persion measurements that satisfy the period cut-off criterion. One

way to estimate reliability is comparison with ground truth. The

best case would be when an earthquake has occurred beneath one

of the stations. Figs 14 and 15 present an example comparison,

using an earthquake that occurred near station PFO (Pinyon Flat,

CA, USA). (Date = Oct 31, 2001, mb = 5.2, lat = 33.508, lon =
−116.514, depth = 15.2 km). The five paths that are selected are

shown in Fig. 14 and comparison between the cross-correlation and

the earthquake signals is presented in Fig. 15. To limit the compar-

ison to the period range where both signals are strong, we multi-

plied the earthquake amplitude spectrum by the cross-correlation

amplitude spectrum. This was then used as the amplitude spectrum

for both signals. In general, the arrival times of the fundamental

Rayleigh waves (the largest amplitude arrivals in each panel) are

similar, particularly in light of the source phase shift that affects the

earthquake. To compensate for the earthquake radiation pattern, we

flip the sign of the earthquake records for stations CMB (Columbia,

CA, USA) and LLLB (Lillooet, BC, Canada) which are to the north

of station PFO. Also, because the earthquake is south-west of station

PFO, the epicentral distances to the stations are greater than the dis-

tance between PFO and the other stations. To compensate for this,
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Figure 15. Comparison of symmetric component cross-correlations and earthquake records. Blue lines are 12-month cross-correlations between station PFO

in southern California with five other stations around North America. Red lines are earthquake waveforms recorded at the indicated stations following an

earthquake near station PFO. The time-series are plotted against group velocity to account for slightly differing path lengths. Station names are indicated at the

right-hand side and interstation distances are at the left-hand side. Earthquake records for stations CMB and LLLB are sign flipped.
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we plot the recovered signal versus group speed rather than time

thus accounting for the different path length. Relocating the earth-

quake by roughly 6 km to the south-east relative to the PDE location

improved the match between the earthquake and cross-correlation

signals. Examples such as this give confidence to the ability to inter-

pret cross-correlations of ambient noise in terms of earth structure,

similar to the way earthquake signals are interpreted. Coincidences

between earthquake and station locations are, however, too rare to

be of general use for data selection or uncertainty estimation.

The principal metric on which to base a judgment of the quality of

the measurements is stability, the robustness of the measurement to

perturbations in the conditions under which it is obtained. The sta-

bility of spatially clustered and temporally repeated measurements

is particularly useful to identify erroneous measurements and to

quantify uncertainties.

Clustering measurements obtained at a particular station from

a set of earthquakes located near to one another is commonly

used to assess uncertainties in earthquake dispersion measurements

(e.g. Ritzwoller & Levshin 1998). A similar cluster analysis can be

applied to ambient noise data. For example, Fig. 16 presents a spa-

tial cluster analysis that exploits the high station density in southern

California. Numerous measurements between southern California

and distant stations were obtained with similar paths (see Fig. 16a).

Cross-correlations between the southern California stations and the

GSN station ANMO provide one estimate of uncertainty. In this

example that there is substantial difference in velocity compared to

the CU-Boulder global model (Shapiro & Ritzwoller 2002) at peri-

ods below about 35 s for group speeds and 30 s for phase speeds.

Measurements between southern California and more distant sta-

tions typically are closer to the model prediction. Spatial cluster

analyses such as this can be performed when a tight cluster of sta-

tions subtends a small angle to a relatively distant station (located

many interstation spacings away from the cluster). These condi-

tions typically will not hold for most measurements, although the

growth of regional arrays like the Transportable Array component

of USArray/EarthScope will help to make this method increasingly

applicable. At present, however, cluster analysis provides only an

assessment of average uncertainty for long path measurements or a

data rejection criterion for a subset of the measurements.

A more useful method to estimate reliability is to assess temporal

repeatability. The physical basis for this method is that sources of

ambient noise change seasonally and provide different conditions

for the measurements. Given the changing conditions, therefore, the

repeatability of a measurement is a significant indicator of reliability.

This standard is elevated to a high position in our assessment, as we

equate seasonal repeatability with measurement uncertainty. It is one

of the salutary features of ambient noise dispersion measurements

generally that uncertainties can be measured in this way, unlike

earthquake derived measurements.

Fig. 17 presents an example of seasonal variability for the GSN

station-pair CCM and DWPF. Four disjoint 3-month broad-band

cross-correlations are shown in Fig. 17(a) comprising winter, spring,

summer and fall months. The long period part of the cross-

correlations displays a strong seasonal variability. Group velocity

curves from individual 3-month stacks are plotted in Fig. 17(b). Us-

ing a year of data, in principle there are twelve 3-month stacks; i.e.

January-February-March, February-March-April, . . . , December-

January-February. Only curves from the 3-month stacks in which

spectral SNR >10 at all periods are shown. 10 of the 12 stacks sat-

isfied this criterion. Overplotted with the red line is the group speed

curve measured for the 12-month stack. It appears in the middle of

the shorter measurements and is smoother than most of the 3-month

stacks. This indicates that the use of variability among the 3-month

stacks to estimate the uncertainty in the dispersion measurement for

the 12-month time-series is conservative. The predicted curve from

the 3-D model of Shapiro & Ritzwoller (2002) is also overplotted

in green.

In earlier applications of the data processing procedure described

herein (Yang et al. 2007; Lin et al. 2007a), dispersion measure-

ments are obtained on 12-months of data. To estimate uncertainties

in these measurements, we also measure dispersion on all sequen-

tial 3-month stacks if SNR exceeds some threshold. The standard

deviation is computed if a sufficient number of the 3-month stacks

exceeds the SNR criterion. In the high ambient noise environment

of New Zealand, Lin et al. (2007a) required seven of the 3-month

stacks to have SNR >10. Yang et al. (2007), working with the lower

ambient noise conditions that prevail across most of Europe yielded

lower SNR values of the resulting cross-correlations. They were

forced to loosen this criterion (four 3-month stacks with SNR >7).

Both studies rejected any measurement for which an uncertainty

measurement could not be determined. Yang et al. (2007), in par-

ticular, rejected many measurements because uncertainty could not

be determined even with the loosened criteria. They argued, there-

fore, that at least across much of Europe, two years of data would

be preferable to one in order to estimate uncertainties and reject far

fewer measurements. Presumably this would be true for most other

continents around the world.

If a seismic station is operated or a pair of stations are run simul-

taneously only for a short period of time, however, acquisition of

two years of data may be out of the question and temporal subset-

ting to estimate uncertainties may not be feasible. Temporal overlap

between neighbouring deployments of stations also may not be long

enough to estimate uncertainties based on temporal variability. In

this case, SNR measurements can provide a useful proxy for uncer-

tainties. An example is shown in Fig. 18. In these figures, the average

standard deviation measured from the temporal variability of cross-

correlations of ambient noise observed over one-year is plotted as

a function of spectral SNR. The cross-correlations are obtained on

more than 200 stations across the US and southern Canada from

the year 2004. Results at 10 s period (green circles) and 20 s period

(red triangles) are shown, and are segregated into two interstation

distance ranges, 1000–2000 km and distances greater than 2000 km.

At both periods there is a clear linear relation between standard de-

viation and spectral SNR for 10 < SNR < 40. For SNR < 10, the

standard deviation increases rapidly and non-linearly. These curves

illustrate that SNR may provide a useful proxy for measurement

error if SNR > 10. In addition, because, as Fig. 12 shows, SNR

is also related to the number of weeks in the stack, the number of

weeks stacked is related to the expected measurement uncertainty.

For example, inspection of Fig. 12 shows that at 10 s period, a SNR

of 10 is expected after 4-weeks of observation. Fig. 18(a) reveals

that a SNR of 10 relates to a measurement error of about 55 m s−1.

Thus, four-weeks of observation (in North America) is expected to

give a measurement error of about 55 m s−1. Increasing the observ-

ing length to 20 weeks at 10 s period is expected to increase the

SNR to about 20 and the measurement error is expected to reduce

to about 45 m s−1. Observing still longer to 60 weeks is expected,

on average, to increase SNR to about 30 and reduce error to about

35 m s−1. Thus, although it is tempting to stack data indefinitely, the

power-law dependence of SNR on time-series length generates di-

minishing returns in reducing measurement errors after SNR is high

enough to provide a reasonable dispersion measurement. Continued

observation past this point may best be used to measure temporal

variability directly, which is preferable over the use of proxy curves.
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Figure 16. Example assessment of the spatial variability of dispersion measurements using a cluster of 10 stations in southern California. (a) The cluster of

10 paths used in this analysis with a detail plot of the stations used in southern California. (b) Measurements shown with solid lines are from 12-month stacks

observed between station ANMO and the southern California cluster of 10 stations and the dashed lines are the predictions from the 3-D model of Shapiro &

Ritzwoller (2002).
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lag corresponds to waves arriving from the southeast, from DWPF to CCM. (b) Group speed measurements obtained on the symmetric-component from ten

3 months are presented versus period as the black curves. The measurement for the 12-month stack is indicated by the red line and the green line is the prediction

from the 3-D model of Shapiro & Ritzwoller (2002).

C© 2007 The Authors, GJI

Journal compilation C© 2007 RAS



March 20, 2007 19:35 Geophysical Journal International gji3374

20 G. D. Bensen et al.

1000 < dist < 2000 km

0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40

dist > 2000 km

Spectral SNR

st
a

n
d

a
rd

 d
e

v
ia

ti
o

n
 (

k
m

/s
e

c)

Spectral SNR

20 sec period

10 sec perioda) b)

0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40

st
a

n
d

a
rd

 d
e

v
ia

ti
o

n
 (

k
m

/s
e

c)

0

0.06

0.12

0

0.06

0.12
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Below SNR ∼ 10, measurements become unreliable. Black lines show the best-fit linear trends for 10 < SNR < 40.
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(right-hand side) at 16 s period across Europe. Misfit is calculated from the corresponding smooth group speed maps inverted from the ambient noise and
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The discussion in the previous paragraph is relevant to the design

of seismic experiments to use ambient noise cross-correlation. It is,

however, intended to be more illustrative than definitive, and more

work is needed to understand the distributions of the quantities in

order to produce better proxy curves and guide their use.

Third, we seek measurements that cohere as a whole; that is,

that agree with other accepted measurements. This condition can

be tested tomographically. Measurements that can be fit with a

smooth tomographic map are said to agree with one another. Yang

et al. (2007) presents a detailed discussion of the application of this
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criterion across Europe. He finds that, on average, dispersion mea-

surements that derive from ambient noise tomography can be fit

better than those that derive from earthquake data. Moreover, the

distribution of misfit is tight. While erroneous measurements do

pass the previous selection criteria, they are small in number. An

example comparison between the misfit histograms of ambient noise

and earthquake derived group speed measurements across Europe

is shown in Fig. 19.

6 S U M M A RY A N D C O N C L U S I O N S

The data processing procedure for extracting estimated Rayleigh

wave Green functions from ambient seismic noise has now largely

stabilized and is sufficiently well evolved to describe without fear

of radical modification in the near future. The procedures that are

described herein have been designed not only to deliver reliable

measurements, but to be flexible and applicable to a wide variety of

observational settings. The procedure divides into four phases: (1)

single-station data preparation, (2) cross-correlation and stacking

to a desired time-series length, (3) dispersion measurement and (4)

quality control. Because the number of cross-correlations grows as

the square of the number of stations, the procedure we describe is

entirely automated.

The principal step in single-station data preparation is ‘temporal

normalization’ which is designed to ameliorate the contamination of

the ambient noise signals by earthquakes, instrument irregularities,

and non-stationary noise sources near to stations (such as passing

storms and high local sea heights). We advocate the use of ‘running-

absolute-mean’ normalization, which is an effective method that

allows for tuning to regional earthquake conditions. In addition,

spectral whitening is advisable prior to cross-correlation in order to

minimize contamination by the 26 s Gulf of Guinea resonance and

to broaden the measurement band.

The use of long time-series helps to optimize the SNR, which is

anti-correlated with measurement error. SNR displays a power law

dependence on time-series length, with the most rapid emergence

of signals from noise in the microseismic (<20 s period) and ‘Earth

hum’ (>50 s) bands. The greatest challenge for ambient noise to-

mography, therefore, lies between about 30 and 60 s period.

Automated dispersion measurement is performed with a mod-

ification of traditional FTAN (e.g. Levshin et al. 1992). We have

described methods that measure group velocity curves reliably with

and without phase-matched filtering. Phase-matched filters are help-

ful to extract the estimated Green function from adjacent contam-

inating signals, if they exist. However, phase-matching filtering

works best on broad-band waveforms. For signals that are signif-

icantly band-limited, it would be best to forego phase-matched fil-

tering. Reliable group velocity measurements, on average, require

a SNR > 10.

Experience reveals that reliable group velocity measurements re-

quire an interstation spacing, � in km, of at least three wavelengths.

This creates a period cut-off τ max ∼ �/12. At periods longer than

this, the interstation spacing will be less than three wavelengths, and

the measurements are significantly more likely to be unreliable. This

condition can impose a stringent constraint on the use of ambient

noise tomography with data from local or regional arrays.

Phase velocity curves also emerge naturally from the automated

FTAN and preliminary results indicate that the curves are stable and

smooth as long as SNR is above a threshold value of about 10. For

small interstation spacings where only short period phase velocities

can be measured, the 2π phase-ambiguity may be difficult to resolve

unless station density is high enough to exploit the observed phase

‘move-out’. Further work is also needed to determine if the period

cut-off can be relaxed for phase velocity measurements.

Within the context of an automated data processing procedure,

data quality control measures are particularly important to iden-

tify and reject bad measurements and compute quality assurance

statistics for the accepted measurements. The principal metric on

which to base a judgment of quality is stability, the robustness of

the measurement to perturbations in the conditions under which it is

obtained. Temporal repeatability, in particular, is a significant indi-

cator of reliability. The physical basis for this method is that sources

of ambient noise change seasonally and provide different conditions

for the measurements. This standard is elevated to a high position in

our assessment, as we equate seasonal repeatability with measure-

ment uncertainty. It is one of the commendable features of ambient

noise dispersion measurements generally that uncertainties can be

measured, unlike earthquake derived measurements. Although one

year of data is sufficient to estimate uncertainties through temporal

repeatability in some cases, two years of data are preferable.

Acquisition of one to two years of data may be out of the question

in many circumstances, so that temporal subsetting to estimate un-

certainties may not be feasible. In this case, SNR measurements can

provide a meaningful proxy for uncertainties. Such proxy curves

relating measurement uncertainty to SNR (e.g. Fig. 18) can be used

with information about the emergence rate of the signal (e.g. Fig. 10)

to help design experiments that seek to perform ambient noise to-

mography. The results in Fig. 18 are are not yet definitive, and more

work is needed to understand the statistical distributions of the quan-

tities in order to produce better proxy curves and guide their use.

Nevertheless, we believe that this approach promises to provide ap-

proximate uncertainty estimates for experiments that are too short

to exploit temporal repeatability.

The data processing procedures that have been developed for am-

bient noise tomography currently have a history shorter than three

years and need to continue to develop. In particular, efforts are

needed to tune the method further for phase velocities (e.g. under-

standing potential phase ambiguities related to source distribution)

and Love waves. We also believe that work on proxy curves in which

SNR (or time-series length) is used to infer an expected measure-

ment uncertainty is a fertile area for future research.
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